首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cyanobacterial strain (Anabaena laxa RPAN8) exhibiting fungicidal activity and β-1,3 and 1,4 endoglucanase activities was selected for identifying the gene(s) involved. Functional analyses of the genomic library revealed that four clones (8, 64, 116, and 248) of RPAN8 exhibited fungicidal activity and induced structural deformities in the cell wall of the growing mycelia of Pythium aphanidermatum. Higher expression of fungicidal and β-1,4 endoglucanase activities, along with low expression of β-1,3 endoglucanase activity, was recorded in two E. coli clones (8 and 64). Clones 8 and 64 exhibited identical sequences while clones 116 and 248 were also similar. Bioinformatic analyses were undertaken only for the two non-identical clones 8 and 116 which showed open reading frames (ORFs) of 348 (end 1) and 656 amino acid residues (end 2), respectively. The amino acid sequence analyses revealed that the end 1 encoding endoglucanases belonged to peptidase M20 family while end 2 showed significant similarities with several known genes. The putative promoters and ribosomal binding sites were identified and amino acid exchanges were observed in both end 1 and 2. The presence of signal peptides of 24 and 20 amino acid residues respectively revealed the secretory nature of these proteins.  相似文献   

2.
A novel gene encoding thermostable endoglucanase was identified in Xanthomonas sp. EC102 from soil. The gene had 1,458 base pairs of open reading frame, which encode a 52-kDa protein of 486 amino acid residues. Sequence of the amino acid residues was similar with the endoglucanase from Xanthomonas campestris pv. campestris ATCC33913 (GenBank Accession No. NP_638867.1) (94 % identity). The endoglucanase was overexpressed in Escherichia coli BL21 and purified. Temperature for the highest enzymatic activity was 70 °C and pH optima was pH 5.5. The specific activity of the endoglucanase toward carboxymethylcellulose (CMC) was approximately 2 μmol min?1 mg?1, V max for CMC was 1.44 μmol mg?1 min?1, and K m values was 25.6 mg mL?1. The EC102 endoglucanase was stable at temperatures up to 60 °C, and it was activated by 0.1 mM of Mn2+ and Co2+. This is the first report about thermostable endoglucanase from Xanthomonas sp.  相似文献   

3.
Malonyl-CoA:acyl-carrier protein transacylase (MCAT), which transfers the malonyl group from malonyl-CoA to holo-acyl carrier protein (ACP), is a key enzyme in fatty acid biosynthesis. Schizochytrium sp. TIO1101 is a marine protist with high levels of docosahexaenoic acid accumulation. In this study, the putative fabD gene coding MCAT was isolated from Schizochytrium sp. TIO1101. The Schizochytrium MCAT gene (ScTIOfabD) contained an 1176 bp open reading frame encoding a protein of 391 amino acids. The ScTIOfabD gene exhibited high novelty in nucleotide and amino acid sequence. The highest amino acid identity was only 35 % between ScTIOMCAT and the reported MCATs. Further studies demonstrated that ScTIOMCAT could bind malonyl-CoA directly and transfer malonyl group from malonyl-CoA to the ACP domain in vitro. Phylogenetic analysis suggested that ScTIOMCAT was relative close to MCATs of yeast strains. Overexpression of ScTIOMCAT in Saccharomyces cereviseae significantly increased the MCAT activity, without negative effects on the growth rate of the host strain. In addition, ScTIOMCAT generated 16.8 and 62 % increase in biomass and fatty acid accumulation, respectively, and did not alter the profile of fatty acid. Our results indicated that the novel MCAT gene from Schizochytrium sp. TIO1101 was crucial for fatty acid synthesis and had potential applications for genetic modifications of oil-producing species.  相似文献   

4.
The present study describes the first isolation and characterization of a prokaryotic protein and gene for sucrose-phosphate phosphatase (SPP), the enzyme that catalyzes the terminal step in sucrose synthesis. For gene isolation, a 2,015-bp DNA fragment containing an open reading frame with about 31% amino acid identity to Synechocystis SPS was amplified from Anabaena sp. PCC 7120 DNA. Surprisingly, expression of the putative gene in Escherichia coli demonstrated that it encoded an SPP protein. The expressed protein cross-reacted with antibodies against the native form of Anabaena SPP and its biochemical properties were identical to those of the enzyme purified from the cyanobacterial cells. Comparisons of the Anabaena SPP with the higher-plant enzyme revealed important differences in the C-terminal region, molecular mass, subunit composition and immunoreactivity. Nevertheless, two conserved motifs, including four invariant aspartate residues similar to those found in members of the phosphohydrolase superfamily, were identified in the Anabaena SPP deduced amino acid sequence.  相似文献   

