首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Achilles tendon injuries affect both athletes and the general population, and their incidence is rising. In particular, the Achilles tendon is subject to dynamic loading at or near failure loads during activity, and fatigue induced damage is likely a contributing factor to ultimate tendon failure. Unfortunately, little is known about how injured Achilles tendons respond mechanically and structurally to fatigue loading during healing. Knowledge of these properties remains critical to best evaluate tendon damage induction and the ability of the tendon to maintain mechanical properties with repeated loading. Thus, this study investigated the mechanical and structural changes in healing mouse Achilles tendons during fatigue loading. Twenty four mice received bilateral full thickness, partial width excisional injuries to their Achilles tendons (IACUC approved) and twelve tendons from six uninjured mice were used as controls. Tendons were fatigue loaded to assess mechanical and structural properties simultaneously after 0, 1, 3, and 6 weeks of healing using an integrated polarized light system. Results showed that the number of cycles to failure decreased dramatically (37-fold, p<0.005) due to injury, but increased throughout healing, ultimately recovering after 6 weeks. The tangent stiffness, hysteresis, and dynamic modulus did not improve with healing (p<0.005). Linear regression analysis was used to determine relationships between mechanical and structural properties. Of tendon structural properties, the apparent birefringence was able to best predict dynamic modulus (R2=0.88–0.92) throughout healing and fatigue life. This study reinforces the concept that fatigue loading is a sensitive metric to assess tendon healing and demonstrates potential structural metrics to predict mechanical properties.  相似文献   

3.
This study describes the development and application of a novel rat patellar tendon model of mechanical fatigue for investigating the early in vivo response to tendon subfailure injury. Patellar tendons of adult female Sprague-Dawley rats were fatigue loaded between 1–35 N using a custom-designed loading apparatus. Patellar tendons were subjected to Low-, Moderate- or High-level fatigue damage, defined by grip-to-grip strain measurement. Molecular response was compared with that of a laceration-repair injury. Histological analyses showed that progression of tendon fatigue involves formation of localized kinked fiber deformations at Low damage, which increased in density with presence of fiber delaminations at Moderate damage, and fiber angulation and discontinuities at High damage levels. RT-PCR analysis performed at 1- and 3-day post-fatigue showed variable changes in type I, III and V collagen mRNA expression at Low and Moderate damage levels, consistent with clinical findings of tendon pathology and were modest compared with those observed at High damage levels, in which expression of all collagens evaluated were increased markedly. In contrast, only type I collagen expression was elevated at the same time points post-laceration. Findings suggest that cumulative fatigue in tendon invokes a different molecular response than laceration. Further, structural repair may not be initiated until reaching end-stage fatigue life, where the repair response may unable to restore the damaged tendon to its pre-fatigue architecture.  相似文献   

4.
Fatigue loading is a primary cause of tendon degeneration, which is characterized by the disruption of collagen fibers and the appearance of abnormal (e.g., cartilaginous, fatty, calcified) tissue deposits. The formation of such abnormal deposits, which further weakens the tissue, suggests that resident tendon cells acquire an aberrant phenotype in response to fatigue damage and the resulting altered mechanical microenvironment. While fatigue loading produces clear changes in collagen organization and molecular denaturation, no data exist regarding the effect of fatigue on the local tissue mechanical properties. Therefore, the objective of this study was to identify changes in the local tissue stiffness of tendons after fatigue loading. We hypothesized that fatigue damage would reduce local tissue stiffness, particularly in areas with significant structural damage (e.g., collagen denaturation). We tested this hypothesis by identifying regions of local fatigue damage (i.e., collagen fiber kinking and molecular denaturation) via histologic imaging and by measuring the local tissue modulus within these regions via atomic force microscopy (AFM). Counter to our initial hypothesis, we found no change in the local tissue modulus as a consequence of fatigue loading, despite widespread fiber kinking and collagen denaturation. These data suggest that immediate changes in topography and tissue structure – but not local tissue mechanics – initiate the early changes in tendon cell phenotype as a consequence of fatigue loading that ultimately culminate in tendon degeneration.  相似文献   

