首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • 1.1. Opine dehydrogenases (OpDHs) and lactate dehydrogenase (LDH) activities were determined in various marine animals. OpDHs were detected in six marine invertebrate phyla; Porifera, Coelenterata, Annelida, Mollusca, Arthropoda and Echinodermata in phylogenic sequence.
  • 2.2. Among several OpDHs, tauropine dehydrogenase (TaDH) occurred widely in marine invertebrates, from Porifera to Echinodermata.
  • 3.3. With a few exceptions, total OpDHs activities exceeded that of LDH activity in the marine invertebrates investigated.
  • 4.4. With respect to anaerobic glycolysis, OpDHs are indicated to play an important role in phylogenically lower invertebrates, whereas LDH is more important in higher animals.
  相似文献   

2.
Energetic characteristics and functional roles define two maintypes of anaerobicpathways in the animal kingdom: high efficiency/lowrates of energy production pathways geared to anoxia survival(aspartate-succinate and glucose-succinate pathways), and lowefficiency?/high rates of energy production pathways gearedto maintaining or increasing metabolic activity (multiple opinepathways and lactate pathway). The aspartate-succinate and opinepathways require both amino acids and carbohydrate as substrates,whereas the glucose-succinate and lactate pathways are dependenton carbohydrate only. Phylogenetic, functional and chemicalconsiderations indicate an evolutionary progression from aminoacid-linked to carbohydrate-based anaerobic pathways. The tauropineand strombine pathwaysare possibly the most ancient opine pathwaysso far discovered, and the octopine pathway the most advanced.The roles of the aspartate-succinate and opine pathways mayoriginally have been not too dissimilar. A hierarchy of "ratesof energy production pathways" of phosphagen > lactate >octopine > other opine pathways is proposed, which definesmuch of their phylogenetic selection and how they are used.The different properties of phosphocreatine compared to otherphosphagens is indicated to have been a key factor in the emergenceof vertebrates  相似文献   

3.
Octopine dehydrogenase [N2-(d-1-carboxyethyl)-l-arginine:NAD+ oxidoreductase] (OcDH) from the adductor muscle of the great scallop Pecten maximus catalyzes the reductive condensation of l-arginine and pyruvate to octopine during escape swimming. This enzyme, which is a prototype of opine dehydrogenases (OpDHs), oxidizes glycolytically born NADH to NAD+, thus sustaining anaerobic ATP provision during short periods of strenuous muscular activity. In contrast to some other OpDHs, OcDH uses only l-arginine as the amino acid substrate. Here, we report the crystal structures of OcDH in complex with NADH and the binary complexes NADH/l-arginine and NADH/pyruvate, providing detailed information about the principles of substrate recognition, ligand binding and the reaction mechanism. OcDH binds its substrates through a combination of electrostatic forces and size selection, which guarantees that OcDH catalysis proceeds with substrate selectivity and stereoselectivity, giving rise to a second chiral center and exploiting a “molecular ruler” mechanism.  相似文献   

4.
Biochemical pathways involved in the production of marine sponge secondary metabolites remain mostly unknown. The physicochemical characteristics of the marine environment and the complex structures encountered in marine sponges can explain the lack of results obtained in the biosynthetic studies on marine organisms. Despite significant structural differences, the question of the similarity between the terrestrial and marine biosynthetic pathways remains. To increase our level of knowledge on the sponge metabolic pathways, we developed an experimental protocol using a relatively simple model. Pyrrole imidazole alkaloids represent a very large and interesting family of sponge alkaloids found in many sponge species worldwide. Using oroidin as our target metabolite and the common Mediterranean sponge Axinella damicornis, we measured the incorporation of radiolabelled amino acids into secondary metabolites by “feeding” experiment. This in vivo protocol based on a highly sensitive radioactive detection allowed the identification of the origin of an entire sponge natural product skeleton for the first time.  相似文献   

