首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
《Current biology : CB》2020,30(23):4763-4772.e8
  1. Download : Download high-res image (144KB)
  2. Download : Download full-size image
  相似文献   

4.
5.
6.
Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin β4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin β4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.  相似文献   

7.
Cell-to-cell transmission of vaccinia virus can be mediated by enveloped virions that remain attached to the outer surface of the cell or those released into the medium. During egress, the outer membrane of the double-enveloped virus fuses with the plasma membrane leaving extracellular virus attached to the cell surface via viral envelope proteins. Here we report that F-actin nucleation by the viral protein A36 promotes the disengagement of virus attachment and release of enveloped virus. Cells infected with the A36YdF virus, which has mutations at two critical tyrosine residues abrogating localised actin nucleation, displayed a 10-fold reduction in virus release. We examined A36YdF infected cells by transmission electron microscopy and observed that during release, virus appeared trapped in small invaginations at the plasma membrane. To further characterise the mechanism by which actin nucleation drives the dissociation of enveloped virus from the cell surface, we examined recombinant viruses by super-resolution microscopy. Fluorescently-tagged A36 was visualised at sub-viral resolution to image cell-virus attachment in mutant and parental backgrounds. We confirmed that A36YdF extracellular virus remained closely associated to the plasma membrane in small membrane pits. Virus-induced actin nucleation reduced the extent of association, thereby promoting the untethering of virus from the cell surface. Virus release can be enhanced via a point mutation in the luminal region of B5 (P189S), another virus envelope protein. We found that the B5P189S mutation led to reduced contact between extracellular virus and the host membrane during release, even in the absence of virus-induced actin nucleation. Our results posit that during release virus is tightly tethered to the host cell through interactions mediated by viral envelope proteins. Untethering of virus into the surrounding extracellular space requires these interactions be relieved, either through the force of actin nucleation or by mutations in luminal proteins that weaken these interactions.  相似文献   