5.
Bioinformatic tools guided PCR amplification assays were employed for analyzing two Anabaena strains A. laxa and A. iyengarii which exhibited chitosanase activity, allelopathic and fungicidal activity. Sequencing of a 297 bp fragment obtained by amplification with primers directed towards mcy A gene (involved in the production of microcystins), revealed significant similarity with the condensation domain, while amplification with specific primers towards N-methyltransferase (NMT) domain showed 59% similarity with a homologous domain in a toxic strain of Microcystis aeruginosa. An amplified product of 172 bp obtained using specific primers derived from the coding region of chitinase (chi IS) gene in Streptomyces sp., showed 100% similarity with hydrogenbyrinic acid a, c-diamide cobaltochelatase gene in Anabaena, and significant similarity with chi IS gene of Streptomyces sp. under less stringent conditions. The 663 bp sequence obtained by employing specific primers for chitosanase (choA) derived from Mitsuaria chitosanitabida 3001 strain, showed 100% similarity with glycoside hydrolase family three domain like protein(s). This study is a first time report on the presence of homologues of chitosanase in cyanobacteria which can play a role in allelopathic activity exhibited by these oxygenic photosynthetic prokaryotes.  相似文献   

6.
A bacterium identified as Arthrobacter sp. S1 by 16S rRNA was isolated from contaminated soil. This is the first reported study that Arthrobacter could utilize both α-halocarboxylix acid (αHA) [2,2-dichloropropionic acid (2,2-DCP) and D,L-2-chloropropionic acid (D,L-2-CP)] and β-halocarboxylix acid (βHA) [3-chloropropionic acid (3CP)] as sole source of carbon with cell doubling times of 5?±?0.2, 7?±?0.1, and 10?±?0.1 h, respectively. More than 85 % chloride ion released was detected in the growth medium suggesting the substrates used were utilized. To identify the presence of dehalogenase gene in the microorganism, a molecular tool that included the use of oligonucleotide primers specific to microorganisms that can grow in halogenated compounds was adapted. A partial putative dehalogenase gene was determined by direct sequencing of the PCR-amplified genomic DNA of the bacterium. A comparative analysis of the deduced amino acid sequence data revealed that the amino acid sequence has a low identity of less than 15 % to both group I and group II dehalogenases, suggesting that the current putative dehalogenase amino acid sequence was completely distinct from both α-haloacids and β-haloacids dehalogenases. This investigation is useful in studying the microbial populations in order to monitor the presence of specific dehalogenase genes and to provide a better understanding of the microbial populations that are present in soil or in water systems treating halogenated compounds.  相似文献   

7.
The present study focused on the responses of six freshwater algal species (Anabaena ambigua, Anabaena subcylindrica, Nostoc commune, Nostoc muscorum, Spirogyra sp., and Spirulina sp.) to manganese and zinc. Laboratory experiments were conducted for the assessment of biochemical responses to manganese and zinc at various concentrations (0.1, 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0 mg/L) for 15 days of exposure. After the incubation period, 10 ml of sample was centrifuged at 6000 rpm for 15 min and the pellets were used for measurement of the various experimental parameters. The toxicological study of manganese on algae showed that Anabaena ambigua was most sensitive algae. Regarding effects of manganese concentrations, chlorophyll, protein, carbohydrate, starch, and amino acid were inhibited 50% (IC50) at 3 mg/L, whereas the toxicological study of zinc on algae Anabaena subcylindrica showed most adverse effects. Regarding effects of zinc concentrations, chlorophyll, protein, carbohydrate, starch, and amino acid were inhibited 50% (IC50) at 1 mg/L. The inhibitory and stimulatory effects of either of the used heavy metals depend on concentration. Different organisms, however, have different sensitivities to the same metal, and the same organism may be more or less damaged by different metals.  相似文献   

8.
9.
The goal of this work was to produce high levels of endoglucanase in Escherichia coli for its potential usage in different industrial applications. Endoglucanase gene was amplified from genomic DNA of Bacillus subtilis JS2004 by PCR. The isolated putative endoglucanase gene consisted of an open reading frame of 1,701 nucleotides and encoded a protein of 567 amino acids with a molecular mass of 63-kDa. The gene was cloned into pET-28a(+) and expressed in E. coli BL21 (DE3). Optimum temperature and pH of the recombinant endoglucanase were 50 °C and 9, respectively which makes it very attractive for using in bio-bleaching and pulp industry. It had a K M of 1.76 μmol and V max 0.20 μmol/min with carboxymethylcellulose as substrate. The activity of recombinant endoglucanse was enhanced by Mg2+, Ca2+, isopropanol and Tween 20 and inhibited by Hg2+, Zn2+, Cu2+, Ni2+ and SDS. The activity of this recombinant endoglucanase was significantly higher than wild type. Therefore, this recombinant enzyme has potential for many industrial applications involving biomass conversions, due to characteristic of broad pH and higher temperature stability.  相似文献   