5.
BACKGROUND: Experiments on the fatigue of tendons have shown that cyclic loading induces failure at stresses lower than the ultimate tensile strength (UTS) of the tendons. The number of cycles to failure (Nf) has been shown to be dependent upon the magnitude of the applied cyclic stress. METHOD OF APPROACH: Utilizing data collected by Schechtman (1995), we demonstrate that the principles of Linear Elastic Fracture Mechanics (LEFM) can be used to predict the fatigue behavior of tendons under cyclic loading for maximum stress levels that are higher than 10% of the ultimate tensile strength (UTS) of the tendon (the experimental results at 10% UTS did not fit with our equations). CONCLUSIONS: LEFM and other FM approaches may prove to be very valuable in advancing our understanding of damage accumulation in soft connective tissues.  相似文献   

6.
Introducing mesenchymal stem cell (MSC)-seeded collagen constructs into load-protected wound sites in the rabbit patellar and Achilles tendons significantly improves their repair outcome compared to natural healing of the unfilled defect. However, these constructs would not be acceptable alternatives for repairing complete tendon ruptures because they lack the initial stiffness at the time of surgery to resist the expected peak in vivo forces thereafter. Since the stiffness of these constructs has also been shown to positively correlate with the stiffness of the subsequent repairs, improving initial stiffness by appropriate selection of in vitro culture conditions would seem crucial. In this study we examined the individual and combined effects of collagen scaffold type, construct length, and mechanical stimulation on in vitro implant stiffness. Two levels each of scaffold material (collagen gel vs. collagen sponge), construct length (short vs. long), and mechanical stimulation (stimulated vs. non-stimulated) were examined. Our results indicate that all three treatment factors influenced construct linear stiffness. Increasing the length of the construct had the greatest effect on the stiffness compared to introducing mechanical stimulation or changing the scaffold material. A significant interaction was also found between length and stimulation. Of the eight groups studied, longer, stimulated, cell-sponge constructs showed the highest in vitro linear stiffness. We now plan in vivo studies to determine if higher stiffness constructs generate higher stiffness repairs 12 weeks after surgery and if in vitro construct stiffness continues to correlate with in vivo repair parameters like linear stiffness.  相似文献   

7.
A non-invasive ultrasonic (US) technique of tendon force measurement has been recently developed. It is based on the relationship demonstrated between the speed of sound (SOS) in a tendon and the traction force applied to it. The objectives of the present study were to evaluate the variability of this non-linear relationship among 7 equine superficial digital flexor (SDF) tendons, and the reproducibility of SOS measurements in these tendons over successive loading cycles and tests. Seven SDF tendons were equipped with an US probe (1 MHz), secured in contact with the skin overlying the tendon metacarpal part. The tendons were submitted to a traction test consisting in 5 cycles of loading/unloading between 50 and 4050 N. Four tendons out of the 7 were submitted to 5 additional cycles up to 5550 N. The SOS-tendon force relationships appeared similar in shape, although large differences in SOS levels were observed among the tendons. Reproducibility between cycles was evaluated from the root mean square of the standard deviations (RMS-SD) of SOS values observed every 100 N, and of force values every 2 m/s. Reproducibility of SOS measurements revealed high between successive cycles: above 500 N the RMS-SD was less than 2% of the corresponding traction force. Reproducibility between tests was lower, partly due to the experimental set-up; above 500 N the difference between the two tests stayed nevertheless below 15% of the corresponding mean traction force. The reproducibility of the US technique here demonstrated in vitro has now to be confirmed in vivo.  相似文献   

8.
Tendons primarily function as contractile force transmitters, but their mechanical properties may change dependent upon their level of mechanical usage. Using an ultrasound-based technique we have assessed tendon mechanical properties in vivo in a number of conditions representing different levels of mechanical usage. Ageing alters tendon mechanical properties; stiffness and modulus were lower in older adults by 10 and 14%, respectively, compared to young adults. Increased levels of exercise loading in old age can however partly reverse this process, as tendon stiffness and modulus were found to increase by 65 and 69%, respectively. Complete unloading due to bed rest or spinal cord injury both reduce tendon stiffness and modulus, however, only chronic unloading due to spinal cord injury seems to cause tendon atrophy. Alterations in tendon mechanical properties due to changes in the levels loading have implications for the speed of force transmission, the muscle's operating range and the likelihood of tendon strain injury.  相似文献   