8.
Actin filaments in plant cells are incredibly dynamic; they undergo incessant remodeling and assembly or disassembly within seconds. These dynamic events are choreographed by a plethora of actin-binding proteins, but the exact mechanisms are poorly understood. Here, we dissect the contribution of Arabidopsis (Arabidopsis thaliana) PROFILIN1 (PRF1), a conserved actin monomer-binding protein, to actin organization and single filament dynamics during axial cell expansion of living epidermal cells. We found that reduced PRF1 levels enhanced cell and organ growth. Surprisingly, we observed that the overall frequency of nucleation events in prf1 mutants was dramatically decreased and that a subpopulation of actin filaments that assemble at high rates was reduced. To test whether profilin cooperates with plant formin proteins to execute actin nucleation and rapid filament elongation in cells, we used a pharmacological approach. Here, we used Small Molecule Inhibitor of Formin FH2 (SMIFH2), after validating its mode of action on a plant formin in vitro, and observed a reduced nucleation frequency of actin filaments in live cells. Treatment of wild-type epidermal cells with SMIFH2 mimicked the phenotype of prf1 mutants, and the nucleation frequency in prf1-2 mutant was completely insensitive to these treatments. Our data provide compelling evidence that PRF1 coordinates the stochastic dynamic properties of actin filaments by modulating formin-mediated actin nucleation and assembly during plant cell expansion.The actin cytoskeleton provides tracks for the deposition of cell wall materials and plays important roles during many cellular processes, such as cell expansion and morphogenesis, vesicle trafficking, and the response to biotic and abiotic signals (Baskin, 2005; Smith and Oppenheimer, 2005; Szymanski and Cosgrove, 2009; Ehrhardt and Bezanilla, 2013; Rounds and Bezanilla, 2013). Plant cells respond to diverse internal and external stimuli by regulating the turnover and rearrangement of actin cytoskeleton networks in the cytoplasm (Staiger, 2000; Pleskot et al., 2013). How these actin rearrangements sense the cellular environment and what accessory proteins modulate specific aspects of remodeling remain an area of active investigation (Henty-Ridilla et al., 2013; Li et al., 2014a, 2015).Using high spatial and temporal resolution imaging afforded by variable-angle epifluorescence microscopy (VAEM; Konopka and Bednarek, 2008), we quantified the behavior of actin filaments in Arabidopsis (Arabidopsis thaliana) hypocotyl epidermal cells (Staiger et al., 2009). There are two types of actin filament arrays in the cortical cytoplasm of epidermal cells: bundles and single filaments. Generally, actin bundles are stable with higher pixel intensity values, whereas individual actin filaments are fainter, more ephemeral, and constantly undergo rapid assembly and disassembly through a mechanism that has been defined as “stochastic dynamics” (Staiger et al., 2009; Henty et al., 2011; Li et al., 2012, 2015). Elongating actin filaments in the cortical cytoskeleton originate from three distinct locations: the ends of preexisting actin filaments, the side of filaments or bundles, and de novo in the cytoplasm. Plant actin filaments elongate at rates of 1.6 to 3.4 μm/s, which is the fastest assembly reported in eukaryotic cells. Distinct from the mechanism of treadmilling and fast depolymerization in vitro, however, the disassembly of single actin filaments occurs predominately through prolific severing activity (Staiger et al., 2009; Smertenko et al., 2010; Henty et al., 2011). A commonly held view is that the dynamic actin network in plant cells is regulated by the activities of conserved and novel actin-binding proteins (ABPs). Through reverse-genetic approaches and state-of-the-art imaging modalities, we and others have demonstrated that several key ABPs are involved in the regulation of stochastic actin dynamic properties in a wide variety of plants and cell types (Thomas, 2012; Henty-Ridilla et al., 2013; Li et al., 2014a, 2015). Through these efforts, the field has developed a working model for the molecular mechanisms that underpin actin organization and dynamics in plant cells (Li et al., 2015).Profilin is a small (12–15 kD), conserved actin-monomer binding protein present in all eukaryotic cells (dos Remedios et al., 2003). Profilin binds to actin by forming a 1:1 complex with globular (G-)actin, suppresses spontaneous actin nucleation, and inhibits monomer addition at filament pointed ends (Blanchoin et al., 2014). The consequences of profilin activity on actin filament turnover differ based on cellular conditions and the presence of other ABPs. In vitro studies show that the profilin-actin complex associates with the barbed ends of filaments and promotes actin polymerization by lowering the critical concentration and increasing nucleotide exchange on G-actin (Pollard and Cooper, 1984; Pantaloni and Carlier, 1993). When barbed ends are occupied by capping protein, profilin acts as an actin-monomer sequestering protein. These opposing effects of profilin might be a regulatory mechanism for profilin modulation of actin dynamics in cells. In addition to actin, profilin interacts with Pro-rich proteins, as well as polyphosphoinositide lipids in vitro (Machesky et al., 1994). Formin is an ABP that mediates both actin nucleation and processive elongation using the pool of profilin-actin complexes (Blanchoin et al., 2010). The primary sequence of formin includes a Pro-rich domain, named Formin Homology1 (FH1). Evidence from fission and budding yeast shows that profilin can increase filament elongation rates by binding to the FH1 domain (Kovar et al., 2003; Moseley and Goode, 2005; Kovar, 2006). The FH1 domain of Arabidopsis FORMIN1 (AtFH1) is also reported to modulate actin nucleation and polymerization in vitro (Michelot et al., 2005). Recently, two groups reported that profilin functions as a gatekeeper during the construction of different actin networks generated by formin or ARP2/3 complex in yeast and mammalian cells (Rotty et al., 2015; Suarez et al., 2015). These studies highlight the importance of profilin regulation in coordinating the different actin arrays present in the same cytoplasm of eukaryotic cells. However, direct evidence for how profilin facilitates formin-mediated actin nucleation or barbed end elongation in cells remains to be established.Genomic sequencing and isolation of PROFILIN (PRF) cDNAs from plants reveal that profilin is encoded by a multigene family. For example, moss (Physcomitrella patens) has three isovariants (Vidali et al., 2007) and maize (Zea mays) has five (Staiger et al., 1993; Kovar et al., 2001). In Arabidopsis, at least five PRF genes have been identified (Christensen et al., 1996; Huang et al., 1996; Kandasamy et al., 2002). Studies in maize show that the biochemical properties of profilin isoforms differ in vitro (Kovar et al., 2000). Moreover, the localization of profilin isoforms reveals organ-specific expression patterns. Detection of protein levels in vivo with isovariant-specific profilin antibodies demonstrate that Arabidopsis PRF1, PRF2, and PRF3 are constitutively expressed in vegetative tissues, whereas PRF4 and PRF5 are expressed mainly in flower and pollen tissues (Christensen et al., 1996; Huang et al., 1996; Ma et al., 2005).Several genetic studies on the functions of profilin in plants have been conducted. Reduction of profilin levels in P. patens results in the inhibition of tip growth, disorganization of F-actin, and formation of actin patches (Vidali et al., 2007). Moreover, it was shown that the interaction between profilin and actin or Pro-rich ligands is critical for tip growth in moss. Arabidopsis PRF1 has been demonstrated to be involved in cell elongation, cell shape maintenance, and control of flowering time through overexpression and antisense PRF1 transgenic plants, and further, the reduction of PRF1 inhibits the growth of hypocotyls (Ramachandran et al., 2000). However, investigation of a prf1-1 mutant, which contains a T-DNA insertion in the promoter region of the PRF1 gene, indicates that cell expansion of seedlings is promoted and that protein levels of PRF1 are regulated by light (McKinney et al., 2001). Recently, Müssar et al. (2015) reported a new Arabidopsis T-DNA insertion allele, prf1-4, that shows an obvious dwarf seedling phenotype. To date, however, there has not been a critical examination of the impact of the loss of profilin on the organization and dynamics of bona-fide single actin filaments in vivo.Here, we use a combination of genetics and live-cell imaging to investigate the role of PRF1 in the control of actin dynamics and its effect on axial cell expansion. We observed a significant decrease in the overall filament nucleation frequency in prf1 mutants, which is opposite to expectations if profilin suppresses spontaneous nucleation. Through a pharmacological approach, we found that nucleation frequency in wild-type cells treated with a formin inhibitor, SMIFH2, phenocopied prf1 mutants. We also analyzed the dynamic turnover of individual filaments in prf1 mutants and observed a significant decrease in the rate of actin filament elongation and maximum length of actin filaments. Specifically, we found that PRF1 favors the growth of a subpopulation of actin filaments that elongate at rates greater than 2 μm/s and similar results were obtained in cells after SMIFH2 treatment. Our results provide compelling evidence that Arabidopsis PRF1 contributes to stochastic actin dynamics by modulating formin-mediated actin nucleation and filament elongation during axial cell expansion.  相似文献   