10.
The nucleotide sequence of a DNA fragment containing an endo-1,4-β-glucanase (EG-1) gene of Clostridium josui was determined by the dideoxy-chain termination method. The EG-1 coding sequence was an open reading frame encoding 369 amino acids, and a putative promoter sequence was located in the upstream region of the open reading frame. The N-terminal amino acid sequence of the endoglucanase (EG-1C) purified from the Escherichia coli transformant (JM103/pUCJ1) was consistent with the deduced sequence from 30Val to 44Lys. The estimated molecular weights of the precursor and the mature enzymes were 41,774 and 38,352, respectively. The region of amino acids from 61st to 335th of the enzyme revealed high homology with those of Bacillus sp. and Clostridium acetobutylicum endoglucanases.  相似文献   

11.
Summary The nucleotide sequence of a 2.8 kb DNA segment containing an endoglucanase gene (end1) from Butyrivibrio fibrisolvens H17c was determined. The B. fibrisolvens H17c gene was expressed from its own regulatory region in Escherichia coli and three putative consensus promoter sequences were identified upstream of a ribosome binding site and an ATG start codon. The complete amino acid sequence (547 residues) was deduced and homology with the Clostridium thermocellum ME gene product (EGE) was demonstrated. The endoglucanase contained a typical amino-terminal signal sequence and five repeated sequences (PDPTPVD) between amino acids 412–447. The endoglucanase showed relatively high endoglucanase activity against endoglucanase-specific substrates with 1-4 linkages but low activity against xylan and an exoglucanasespecific substrate, p-nitrophenyl--d-cellobioside.Abbreviations CMCase carboxymethylcellulase - DNS dinitrosalicylic acid - end1 gene coding for End1 - End1 endo-1,4--glucanase - nt nucleotide - ORF open reading frame  相似文献   

12.
The mdh gene encodes mannitol dehydrogenase (MDH), which catalyzes the conversion of fructose into mannitol. The putative mdh gene of Candida magnoliae was isolated by PCR using the primers deduced from the N-terminal amino acid sequences of an intact MDH and its tryptic peptides, cloned in E. coli, and sequenced. The mdh gene consisted of 852 bp encoding for 283 amino acids. Analysis of the amino acid sequence revealed that MDH consisted of typical NADPH-dependent short chain dehydrogenases/reductases (SDRs). To develop a strong promoter to induce expression of the foreign genes in C. magnolia, the putative promoter was isolated. The reporter protein, GFP, was well-expressed under the control of the putative mdh promoter of 153 bp in C. magnoliae.  相似文献   

13.
Mitogen-activated protein kinase (MAPK) cascades are involved in various processes, including plant growth and development as well as biotic and abiotic stress responses. MAPK kinases (MKKs), which link MPKs and MAPKK kinases (MKKKs), are crucial in MAPK cascades because these kinases mediate various stress responses in plants. However, only few MKKs in Brassica campestris (rape) have been functionally characterized. In this study, a novel gene, MKK4 that belongs to a C MKK group, was isolated and characterized from rape. Bioinformatics analysis revealed that the length of cDNA was 1,317 bp with an open reading frame of 993 bp, which encodes a polypeptide containing 330 amino acids, including a putative signal peptide with 27 amino acid residues and a mature protein with 303 amino acids. The obtained MKK4 exhibited a predicted molecular mass of 36.5 kDa and an isoelectric point of 9.01. Quantitative real-time polymerase chain reaction analysis revealed that MKK4 expression could be induced by cold and salt. We also found that the MKK4 protein is localized in the nucleus. In addition, a 999 bp promoter fragment of MKK4 was cloned. Sequence analysis revealed that several putative regulatory elements were found in the MKK4 promoter. Transient expression assay showed that the MKK4 promoter fragments exhibited promoter activity and stimulated GFP expression. The effects of GFP gene expression at different temperatures and in different onion epidermis culture patterns were compared. Results showed that the MKK4 promoter could respond to low temperature and salt stress. These results suggested that MKK4 is possibly important for the regulation of cold- and salt-stress responses in plants.  相似文献   

14.
The complete nucleotide sequence of the endoglucanase (CMCase) gene and its flanking regions of Cellulomonas uda CB4, a hyper producer of cellulase, was determined. A 1077 bp open reading frame for endoglucanase gene was observed. The endoglucanase secreted in E. coli was purified to homogeneous preparation and the amino acid sequence of the N-terminal region of the enzyme was determined to be Gln-Thr-Ala-Trp-Glu-Arg-Tyr-Lys-Ala-Arg-Phe-Met-Met-Pro-, suggesting the processing at Ala23 of pre-endoglucanase. The signal sequence consisted of 23 amino acids, of which one was Arg in the region near the N-terminus and 14 were hydrophobic amino acid residues having hydropathy indices greater than 1.  相似文献   