9.
Tendons can function as springs and thereby preserve energy during cyclic loading. They might also have damping properties, which, hypothetically, could reduce risk of microinjuries due to fatigue at sites of local stress concentration within the tendon. At mechanical testing, damping will appear as hysteresis. How is damping influenced by training or disuse? Does training decrease hysteresis, thereby making the tendon a better spring, or increase hysteresis and thus improve damping? Seventy-eight female 10-wk-old Sprague-Dawley rats were randomized to three groups. Two groups had botulinum toxin injected into the calf muscles to unload the left Achilles tendon through muscle paralysis. One of these groups was given doxycycline, as a systemic matrix metalloproteinase inhibitor. The third group served as loaded controls. The Achilles tendons were harvested after 1 or 6 wk for biomechanical testing. An increase with time was seen in tendon dry weight, wet weight, water content, transverse area, length, stiffness, force at failure, and energy uptake in all three groups (P < 0.001 for each parameter). Disuse had no effect on these parameters. Creep was decreased with time in all groups. The only significant effect of disuse was on hysteresis (P = 0.004) and creep (P = 0.007), which both decreased with disuse compared with control, and on modulus, which was increased (P = 0.008). Normalized glycosaminoglycan content was unaffected by time and disuse. No effect of doxycycline was observed. The results suggest that in growing animals, the tendons continue to grow regardless of mechanical loading history, whereas maintenance of damping properties requires mechanical stimulation.  相似文献   

10.
The purpose of this study wasto determine the effect of long-term exercise on tendon compliance andto ascertain whether tendons adapt differently to downhill running vs.running on a level surface. We carried out this investigation on thegastrocnemius tendon of helmeted guinea fowl (Numidameleagris) that were trained for 8-12 wk before commencingexperimental procedures. We used an in situ technique to measure tendonstiffness. The animals were deeply anesthetized with isofluorane duringall in situ procedures. Our results indicate that long-term exerciseincreased tendon stiffness. This finding held true after normalizationfor the cross-sectional area of the free tendon, likely reflecting achange in the material properties of the exercised tendons. Whethertraining consisted of level or downhill running did not appear toinfluence response of the tendon to exercise. We hypothesize that theincreased stiffness observed in tendons after a long-term runningprogram may be a response to repeated stress and may function as amechanism to resist tendon damage due to mechanical fatigue.

  相似文献   

11.
To test the hypothesis that stress deprivation induces over-expression of cytokines in the patellar tendon, 40 rats were divided into the following two groups. In the stress-shielded group, we slackened the patellar tendon in the right knee by drawing the patella toward the tibial tubercle with flexible wires. In the control group, we performed a sham operation on the right knee. Animals were killed at 2 or 6 weeks for immunohistological evaluation and biomechanical examination. For IL-1beta, TNF-alpha and TGF-beta, the ratio of positively stained specimens to total specimens was significantly higher in the stress-shielded tendons than in the control tendons. The elastic modulus of the stress-shielded tendon was significantly lower than that of the control tendon, while the cross-sectional area of the stress-shielded tendon was significantly greater than that of the control tendon. Therefore, the present study indicated that stress shielding induced the over-expression of IL-1beta, TNF-alpha and TGF-beta in patellar tendon fibroblasts with mechanical deterioration of the tendon. Regarding clinical relevance, the present study suggests a possible application of an anti-IL-1beta or anti-TNF-alpha strategy for reducing the mechanical deterioration of tendons and ligaments in response to stress deprivation, although this study did not directly show that over-expression of IL-1beta or TNF-alpha in response to stress deprivation was the causation of mechanical deterioration of tendons.  相似文献   

12.
Factors influencing the output of an implantable force transducer   总被引:1,自引:0,他引:1  
The objective of this study was to evaluate the performance of the Arthroscopically Implantable Force Probe (AIFP; MicroStrain, Burlington VT) for measuring force in a patellar tendon graft. Transducer drift, reproducibility of output due to the number of loading cycles and device location, and sensitivity to the tendon cross-sectional area were investigated. The AIFP was initialized, and then implanted into five human patellar tendon grafts three times; twice within the same location and once in a different location. The tendons were cyclically loaded in uniaxial tension for 500 cycles in each insertion site. The AIFP was then removed from the tendon and the baseline output was remeasured. It was determined that transducer drift was negligible. The relationship between the tensile load applied to the graft and AIFP output was quadratic and specimen dependent. The cyclic load response of the tendon-AIFP interface demonstrated a 24.9% decrease over the first 20 loading cycles, and subsequent cycling yielded relatively reproducible output. The output of the transducer varied when it was removed from the tendon and then reimplanted in the same location (range 3.7-109. 4% error), as well as in the second location (range 1.5-202.8% error). No correlation was observed between the cross-sectional area of the tendon and transducer output. This study concludes that implantable force probes should be used with caution and calibrated without removing the transducer from the graft.  相似文献   