9.
Greater investment is required in developing new drugs and vaccines against malaria in order to eradicate malaria. These precious funds must be carefully managed to achieve the greatest impact. We evaluate existing efforts to discover and develop new drugs and vaccines for malaria to determine how best malaria R&D can benefit from an enhanced open source approach and how such a business model may operate. We assess research articles, patents, clinical trials and conducted a smaller survey among malaria researchers. Our results demonstrate that the public and philanthropic sectors are financing and performing the majority of malaria drug/vaccine discovery and development, but are then restricting access through patents, ‘closed’ publications and hidden away physical specimens. This makes little sense since it is also the public and philanthropic sector that purchases the drugs and vaccines. We recommend that a more “open source” approach is taken by making the entire value chain more efficient through greater transparency which may lead to more extensive collaborations. This can, for example, be achieved by empowering an existing organization like the Medicines for Malaria Venture (MMV) to act as a clearing house for malaria-related data. The malaria researchers that we surveyed indicated that they would utilize such registry data to increase collaboration. Finally, we question the utility of publicly or philanthropically funded patents for malaria medicines, where little to no profits are available. Malaria R&D benefits from a publicly and philanthropically funded architecture, which starts with academic research institutions, product development partnerships, commercialization assistance through UNITAID and finally procurement through mechanisms like The Global Fund to Fight AIDS, Tuberculosis and Malaria and the U.S.’ President’s Malaria Initiative. We believe that a fresh look should be taken at the cost/benefit of patents particularly related to new malaria medicines and consider alternative incentives, like WHO prequalification.  相似文献   