5.
Summary In animals, various organic acids are accumulated during hypoxia or anoxia as products of anaerobic energy metabolism. The diversity of such acids is largest in marine invertebrates where succinate, propionate, acetate, lactate, alanine, octopine, strombine, and alanopine, are produced mainly from glycogen and aspartate. The effect of these substances on the acid-base status was assessed by a theoretical analysis of the respective metabolic pathways. This resulted in a general rule which was applied to evaluate the proton balance of the reactions in energy metabolism: net changes in the number of carboxyl groups or changes in the degree of dissociation of other groups (e.g. phosphate or ammonia) determine the net amount of H+ ions released or bound by the substrates and the metabolic end products.For marine invertebrates the results of the analysis can be summarized as follows: In glycogenolysis one mol of protons per mol of end products is released during cytosolic glycolysis, independent of the type of metabolic end product (lactate, octopine, alanopine, strombine, or alanine). The same applies for mitochondrial production of propionate and acetate, whereas formation of succinate results in dissociation of two mol H+ per mol. Fermentation of aspartate, however, diminishes the amount of protons which is produced in the succinate-propionate pathway. Net metabolisation of Mg ATP2– yields extra protons, whereas the cleavage of phosphagens (e.g. creatine phosphate, arginine phosphate) consumes protons.Additionally the break-down of energy-rich phosphates to inorganic phosphate has to be taken into account because of the shift of the intracellular buffer curve caused by changes of the respective effective pK values.  相似文献   

6.
Female genital tract secretions are commonly sampled by lavage of the ectocervix and vaginal vault or via a sponge inserted into the endocervix for evaluating inflammation status and immune factors critical for HIV microbicide and vaccine studies. This study uses a proteomics approach to comprehensively compare the efficacy of these methods, which sample from different compartments of the female genital tract, for the collection of immune factors. Matching sponge and lavage samples were collected from 10 healthy women and were analyzed by tandem mass spectrometry. Data was analyzed by a combination of differential protein expression analysis, hierarchical clustering and pathway analysis. Of the 385 proteins identified, endocervical sponge samples collected nearly twice as many unique proteins as cervicovaginal lavage (111 vs. 61) with 55% of proteins common to both (213). Each method/site identified 73 unique proteins that have roles in host immunity according to their gene ontology. Sponge samples enriched for specific inflammation pathways including acute phase response proteins (p = 3.37×10−24) and LXR/RXR immune activation pathways (p = 8.82×10−22) while the role IL-17A in psoriasis pathway (p = 5.98×10−4) and the complement system pathway (p = 3.91×10−3) were enriched in lavage samples. Many host defense factors were differentially enriched (p<0.05) between sites including known/potential antimicrobial factors (n = 21), S100 proteins (n = 9), and immune regulatory factors such as serpins (n = 7). Immunoglobulins (n = 6) were collected at comparable levels in abundance in each site although 25% of those identified were unique to sponge samples. This study demonstrates significant differences in types and quantities of immune factors and inflammation pathways collected by each sampling technique. Therefore, clinical studies that measure mucosal immune activation or factors assessing HIV transmission should utilize both collection methods to obtain the greatest representation of immune factors secreted into the female genital tract.  相似文献   

7.
The partial amino acid sequence including the N- and C-terminal portions of tauropine dehydrogenase (EC 1.5.1.23) from the marine sponge Halichondria japonica was determined by enzymatic cleavages followed by peptide sequencing. This information was used to design degenerate primers for amplification of cDNA encoding the tauropine dehydrogenase. The cDNA included 1231 nucleotides with an open reading frame of 1002 nucleotides that encodes a protein of 334 amino acid residues. From the peptide and nucleotide sequencing, the mature tauropine dehydrogenase was estimated to consist of 333 amino acid residues with an acetylated N-terminal serine residue and no intrachain disulfide bonds. The primary structure of the H. japonica enzyme showed apparent similarity with a homolog of ornithine cyclodeaminase from Rhizobium meliloti and other proteins of the ornithine cyclodeaminase/mu-crystallin family, but it showed no significant similarity with the known sequences of octopine dehydrogenases and tauropine dehydrogenases from marine invertebrates. These findings indicate that opine dehydrogenases in marine invertebrates are not all homologous.  相似文献   

