首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wickner RB  Leibowitz MJ 《Genetics》1977,87(3):453-469
Yeast strains carrying a double-stranded RNA plasmid of 1.4–1.7 x 106 daltons encapsulated in virus-like particles secrete a toxin that kills strains lacking this plasmid. The plasmid requires at least 24 chromosomal genes (pets, and mak1 through mak23) for its replication or maintenance. We have detected dominant Mendelian mutations (called KRB1 for killer replication bypass) that bypass two chromosomal genes, mak7 and pets, normally needed for plasmid replication. Strains mutant in mak7 and carrying the bypass mutation (mak7–1 KRB1) are isolated as frequent K+R+ sectors of predominantly K-R - segregants from crosses of mak7–1 with a wild-type killer. All KRB1 mutations isolated in this way are inherited as single dominant centromere-linked chromosomal changes. They define a new centromere. KRB1 is not a translational suppressor. KRB1 strains contain a genetically normal killer plasmid and ds RNA species approximately the same in size and amount as do wild-type killers. Bypass of both mak7 and pets by one mutation suggests that these two genes are functionally related.

Two properties of the inheritance of KRB1 indicate an unusually high reversion frequency: (1) Heat or cycloheximide (treatments known to cure strains of the wild-type killer plasmid) readily induce conversion of mak7–1 KRB1 strains from killers to nonkillers with concomitant disappearance of KRB1 as judged by further crosses, and (2) mating two strains of the type mak7–1 KRB1 with each other yields mostly 2 K+R+: 2 K-R- segregation, although the same KRB1 mutation and the same killer plasmid are present in both parents.

  相似文献   

2.
3.
Summary Mutations in the pet18 gene of Saccharomyces cerevisiae (formerly denoted pets) confer three phenotypes on mutant strains: (i) inability to respire (petite), (ii) inability to maintain the double-stranded RNA killer plasmid (sensitive), and (iii) temperature sensitivity for growth. We find that pet18 mutants lack mitochondrial DNA. However, despite their inability to maintain the killer RNA plasmid and mitochondrial DNA, pet18 mutants still can carry the other yeast plasmids, [URE3-1], [PSI], and 2-micron DNA. The temperature sensitivity of the pet18 mutants is not expressed as a selective defect in total DNA, RNA, or protein synthesis.  相似文献   

4.
5.
6.
Summary The yeast Kluyveromyces lactis haboring linear DNA plasmids pGKL1 and pGKL2 exhibits killer and killer-resistant phenotypes. Two new linear plasmids pK192L and pK192S were found in the weak killer mutant KUV192 induced by UV irradiation. pK192S was always accompanied by pK192L in subclones of KUV192. Both plasmids were derived from pGKL1 by deletion of the large right part of it. pK192L was 4.9 kb in size and had a palindromic structure consisting of 2.35 kb inverted terminal repetitions and a 215 base unique sequence. Analysis of denatured and renatured DNA strands suggested that pK192S was a hairpin-like form of pK192L. The pK192 plasmids were maintained only in cells haboring either pGKL1 or pGKL1S in addition to pGKL2 and competed with pGKL1 or pGKL1S for their maintenance. Since no complete ORF1 was conserved in pK192 plasmids, these results lead to the conclusion that the ORF1 gene is necessary for the replication and/or maintenance of pGKL1.  相似文献   

7.
Summary The linear autonomous form of kalilo DNA (previously called AR-kalDNA) is shown to be resident within mitochondria rather than nuclei, as had been suggested by previous experiments. This form has been renamed mtAR-kalDNA, to signify its mitochondrial location. Experiments are described that illustrate the inheritance and somatic transmission patterns of the mitochondrial kalilo plasmid and the mitochondrial inserted form of kalilo DNA (mtlS-kalDNA). Progeny of a cross with a pre-senescent subculture as the female parent inherited mtAR-ka1DNA only; mtIS-kalDNA was not transmitted sexually. During somatic propagation of the ascospore cultures, novel kalilo DNA inserts appeared and most of them persisted until death. We propose that these inserts originated from de novo integration of mtAR-kalDNA into the mitochondrial DNA. In two of the ascopore-derived series analyzed, the first inserts detected were seen only transiently and inserts appearing subsequent to the transient inserts were retained until death. We propose that these enduring inserts originated either from rearrangements of the transient inserts or from novel integration events, either from mtAR-kalDNA or from transposition of the transient inserts.  相似文献   