10.
11.
Glucocorticoids affect learning and memory but the cellular mechanisms involved are poorly understood. The present studies tested if the stress-responsive glucocorticoid receptor (GR) is present and regulated within dendritic spines, and influences local signaling to the actin cytoskeleton. In hippocampal field CA1, 13?% of synapses contained GR-immunoreactivity. Three-dimensional reconstructions of CA1 dendrites showed that GR aggregates are present in both spine heads and necks. Consonant with evidence that GR?? mRNA associates with the translation regulator Fragile X Mental Retardation Protein (FMRP), spine GR levels were rapidly increased by group 1 mGluR activation and reduced in mice lacking FMRP. Treatment of cultured hippocampal slices with the GR agonist dexamethasone rapidly (15?C30?min) increased total levels of phosphorylated (p) Cofilin and extracellular signal-regulated kinase (ERK) 1/2, proteins that regulate actin polymerization and stability. Dexamethasone treatment of adult hippocampal slices also increased numbers of PSD95+ spines containing pERK1/2, but reduced numbers of pCofilin-immunoreactive spines. Dexamethasone-induced increases in synaptic pERK1/2 were blocked by the GR antagonist RU-486. These results demonstrate that GRs are present in hippocampal spines where they mediate acute glucocorticoid effects on local spine signaling. Through effects on these actin regulatory pathways, GRs are positioned to exert acute effects on synaptic plasticity.  相似文献   

12.
13.
The Rickettsia ~1800-amino-acid autotransporter protein surface cell antigen 2 (Sca2) promotes actin polymerization on the surface of the bacterium to drive its movement using an actin comet-tail mechanism. Sca2 mimics eukaryotic formins in that it promotes both actin filament nucleation and elongation and competes with capping protein to generate filaments that are long and unbranched. However, despite these functional similarities, Sca2 is structurally unrelated to eukaryotic formins and achieves these functions through an entirely different mechanism. Thus, while formins are dimeric, Sca2 functions as a monomer. However, Sca2 displays intramolecular interactions and functional cooperativity between its N- and C-terminal domains that are crucial for actin nucleation and elongation. Here, we map the interaction of N- and C- terminal fragments of Sca2 and their contribution to actin binding and nucleation. We find that both the N- and C-terminal regions of Sca2 interact with actin monomers but only weakly, whereas the full-length protein binds two actin monomers with high affinity. Moreover, deletions at both ends of the N- and C-terminal regions disrupt their ability to interact with each other, suggesting that they form a contiguous ring-like structure that wraps around two actin subunits, analogous to the formin homology-2 domain. The discovery of Sca2 as an actin nucleator followed the identification of what appeared to be a repeat of three Wiskott-Aldrich syndrome homology 2 (WH2) domains in the middle of the molecule, consistent with the presence of WH2 domains in most actin nucleators. However, we show here that contrary to previous assumptions, Sca2 does not contain WH2 domains. Instead, our analysis indicates that the region containing the putative WH2 domains is folded as a globular domain that cooperates with other parts of the Sca2 molecule for actin binding and nucleation.  相似文献   