8.
Summary In order to elucidate the regulatory parameters which determine multiple opine formation in marine invertebrates, anaerobiosis was induced in 25 species from several phyla by stimulating the animals to vigorous muscular activity or by subjecting them to environmental hypoxia. The quantity of glycolytic end products and the corresponding amino acids were measured. In a second set of experiments the amounts of substrates and products of the opine dehydrogenase reactions in the isolated introvert retractor muscle (IRM) ofSipunculus nudus were determined in both situations.During environmental hypoxia opines accumulated according to the contents of the corresponding amino acids. Mass action ratios (MAR) of the opine dehydrogenase reactions in the isolated IRM were in the range of control values (octopine dehydrogenase 1.9·1011 mol–2·l2, strombine dehydrogenase 2.2·1010 mol–2·l2). During muscular activity those opines accumulated preferentially which corresponded to the highest opine dehydrogenase activities. In the isolated IRM only octopine accumulated during contractile activity; the MAR of the octopine dehydrogenase reaction was near the control value while the MAR of the strombine dehydrogenase reaction deviated by a factor of 9.The results indicate that during environmental hypoxia the opine dehydrogenases present in a tissue catalyze near equilibrium and the relative amount of opines accumulated is dictated by the concentration of the corresponding amino acids. During muscular activity only those opine dehydrogenases catalyze near equilibrium which are present in sufficiently high activities to keep pace with an increased glycolytic flux. Therefore, different opines may accumulate in the same animal during muscular activity and during environmental hypoxia.  相似文献   

9.
Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells.  相似文献   

10.
The metabolism of Gluconacetobacter oboediens was investigated in relation to different carbon sources for the continuous cultures at the dilution rate of 0.05 h−1. The 13C-flux result implies the formation of metabolic recycles for the case of using glucose and acetate as carbon sources. When glucose and ethanol were used as carbon sources, the specific ethanol uptake rate and the specific acetate production rate increased as the feed ethanol concentration was increased from 40 to 60 g/l, while the specific CO2 production rate and the biomass concentration decreased, where the 13C-metabolic flux result indicates that the glycolysis, oxidative PP pathway, and the tricarboxylic acid (TCA) cycle were less active, resulting in less biomass concentration. The flux result also implies that oxaloacetate decarboxylase flux became negative, so that oxaloacetate is backed up by this pathway, resulting in less activity of glyoxylate pathway. When gluconate was added for the case of using glucose and ethanol as carbon sources, the acetate and cell concentrations as well as gluconate concentrations increased. The glucose and ethanol concentrations decreased concomitantly with the increased feed gluconate concentration. In accordance with these fermentation characteristics, the enzyme activity result indicates that glucose dehydrogenase and glucose-6-phosphate dehydrogenase pathways became less active, while the glycolysis and the TCA cycle was activated as the feed gluconate concentration was increased.  相似文献   

11.
The protective effects of fructose-1,6-biphosphate (FBP) during hypoxia/ischemia are thought to result from uptake and utilization of FBP as a substrate for glycolysis or from stimulation of glucose metabolism. To test these hypotheses, we measumed CO2 and lactate production from [6-14C]glucose, [1-14C]glucose, and [U-14C]FBP in normoxic and hypoxic cultured astrocytes with and without FBP present. FBP had little effect on CO2 production by glycolysis, but increased CO2 production by the pentose phosphate pathway. Labeled FBP produced very small amounts of CO2. Lactate production from [1-, and 6-14C]glucose increased similarly during hypoxic hypoxia; the increase was independent of added FBP. Labeled lactate from [U-14C]FBP was minimal. We conclude that exogenous FBP is not used by astrocytes as a substrate for glycolysis and that FBP alters glucose metabolism.  相似文献   