15.
16.
3,5,6-trichloro-2-pyridinol (TCP) is a major metabolite of the insecticide chlorpyrifos and is hazardous to human and animal health. A gene encoding a TCP degrading enzyme was cloned from a metagenomic library prepared from cow rumen. The gene (tcp3A) is 2.5 kb in length, encoding a protein (Tcp3A) of 599 amino acid residues. Tcp3A has a potential signal sequence, as well as a putative ATP/GTP binding site, and a likely amidation site. The molecular weight of the enzyme is 62 kDa by SDS–PAGE. Comparison of Tcp3A with the NCBI database using BLASTP revealed homology to amidohydrolase proteins. Recombinant Escherichia coli harboring the tcp3A gene could utilize TCP as the sole source of carbon. TLC and HPLC revealed that TCP was degraded by recombinant E. coli harboring tcp3A. This is the first report of a gene encoding a TCP degrading enzyme.  相似文献   

17.
Origin recognition complex 6 (Orc6) plays a central role in the initiation of DNA replication in all eukaryotic systems. The exact contribution of Orc6 to replication initiation has yet to be elucidated. Here, we analyzed the evolutionary dynamics of Orc6 in 15 vertebrates. Positive selection was detected in the region of exon 6 of the Orc6 gene. Site tests revealed a proportion of codon sites that displayed evidence of positive selection (ω > 1) within the coding sequences of the vertebrate Orc6 gene. Seven positively selected amino acid sites were identified and three were located in exon6. These results suggest that amino acid residues present in the middle region of the protein are more selectively constrained, whereas amino acid residues in the C-terminal peptide of the protein evolve at a faster rate, possibly because of heightened selective pressure during the course of evolution.  相似文献   

18.
Arthrobacter sp. strains D2 and D3 and Labrys sp. strain D1 capable of degrading 20 mM monochloroacetic acid (MCA) were isolated from soil contaminated with herbicides and pesticides. All three isolates were able to grow on MCA as the sole source of carbon and energy with concomitant chloride ion release in the growth medium (19 mM). Strains D2 and D3 (cells doubling time 7 ± 0.3 h) grew four times faster than D1 (26 ± 0.1 h). Strain D2 was then further investigated and could also grow in 10 mM of monobromoacetic acid (MBA), 2,2-dichloropropionic acid (2,2DCP), d,l-2-chloropropionic acid (D,L2CP), l-2-chloropropionic acid (L-2CP), d-2-chloropropionic acid (D-2CP), and glycolate as the sole sources of carbon and energy. Dehalogenase gene amplification using group I primers revealed a 410-bp polymerase chain reaction (PCR) product, but there was none using group II primers. The partial amino acid sequence analysis of group I DehD2 dehalogenase showed at least 32% identity to the corresponding regions of DehE, DhlIV, DehI, and D,L-DEX, with key amino acid residues Ser188, Ala187, and Asp189. These amino acid residues were involved in substrate binding and catalysis and were conserved in the partial amino acid sequence.  相似文献   

19.
Alteromonas sp. GNUM-1 is known to degrade agar, the main cell wall component of red macroalgae, for their growth. A putative agarase gene (agaG1) was identified from the mini-library of GNUM-1, when extracellular agarase activity was detected in a bacterial transformant. The nucleotide sequence revealed that AgaG1 had significant homology to GH16 agarases. agaG1 encodes a primary translation product (34.7 kDa) of 301 amino acids, including a 19-amino-acid signal peptide. For intracellular expression, a gene fragment encoding only the mature form (282 amino acids) was cloned into pGEX-5X-1 in Escherichia coli, where AgaG1 was expressed as a fusion protein with GST attached to its N-terminal (GST-AgaG1). GST-AgaG1 purified on a glutathione sepharose column had an apparent molecular weight of 59 kDa on SDS-PAGE, and this weight matched with the estimated molecular weight (58.7 kDa). The agarase activity of the purified protein was confirmed by the zymogram assay. GST-AgaG1 could hydrolyze the artificial chromogenic substrate, p-nitrophenyl-β-d-galactopyranoside but not p-nitrophenyl-α-d-galactopyranoside. The optimum pH and temperature for GST-AgaG1 activity were identified as 7.0 and 40 °C, respectively. GST-AgaG1 was stable up to 40 °C (100 %), and it retained more than 70 % of its initial activity at 45 °C after heat treatment for 30 min. The K m and V max for agarose were 3.74 mg/ml and 23.8 U/mg, respectively. GST-AgaG1 did not require metal ions for its activity. Thin layer chromatography analysis, mass spectrometry, and 13C-nuclear magnetic resonance spectrometry of the GST-AgaG1 hydrolysis products revealed that GST-AgaG1 is an endo-type β-agarase that hydrolyzes agarose and neoagarotetraose into neoagarobiose.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号