14.
Emerging evidence has indicated a regulatory role of cyclin-dependent kinase 5 (Cdk5) in synaptic plasticity as well as in higher brain functions, such as learning and memory. However, the molecular and cellular mechanisms underlying the actions of Cdk5 at synapses remain unclear. Recent findings demonstrate that Cdk5 regulates dendritic spine morphogenesis through modulating actin dynamics. Ephexin1 and WAVE-1, two important regulators of the actin cytoskeleton, have both been recently identified as substrates for Cdk5. Importantly, phosphorylation of these proteins by Cdk5 leads to dendritic spine loss, revealing a potential mechanism by which Cdk5 regulates synapse remodeling. Furthermore, Cdk5-dependent phosphorylation of ephexin1 is required for the ephrin-A1 mediated spine retraction, pointing to a critical role of Cdk5 in conveying signals from extracellular cues to actin cytoskeleton at synapses. Taken together, understanding the precise regulation of Cdk5 and its downstream targets at synapses would provide important insights into the multi-regulatory roles of Cdk5 in actin remodeling during dendritic spine development.Excitatory synaptic transmission occurs primarily at dendritic spines, small protrusions that extend from dendritic shafts. Emerging studies have shown that dendritic spines are dynamic structures which undergo changes in size, shape and number during development, and remain plastic in adult brain.1 Regulation of spine morphology has been implicated to associate with changes of synaptic strength.2 For example, enlargement and shrinkage of spines was reported to associate with certain forms of synaptic plasticity, i.e., long-term potentiation and long time depression, respectively.3 Thus, understanding the molecular mechanisms underlying the regulation of spine morphogenesis would provide insights into synapse development and plasticity. Receptor tyrosine kinases (RTKs) such as the Ephs are known to play critical roles in regulating spine morphogenesis. Eph receptors are comprised of 14 members, which are classified into EphAs and EphBs according to their sequence homology and ligand binding specificity. With a few exceptions, EphAs typically bind to A-type ligands, whereas EphBs bind to B-type ligands. During development of the central nervous system (CNS), ephrin-Eph interactions exert repulsive/attractive signaling, leading to regulation of axon guidance, topographic mapping and neural patterning.4 Activated Ephs trigger intracellular signaling cascades, which subsequently lead to remodeling of actin cytoskeleton through tyrosine phosphorylation of its target proteins or interaction with various cytoplasmic signaling proteins. Intriguingly, emerging studies have revealed novel functions of Ephs in synapse formation and synaptic plasticity.5 Specific Ephs expressed in dendritic spines of adult brain are implicated in regulating spine morphogenesis, i.e., EphBs promote spine formation and maturation, while EphA4 induces spine retraction.6,7In the adult hippocampus, EphA4 is localized to the dendritic spines.7,8 Activation of EphA4 at the astrocyte-neuron contacts, triggered by astrocytic ephrin-A3, leads to spine retraction and results in a reduction of spine density.7 It has been well established that actin cytoskeletal rearrangement is critical for spine morphogenesis, and is controlled by a tight regulation of Rho GTPases including Rac1/Cdc42 and RhoA. Antagonistic regulation of Rac1/Cdc42 and RhoA has been observed to precede changes in spine morphogenesis, i.e., activation of Rac1/Cdc42 and inhibition of RhoA is involved in spine formation, and vice versa in spine retraction.9 Rho GTPases function as molecular switches that cycle between an inactive GDP-bound state and an active GTP-bound state. The activation status of GTPase is regulated by an antagonistic action of guanine-nucleotide exchange factors (GEFs) which enhance the exchange of bound GDP for GTP, and GTPase-activating proteins (GAPs) which increase the intrinsic rate of hydrolysis of bound GTP.10 Previous studies have implicated that Rho GTPases provides a direct link between Eph and actin cytoskeleton in diverse cellular processes including spine morphogenesis.11 In particular, EphBs regulate spine morphology by modulating the activity of Rho GTPases, thereby leading to rearrangement of actin networks.1214 Although EphA4 activation results in spine shrinkage, the molecular mechanisms that underlie the action of EphA4 at dendritic spines remain largely unclear.Work from our laboratory recently demonstrated a critical role of cyclin-dependent kinase 5 (Cdk5) in mediating the action of EphA4 in spine morphogenesis through regulation of RhoA GTPase.15 Cdk5 is a proline-directed serine/threonine kinase initially identified to be a key regulator of neuronal differentiation, and has been implicated in actin dynamics through regulating the activity of Pak1, a Rac effector, during growth cone collapse and neurite outgrowth.16 We found that EphA4 stimulation by ephrin-A ligand enhances Cdk5 activity through phosphorylation of Cdk5 at Tyr15. More importantly, we demonstrated that ephexin1, a Rho GEF, is phosphorylated by Cdk5 in vivo. Ephexin1 was reported to transduce signals from activated EphA4 to RhoA, resulting in growth cone collapse during axon guidance.17,18 Interestingly, we found that ephexin1 is highly expressed at the post-synaptic densities (PSDs) of adult brains.15 Loss of ephexin1 in cultured hippocampal neurons or in vivo perturbs the ability of ephrin-A to induce EphA4-dependent spine retraction. The loss of ephexin1 function in spine morphology can be rescued by reexpression of wild-type ephexin1, but not by expression of its phosphorylation-deficient mutant. Our findings therefore provide important evidence that phosphorylation of ephexin1 by Cdk5 is required for the EphA4-dependent spine retraction.Molecular mechanisms underlying the action of Cdk5/ephexin1 on actin networks in EphA4-mediated spine retraction is just beginning to be unraveled. It was reported that activation of EphA4-signaling induces