8.
Natural genetic transformation in Haemophilus influenzae involves DNA binding, uptake, translocation, and recombination. In this study, we cloned and sequenced a 3.8-kbp H. influenzae DNA segment capable of complementing in trans the transformation defect of an H. influenzae strain carrying the tfo-37 mutation. We used subcloning, deletion analysis, and in vivo protein labeling experiments to more precisely define the gene required for efficient DNA transformation on the cloned DNA. A novel gene, which we called dprA+, was shown to encode a 41.6-kDa polypeptide that was required for efficient chromosomal but not plasmid DNA transformation. Analysis of the deduced amino acid sequence of DprA suggested that it may be an inner membrane protein, which is consistent with its apparent role in DNA processing during transformation. Four other open reading frames (ORFs) on the cloned DNA segment were identified. Two ORFs were homologous to the phosphofructokinase A (pfkA) and alpha-isopropyl malate synthase (leuA) genes of Escherichia coli and Salmonella typhimurium, respectively. Homologs for the two other ORFs could not be identified.  相似文献   

9.
The NH2-terminal signal region comprising of approximately 70% length of the prepro-sequence of the pGKL killer precursor protein was found to direct an efficient secretion of the mouse alpha-amylase into the culture medium of Saccharomyces cerevisiae. The alpha-amylase molecule secreted into the culture medium was identified by both immuno-blotting and assay of the enzyme activity. The amount of alpha-amylase secreted via the killer toxin signal was comparable to that directed by the leader sequence of mating factor alpha. The secretion of alpha-amylase using the killer toxin signal was blocked at 37C but not at 25C in sec18-1 host, indicating that alpha-amylase is exported through the normal secretion pathway of S. cerevisiae.  相似文献   

10.
H. Blanc 《Gene》1984,30(1-3):47-61
In the yeast hypersuppressive (HS) rho mutants most of the mitochondrial genome is deleted, but the remainder containing one of the three rep sequences is amplified. One of these sequences, rep2, and its flanking regions have been previously cloned and reported to promote autonomous plasmid replication in yeast. The present study suggests that the Ars activity associated with this HS rho mitochondrial DNA (mtDNA) fragment is due to the presence in cis of at least two modules: (i) the 11-bp consensus sequence 5′-ATAAACTATAAAAT-3′, common to several ars sequences, and (ii) a palindromic sequence of the mitochondrial replicator. Proper spacing between the two modules, which varies from about 100 to 200 bp, is required for the Ars + activity.  相似文献   

11.
Dominant mutations in the yeast nuclear gene NAM2 cure the RNA splicing deficiency resulting from the inactivation of the bI4 maturase encoded by the fourth intron of the mitochondrial cytochrome b gene. This maturase is required to splice the fourth intron of this gene and to splice the fourth intron of the mitochondrial gene oxi3 encoding cytochrome oxidase subunit I. We have cloned the nuclear gene NAM2, which codes for two overlapping RNAs, 3.2 kb and 3.0 kb long, which are transcribed in the same direction but differ at their 5' ends. NAM2 compensating mutations probably result from point mutations in the structural gene. Integration of the cloned gene occurs at its homologous locus on the right arm of chromosome XII. Inactivation of the NAM2 gene either by transplacement with a deleted copy of the gene, or by disruption, is not lethal to the cell, but leads to the destruction of the mitochondrial genome with the production of 100% cytoplasmic petites.  相似文献   

12.
Stable maintenance of a 35-base-pair yeast mitochondrial genome.   总被引:6,自引:1,他引:6       下载免费PDF全文
Small deletion variants ([rho-] mutants) derived from the wild-type ([ rho+]) Saccharomyces cerevisiae mitochondrial genome were isolated and characterized. The mutant mitochondrial DNAs (mtDNAs) examined retained as little as 35 base pairs of one section of intergenic DNA, were composed entirely of A.T base pairs, and were stably maintained. These simple mtDNAs existed in tandemly repeated arrays at an amplified level that made up approximately 15% of the total cellular DNA and, as judged by fluorescence microscopy, had a nearly normal mitochondrial arrangement throughout the cell cytoplasm. The simple nature of these [rho-] genomes indicates that the sequences required to maintain mtDNA must be extremely simple.  相似文献   