12.
13.
Bacteria in the SAR11 clade are highly abundant in marine surface waters, but currently little is known about the carbon compounds that support these large heterotrophic populations. To better understand the carbon requirements of these organisms, we conducted a multiphasic exploration of carbohydrate utilization among SAR11 isolates from the Northeast Pacific Ocean and the Sargasso Sea. A comparison of three SAR11 genomes showed they all lacked a recognizable PTS system, the oxidative portion of the pentose phosphate shunt (zwf, pgl), genes for the Embden–Meyerhoff–Parnas (pfk, pyk) and Entner–Doudoroff (eda) pathways of glycolysis. Strain HTCC7211, isolated from an ocean gyre, was missing other glycolysis genes as well. Growth assays, radioisotopes, metagenomics and microarrays were used to test the hypothesis that these isolates might be limited in their abilities to transport and oxidize exogenous carbohydrates. Galactose, fucose, rhamnose, arabinose, ribose and mannose could not serve as carbon sources for the isolates tested. However, differences in glucose utilization were detected between coastal and ocean gyre isolates, with the coastal isolates capable of transporting, incorporating and oxidizing glucose while the open ocean isolate could not. Subsequent microarray analysis of a coastal isolate suggested that an operon encoding a variant of the Entner–Doudoroff pathway is likely responsible for the observed differences in glucose utilization. Metagenomic analysis indicated this operon is more commonly found in coastal environments and is positively correlated with chlorophyll a concentrations. Our results indicated that glycolysis is a variable metabolic property of SAR11 metabolism and suggest that glycolytic SAR11 are more common in productive marine environments.  相似文献   

14.
Sun L  Song Y  Qu Y  Yu X  Zhang W 《Cell and tissue research》2007,328(1):223-237
Marine sponges (Porifera) are the best source of marine bioactive metabolites for drug discovery and development, although the sustainable production of most sponge-derived metabolites remains a difficult task. In vitro cultivation of sponge cells in bioreactors has been proposed as a promising technology. However, no continuous cell line has as yet been developed. Archaeocytes are considered to be toti/multipotent stem cells in sponges and, when purified, may allow the development of continuous sponge cell lines. As a prerequisite, we have developed a novel four-step protocol for the purification of archaeocytes from a marine sponge, Hymeniacidon perleve: (1) differential centrifugation to separate large sponge cells including archaeocytes; (2) selective agglomeration in low-Ca2+/Mg2+ artificial seawater in which living archaeocytes form small loose aggregates with some pinacocytes and collencytes; (3) differential adherence to remove anchorage-dependent pinacocytes, collencytes and other mesohyl cells; (4) Ficoll-Vrografin density gradient centrifugation to purify archaeocytes. The final purity of archaeocytes is greater than 80%. The proliferation potential of the archaeocytes has been demonstrated by high levels of BrdU incorporation, PCNA expression and telomerase activity. In 4-day primary cultures, the purified archaeocytes show a 2.5-fold increase in total cell number. This study opens an important avenue towards developing sponge cell cultures for the commercial exploitation of sponge-derived drugs. The authors are grateful for the financial support of the Chinese Academy of Sciences under the “100 Talent Project”, the “Innovation Fund” from the Dalian Institute of Chemical Physics, the “Hi-Tech Research and Development Program of China” (2001AA620404), and the European Commission (project: Silicon Biotechnology).  相似文献   

15.
16.
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination ‘pathway-’ in some marine bacteria and algae, a Met-methylation ‘pathway-’ in angiosperms and bacteria and a decarboxylation ‘pathway-’ in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.  相似文献   

17.
Arthrobacter sp. CGMCC 3584 are able to produce cAMP from glucose by the purine synthesis pathway via de novo or salvage biosynthesis. In order to gain an improved understanding of its metabolism, 13C-labeling experiment and gas chromatography–mass spectrometry (GC–MS) analysis were employed to determine the metabolic network structure and estimate the intracellular fluxes. GC–MS analysis helps to reflect the activity of the intracellular pathways and reactions. The metabolic network mainly contains glycolytic and pentose phosphate pathways, the tricarboxylic acid cycle, and the inactive glyoxylate shunt. Hypoxanthine as a precursor of cAMP and sodium fluoride as an inhibitor of glycolysis were found to increase the cAMP production, as well as the flux through the PP pathway. The effects of adding hypoxanthine and sodium fluoride are discussed based on the enzyme assays and metabolic flux analysis. In conclusion, our results provide quantitative insights into how cells manipulate the metabolic network under different culture conditions and this may be of value in metabolic regulation for desirable production.  相似文献   