tyrosine phosphorylation of ephexin1 through Src family kinases (SFKs), and promotes its exchange activity towards RhoA.17 Interestingly, mutation of the Cdk5 phosphorylation sites of ephexin1 attenuates the Src-dependent tyrosine phosphorylation of ephexin1 at Tyr87 upon EphA4 activation. These findings suggest that Cdk5 is the “priming” kinase for ephexin1. We propose that EphA4 activation by ephrin-A ligand increases Cdk5 activity, leading to phosphorylation and priming of ephexin1 for the subsequent phosphorylation of ephexin1 by Src kinase at Tyr87, resulting in an increase of its exchange activity towards RhoA. Thus, regulation of Cdk5 activity might indirectly control the phosphorylation of ephexin1 by Src. It is tempting to speculate that phosphorylation of ephexin1 by Cdk5 at the amino-terminal region leads to a conformational change of protein, thus facilitating the access of Tyr87 site on ephexin1 to Src kinase. Whereas accumulating evidence have pointed to a pivotal role of various GEFs including Tiam1, intersectin and kalirin in regulating spine morphogenesis, the involvement of GAPs is not clear. For example, oligophrenin-1, a Rho GAP, is implicated in maintaining the spine length through repressing RhoA activity.19 Thus, it is conceivable that a specific GAP is involved in EphA4-dependent spine retraction. Recently, we found that α2-chimaerin, a Rac GAP, regulates EphA4-dependent signaling in hippocampal neurons (Shi and Ip, unpublished observations). Taken into consideration that α2-chimaerin is enriched in the PSDs, α2-chimaerin is a likely candidate that cooperates with ephexin1 during EphA4-dependent spine retraction.In addition to stimulation of the RTK signaling cascade following EphA4 receptor activation, clustering of EphA4 signaling complex is required for eliciting maximal EphA4 function.20 It is tempting to speculate that Cdk5 also regulates the formation of EphA4-containing clusters in neurons. Indeed, Cdk5-/- neurons show reduced size of EphA4 clusters upon ephrin-A treatment, suggesting that Cdk5 regulates the recruitment of downstream signaling proteins to activate EphA4. Moreover, since ephrinA-EphA4 interaction stimulates the activity of Cdk5 at synaptic contacts, it is possible that Cdk5 might play additional roles at the post-synaptic regions through phosphorylation of its substrates. For example, PSD-95, the major scaffold protein in the PSDs, and NMDA receptor subunit NR2A are both substrates for Cdk5. Interestingly, phosphorylation of these proteins by Cdk5 has been implicated in regulating the clustering of neurotransmitter receptors as well as synaptic transmission.21,22 Consistent with these observations, spatial distribution of neurotransmitter receptors at neuromuscular synapses is altered and abnormal neurotransmission is observed in Cdk5-/- mice.23 Thus, further analysis to delineate the precise roles of Cdk5 in EphA4-dependent synapse development, including regulation of neurotransmitter receptor clustering, is required.Recently, Cdk5 was shown to regulate dendritic spine density and shape through controlling the phosphorylation status of Wiskott-Aldrich syndrome protein-family verprolin homologous protein 1 (WAVE-1), a critical component of actin cytoskeletal network.24 In particular, phosphorylation of WAVE-1 by Cdk5 prevents actin from Arp2/3 complex-dependent polymerization and leads to a loss of dendritic spines at basal state, while reduced Cdk5-dependent phosphorylation of WAVE-1 through cAMP-dependent dephosphorylation leads to an enhanced actin polymerization and increased number of spines. It is interesting to note that phosphorylation of ephexin1 and WAVE-1 by Cdk5 both results in a reduction of spine density. Whether a concerted phosphorylation of these proteins at synapses by Cdk5 plays a role in synaptic plasticity awaits further studies. Precise regulation of Cdk5 activity is unequivocally important to maintain its proper functions at synaptic contacts. Activation of Cdk5 is mainly dependent on its binding to two neuronal-specific activators, p35 or p39, and its activity can be enhanced upon phosphorylation at Tyr15.While the signals that lie upstream of Cdk5 have barely begun to be unraveled, Cdk5 has been demonstrated to be a key downstream regulator of signaling pathways activated by extracellular cues such as neuregulin, BDNF and semaphorin. To the best of our knowledge, ephrin-EphA4 signaling is the first extracellular cue that has been identified to phosphorylate Cdk5 and promote its activity at CNS synapses.15,25 Since BDNF-TrkB and semaphorin3A-fyn signaling have also been implicated in synapse/ spine development, it is of importance to examine whether Cdk5 is the downstream integrator of these signaling events at synapses during spine morphogenesis.26,27Although accumulating evidence highlights a role of Cdk5 in spatial learning and synaptic plasticity, the molecular mechanisms underlying the action of Cdk5 are largely unclear.28,29 With the recent findings that reveal the critical involvement of Cdk5 in the regulation of Rho GTPases to affect spine morphology, it can be anticipated that precise regulation of actin dynamics by Cdk5 at synapses will be an important mechanism underlying synaptic plasticity in the adult brain.? Open in a separate windowFigure 1Phosphorylation of actin regulators by Cdk5 during dendritic spine morphogenesis. (A) In striatal and hippocampal neurons, phosphorylation of WAVE-1 by Cdk5 at basal condition prevents WAVE-1-mediated actin polymerization and leads to a loss of dendritic spines. However, activation of cyclic AMP-dependent signaling by neurotransmitter such as dopamine, reduces the Cdk5-dependent phosphorylation of WAVE-1 in these neurons. Dephosphorylation of WAVE-1 promotes actin polymerization and results in an increased number of mature dendritic spines. (B) In mature hippocampal neurons, activation of EphA4 by ephrin-A increases Cdk5-dependent of ephexin1. The phosphorylation of ephexin1 by Cdk5 facilitates its EphA4-stimulated GEF activity towards RhoA activation and leads to spine retraction.  相似文献   