13.
Summary Subunit 8 of mitochondrial ATP synthase (A8), a mitochondrially encoded polypeptide, has no known homologue in any prokaryotic or plastid ATP synthase, suggesting that it has been recruited to its present role in the enzyme from an extraneous source. The polypeptide is poorly conserved at the primary sequence level, but shows a well-conserved hydropathy profile. The hydropathy profiles of A8 from diverse taxa were compared with those of thehok family of prokaryotic respiratory toxins, some of whose members are involved in plasmid maintenance, through postsegregational killing of cells that lose the plasmid at cell division. Such comparisons revealed a highly significant degree of similarity, suggesting a functional relationship. Based on these findings, it is proposed that A8 evolved from ahok-like protein, whose original role was the maintenance of an extrachromosomal replicon in the endosymbiont ancestor of mitochondria. An aggressive mechanism for the evolutionary maintenance of mitochondrial DNA overcomes many of the failings of traditional explanations for its retention as a separate genome.  相似文献   

14.
The sequence of a 1.9 kb Bam x Hind III fragment from yeast has been determined. This fragment is part of a yeast 6.7 kb Hind III segment cloned into pBR322 (pY20). The fragment carries a single gene for a glutamate tRNA which has no intron. According to genetic analyses [1] this fragment also contains a yeast chromosomal replicator. We have analyzed the sequence for potential open reading frames and for several structural features which are thought to be involved in the initiation of DNA replication. Hybridization studies have revealed that portions of this sequence are repeated within the yeast genome.  相似文献   

15.
The region of mitochondrial DNA (mtDNA) containing the oxi 2 locus has been sequenced in a rho- clone (DS40) derived from the respiratory competent strain D273-10B/A48 of Saccharomyces cerevisiae. The DS40 clone was established to have retained only genetic markers in the oxi 2 locus and to have a segment of mtDNA extending from 18.6 to 24.3 units of the wild type map. The mitochondrial genome of DS40 includes a sequence that has been tentatively identified as the structural gene of Subunit 3 of cytochrome oxidase. The coding sequence is 810 nucleotides long and generates a protein with a molecular weight of 30,340. The amino acid composition of the oxi 2 gene product deduced from the nucleotide sequence is in agreement with the composition of the purified Subunit 3 of yeast cytochrome oxidase. The orientation of the DS40 mtDNA segment relative to wild type mtDNA indicates that the oxi 2 gene is transcribed from the same DNA strand as the oxi 1 and several other mitochondrial genes.  相似文献   

16.
Toh-E A  Wickner RB 《Genetics》1979,91(4):673-682
Yeast strains carrying a 1.5 x 10(6) molecular weight linear double-stranded RNA in virus-like particles (M dsRNA, the killer plasmid or virus) secrete a toxin that is lethal to strains not carrying this plasmid. Recessive mutations in any of four chromosomal genes (called ski1-ski4) result in increased production of toxin activity. We report here a mutation of the killer plasmid (called [KIL-sd] for ski-dependent) that makes the killer plasmid dependent for its replication on the presence of a chromosomal mutation in any ski gene. Thus, the [KIL-sd] plasmid is lost from SKI(+) strains. When the wild-type killer plasmid, [KIL-k], is introduced into a ski2-2 [KIL-o] strain, the killer plasmid changes to a [KIL-sd] plasmid. This may represent a specific form of mutagenesis or selective replication in the ski2-2 strain of [KIL-sd] variants (mutants) in the normal [KIL-k] population. The ski2-1 and ski2-3 mutations do not convert [KIL-k] to [KIL-sd], but ski2-3 does allow maintenance of the [KIL-sd] plasmid. The [KIL-sd] plasmid thus lacks a plasmid site or product needed for replication in wild-type cells.  相似文献   