18.
A network model for the determination of tumor metabolic fluxes from 13C NMR kinetic isotopomer data has been developed and validated with perfused human DB-1 melanoma cells carrying the BRAF V600E mutation, which promotes oxidative metabolism. The model generated in the bonded cumomer formalism describes key pathways of tumor intermediary metabolism and yields dynamic curves for positional isotopic enrichment and spin-spin multiplets. Cells attached to microcarrier beads were perfused with 26 mm [1,6-13C2]glucose under normoxic conditions at 37 °C and monitored by 13C NMR spectroscopy. Excellent agreement between model-predicted and experimentally measured values of the rates of oxygen and glucose consumption, lactate production, and glutamate pool size validated the model. ATP production by glycolytic and oxidative metabolism were compared under hyperglycemic normoxic conditions; 51% of the energy came from oxidative phosphorylation and 49% came from glycolysis. Even though the rate of glutamine uptake was ∼50% of the tricarboxylic acid cycle flux, the rate of ATP production from glutamine was essentially zero (no glutaminolysis). De novo fatty acid production was ∼6% of the tricarboxylic acid cycle flux. The oxidative pentose phosphate pathway flux was 3.6% of glycolysis, and three non-oxidative pentose phosphate pathway exchange fluxes were calculated. Mass spectrometry was then used to compare fluxes through various pathways under hyperglycemic (26 mm) and euglycemic (5 mm) conditions. Under euglycemic conditions glutamine uptake doubled, but ATP production from glutamine did not significantly change. A new parameter measuring the Warburg effect (the ratio of lactate production flux to pyruvate influx through the mitochondrial pyruvate carrier) was calculated to be 21, close to upper limit of oxidative metabolism.  相似文献   

19.
Carbon dioxide-fixing acetogenic bacteria (acetogens) utilizing the Wood-Ljungdahl Pathway (WLP) play an important role in CO2 fixation in the biosphere and in the development of biological processes – alone or in cocultures, under both autotrophic and mixotrophic conditions – for production of chemicals and fuels. To date, limited work has been reported in experimentally validating and quantifying reaction fluxes of their core metabolic pathways. Here, the core metabolic model of the acetogen Clostridium ljungdahlii was interrogated using 13C-metabolic flux analysis (13C-MFA), which required the development of a new defined culture medium. Autotrophic, heterotrophic, and mixotrophic growth in defined medium was possible by adding 1 mM methionine to replace yeast extract. Our 13C-MFA found an incomplete TCA cycle and inactive core pathways/reactions, notably those of the oxidative pentose phosphate pathway, Entner-Doudoroff pathway, and malate dehydrogenase. 13C-MFA during mixotrophic growth using the parallel tracers [1–13C]fructose, [1,2–13C]fructose, [1,2,3–13C]fructose, and [U–13C]asparagine found that externally supplied CO2 contributed the majority of carbon consumed. All internally-produced CO2 from the catabolism of asparagine and fructose was consumed by the WLP. While glycolysis of fructose was active, it was not a major contributor to overall production of ATP, NADH, and acetyl-CoA. Gluconeogenic reactions were active despite the availability of organic carbon. Asparagine was catabolized equally via conversion to threonine and subsequent cleavage to produce acetaldehyde and glycine, and via deamination to fumarate and then the anaplerotic conversion of malate to pyruvate. Both pathways for asparagine catabolism produced acetyl-CoA, either directly via pyruvate or indirectly via the WLP. Cofactor stoichiometry based on our data predicted an essentially zero flux through the ferredoxin-dependent transhydrogenase (Nfn) reaction. Instead, nearly all of NADPH generated from the hydrogenase reaction was consumed by the WLP. Reduced ferredoxin produced by the hydrogenase reaction and glycolysis was mostly used for ATP generation via the RNF/ATPase system, with the remainder consumed by the WLP. NADH produced by RNF/ATPase was entirely consumed via the WLP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号