15.

Background

Dendritic cells (DCs) are highly specialized cells, which capture antigen in peripheral tissues and migrate to lymph nodes, where they dynamically interact with and activate T cells. Both migration and formation of DC-T cell contacts depend on cytoskeleton plasticity. However, the molecular bases governing these events have not been completely defined.

Methodology/Principal Findings

Utilizing a T cell-dependent model of arthritis, we find that PLCγ2−/− mice are protected from local inflammation and bone erosion. PLCγ2 controls actin remodeling in dendritic cells, thereby affecting their capacity to prime T cells. DCs from PLCγ2−/− mice mature normally, however they lack podosomes, typical actin structures of motile cells. Absence of PLCγ2 impacts both DC trafficking to the lymph nodes and migration towards CCL21. The interaction with T cells is also affected by PLCγ2 deficiency. Mechanistically, PLCγ2 is activated by CCL21 and modulates Rac activation. Rac1/2−/− DCs also lack podosomes and do not respond to CCL21. Finally, antigen pulsed PLCγ2−/− DCs fail to promote T cell activation and induce inflammation in vivo when injected into WT mice. Conversely, injection of WT DCs into PLCγ2−/− mice rescues the inflammatory response but not focal osteolysis, confirming the importance of PLCγ2 both in immune and bone systems.

Conclusions/Significance

This study demonstrates a critical role for PLCγ2 in eliciting inflammatory responses by regulating actin dynamics in DCs and positions the PLCγ2 pathway as a common orchestrator of bone and immune cell functions during arthritis.  相似文献   

16.
Formins are multidomain proteins that assemble actin in a wide variety of biological processes. They both nucleate and remain processively associated with growing filaments, in some cases accelerating filament growth. The well conserved formin homology 1 and 2 domains were originally thought to be solely responsible for these activities. Recently a role in nucleation was identified for the Diaphanous autoinhibitory domain (DAD), which is C-terminal to the formin homology 2 domain. The C-terminal tail of the Drosophila formin Cappuccino (Capu) is conserved among FMN formins but distinct from other formins. It does not have a DAD domain. Nevertheless, we find that Capu-tail plays a role in filament nucleation similar to that described for mDia1 and other formins. Building on this, replacement of Capu-tail with DADs from other formins tunes nucleation activity. Capu-tail has low-affinity interactions with both actin monomers and filaments. Removal of the tail reduces actin filament binding and bundling. Furthermore, when the tail is removed, we find that processivity is compromised. Despite decreased processivity, the elongation rate of filaments is unchanged. Again, replacement of Capu-tail with DADs from other formins tunes the processive association with the barbed end, indicating that this is a general role for formin tails. Our data show a role for the Capu-tail domain in assembling the actin cytoskeleton, largely mediated by electrostatic interactions. Because of its multifunctionality, the formin tail is a candidate for regulation by other proteins during cytoskeletal rearrangements.  相似文献   