17.
MSW, a yeast gene coding for mitochondrial tryptophanyl-tRNA synthetase   总被引:12,自引:0,他引:12  
E569 and E606 are noncomplementing pet mutants of Saccharomyces cerevisiae. Both strains are defective in mitochondrial protein synthesis and as a result exhibit a pleiotropic deficiency in respiratory components that are translated on mitochondrial ribosomes. The wild type gene MSW capable of complementing the protein synthesis defect has been cloned by transformation of one of the mutants with a genomic library of wild type yeast nuclear DNA. The cloned gene has been sequenced and shown to code for a protein with a molecular weight of 42,414 which is 37 and 39% identical to the tryptophanyl-tRNA synthetases of Escherichia coli and Bacillus stearothermophilus, respectively. A strain containing an insertion in the chromosomal copy of MSW was constructed by in situ gene replacement. This mutant fails to charge mitochondrial tryptophanyl-tRNA providing further evidence that MSW is the structural gene for mitochondrial tryptophanyl tRNA synthetase. The existence of another gene coding for the cytoplasmic tryptophanyl-tRNA synthetase is inferred from the observation that mutations in MSW are not lethal but only result in a respiratory deficiency.  相似文献   

18.
Summary The entire mitochondrial (mt) genome of the yeast Schizosaccharomyces pombe (S. pombe) was cloned in the BamHI site of the Escherichia coli plasmid pBR322. Three lines of evidence demonstrate that the complete mtDNA molecule was amplified without rearrangement or partial loss. First, restriction of the hybrid plasmid with BamHI led to the recovery of two fragments corresponding to the linearized plasmid and the BamHI-cut mtDNA. Second, restriction of cloned and native mtDNA with HindIII revealed identical fragments. Third, mitochondrial ribosomal RNA hybridized to the same HindIII fragments from cloned mtDNA and from mtDNA isolated from mitochondria.  相似文献   

19.
Summary The designation of the yeast 2 circle as a selfish DNA molecule has been confirmed by demonstrating that the plasmid is lost with exponential kinetics from haploid yeast populations grown in continuous culture. We show that plasmid-free yeast cells have a growth rate advantage of some 1.5%–3% over their plasmid-containing counterparts. This finding makes the ubiquity of this selfish DNA in yeast strains puzzling. Two other factors probably account for its survival. First, the rate of plasmid loss was reduced by allowing haploid populations to enter stationary phase periodically. Second, it was not possible to isolate a plasmid-free segregant from a diploid yeast strain. Competition experiments demonstrated that stability in a diploid is conferred at the level of segregation and that plasmid-free diploid cells are at a selective advantage compared with their plasmid-containing counterparts. Yeast cells in nature are usually homothallic and must frequently pass through both diploid and stationary phases. The 2 plasmid appears to have evolved a survival strategy which exploits these two features of its host's life cycle.  相似文献   

20.
Sequence organization and expression of a yeast plasmid DNA.   总被引:9,自引:0,他引:9  
E J Gubbins  C S Newlon  M D Kann  J E Donelson 《Gene》1977,1(3-4):185-207
Saccharomyces cerevisiae strain A364A D5 contains circular double-stranded DNA molecules of 6230 +/- 30 base pairs (2mu DNA) which are present in 68 copies per cell and make up 2.4% of the haploid genome. About 0.4% of non-poly A containing yeast RNA hybridizes to the yeast DNA circles. When denatured and then self-annealed, the DNA molecules assume a characteristic "dumbbell" shape in the electron microscope indicating that each circle possesses a non-tandem inverted repeat sequence of 630 +/- 10 base pairs. Eco-RI digestion of purified 2mu DNA yields 4 fragments on an agarose gel whose combined molecular mass is twice that of the monomer circle, suggesting that there are 2 populations of circles, each of the same molecular weight. Representatives of each population have been separated by cloning in Escherichia coli via the bacterial plasmid pSC101. Heteroduplex analysis of the cloned circles show that the 2 different populations arise because of intramolecular recombination between the inverted repeat sequences. Acrylamide gel patterns of polypeptides synthesized in bacterial mini-cells containing the hybrid plasmids between 2mu DNA and pSC101 are significantly different than the pattern obtained from mini-cells containing pSC101 alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号