17.
Emerging evidence has indicated a regulatory role of cyclin-dependent kinase 5 (Cdk5) in synaptic plasticity as well as in higher brain functions, such as learning and memory. However, the molecular and cellular mechanisms underlying the actions of Cdk5 at synapses remain unclear. Recent findings demonstrate that Cdk5 regulates dendritic spine morphogenesis through modulating actin dynamics. Ephexin1 and WAVE-1, two important regulators of the actin cytoskeleton, have both been recently identified as substrates for Cdk5. Importantly, phosphorylation of these proteins by Cdk5 leads to dendritic spine loss, revealing a potential mechanism by which Cdk5 regulates synapse remodeling. Furthermore, Cdk5-dependent phosphorylation of ephexin1 is required for the ephrin-A1 mediated spine retraction, pointing to a critical role of Cdk5 in conveying signals from extracellular cues to actin cytoskeleton at synapses. Taken together, understanding the precise regulation of Cdk5 and its downstream targets at synapses would provide important insights into the multi-regulatory roles of Cdk5 in actin remodeling during dendritic spine development.  相似文献   

18.
Actin polymerization induced by nucleation promoting factors (NPFs) is one of the most fundamental biological processes in eukaryotic cells. NPFs contain a conserved output domain (VCA domain) near the C terminus, which interacts with and activates the cellular actin-related protein 2/3 complex (Arp2/3) to induce actin polymerization and a diverse regulatory domain near the N terminus. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) nucleocapsid protein P78/83 is a virus-encoded NPF that contains a C-terminal VCA domain and induces actin polymerization in virus-infected cells. However, there is no similarity between the N terminus of P78/83 and that of other identified NPFs, suggesting that P78/83 may possess a unique regulatory mechanism. In this study, we identified a multifunctional regulatory sequence (MRS) located near the N terminus of P78/83 and determined that one of its functions is to serve as a degron to mediate P78/83 degradation in a proteasome-dependent manner. In AcMNPV-infected cells, the MRS also binds to another nucleocapsid protein, BV/ODV-C42, which stabilizes P78/83 and modulates the P78/83-Arp2/3 interaction to orchestrate actin polymerization. In addition, the MRS is also essential for the incorporation of P78/83 into the nucleocapsid, ensuring virion mobility powered by P78/83-induced actin polymerization. The triple functions of the MRS enable P78/83 to serve as an essential viral protein in the AcMNPV replication cycle, and the possible roles of the MRS in orchestrating the virus-induced actin polymerization and viral genome decapsidation are discussed.  相似文献   

19.
Excitatory synapses in the brain play key roles in learning and memory. The formation and functions of postsynaptic mushroom-shaped structures, dendritic spines, and possibly of presynaptic terminals, rely on actin cytoskeleton remodeling. However, the cytoskeletal architecture of synapses remains unknown hindering the understanding of synapse morphogenesis. Using platinum replica electron microscopy, we characterized the cytoskeletal organization and molecular composition of dendritic spines, their precursors, dendritic filopodia, and presynaptic boutons. A branched actin filament network containing Arp2/3 complex and capping protein was a dominant feature of spine heads and presynaptic boutons. Surprisingly, the spine necks and bases, as well as dendritic filopodia, also contained a network, rather than a bundle, of branched and linear actin filaments that was immunopositive for Arp2/3 complex, capping protein, and myosin II, but not fascin. Thus, a tight actin filament bundle is not necessary for structural support of elongated filopodia-like protrusions. Dynamically, dendritic filopodia emerged from densities in the dendritic shaft, which by electron microscopy contained branched actin network associated with dendritic microtubules. We propose that dendritic spine morphogenesis begins from an actin patch elongating into a dendritic filopodium, which tip subsequently expands via Arp2/3 complex-dependent nucleation and which length is modulated by myosin II-dependent contractility.  相似文献   

20.
Two-photon fluorescence correlation spectroscopy (2P-FCS) within single dendritic spines of living hippocampal pyramidal neurons was used to resolve various subpopulations of mobile F-actin during activity-dependent structural changes such as potentiation induced spine head growth. Two major classes of mobile F-actin were discovered: very dynamic and about a hundred times less dynamic F-actin. Spine head enlargement upon application of Tetraethylammonium (TEA), a protocol previously used for the chemical induction of long-term potentiation (cLTP) strictly correlated to changes in the dynamics and filament numbers in the different actin filament fractions. Our observations suggest that spine enlargement is governed by a mechanism in which longer filaments are first cut into smaller filaments that cooperate with the second, increasingly dynamic shorter actin filament population to quickly reorganize and expand the actin cytoskeleton within the spine head. This process would allow a fast and efficient spine head enlargement using a major fraction of the actin filament population that was already present before spine head growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号