13.
Minimising post-operative donor site morbidity is an important consideration when selecting a graft for surgical reconstruction of the torn anterior cruciate ligament (ACL). One of the most common procedures, the bone-patellar tendon-bone (BPTB) graft involves removal of the central third from the tendon. However, it is unknown whether the mechanical properties of the donor site (patellar tendon) recover. The present study investigated the mechanical properties of the human patellar tendon in 12 males (mean±S.D. age: 37±14 years) who had undergone surgical reconstruction of the ACL using a BPTB graft between 1 and 10 years before the study (operated knee; OP). The uninjured contralateral knee served as a control (CTRL). Patellar tendon mechanical properties were assessed in vivo combining dynamometry with ultrasound imaging. Patellar tendon stiffness was calculated from the gradient of the tendon's force–elongation curve. Tendon stiffness was normalised to the tendon's dimensions to obtain the tendon's Young's modulus. Cross-sectional area (CSA) of OP patellar tendons was larger by 21% than CTRL tendons (P<0.01). Patellar tendon stiffness was not significantly different between OP and CTRL tendons, but the Young's modulus was lower by 24% in OP tendons (P<0.01). A compensatory enlargement of the patellar tendon CSA, presumably due to scar tissue formation, enabled a recovery of tendon stiffness in the OP tendons. The newly formed tendon tissue had inferior properties as indicated by the reduced tendon Young's modulus, but it increased to a level that enabled recovery of tendon stiffness.  相似文献   

14.
Tendon tissue engineering approaches are challenged by a limited understanding of the role mechanical loading plays in normal tendon development. We propose that the increased loading that developing postnatal tendons experience with the onset of locomotor behavior impacts tendon formation. The objective of this study was to assess the onset of spontaneous weight-bearing locomotion in postnatal day (P) 1, 5, and 10 rats, and characterize the relationship between locomotion and the mechanical development of weight-bearing and non-weight-bearing tendons. Movement was video recorded and scored to determine non-weight-bearing, partial weight-bearing, and full weight-bearing locomotor behavior at P1, P5, and P10. Achilles tendons, as weight-bearing tendons, and tail tendons, as non-weight-bearing tendons, were mechanically evaluated. We observed a significant increase in locomotor behavior in P10 rats, compared to P1 and P5. We also found corresponding significant differences in the maximum force, stiffness, displacement at maximum force, and cross-sectional area in Achilles tendons, as a function of postnatal age. However, the maximum stress, strain at maximum stress, and elastic modulus remained constant. Tail tendons of P10 rats had significantly higher maximum force, maximum stress, elastic modulus, and stiffness compared to P5. Our results suggest that the onset of locomotor behavior may be providing the mechanical cues regulating postnatal tendon growth, and their mechanical development may proceed differently in weight-bearing and non-weight-bearing tendons. Further analysis of how this loading affects developing tendons in vivo may inform future engineering approaches aiming to apply such mechanical cues to regulate engineered tendon formation in vitro.  相似文献   

15.
The linear organization of collagen fibers in tendons results in optimal stiffness and strength at low strains under tensile load. However, this organization makes repairing ruptured or lacerated tendons extremely difficult. Current suturing techniques to join split ends of tendons, while providing sufficient mechanical strength to prevent gapping, are inadequate to carry normal loads. Immobilization protocols necessary to restore tendon congruity result in scar formation at the repair site and peripheral adhesions that limit excursion. These problems are reviewed to emphasize the need for novel approaches to tendon repair, one of which is the development of biomimetic tendons. The objective of the empirical work described here was to produce biologically-based, biocompatible tendon replacements with appropriate mechanical properties to enable immediate mobilization following surgical repair. Nor-dihydroguaiaretic acid (NDGA), a di-catechol from creosote bush, caused a dose dependent increase in the material properties of reconstituted collagen fibers, achieving a 100-fold increase in strength and stiffness over untreated fibers. The maximum tensile strength of the optimized NDGA treated fibers averaged 90 MPa; the elastic modulus of these fibers averaged 580 MPa. These properties were independent of strain rates ranging from 0.60 to 600 mm/min. Fatigue tests established that neither strength nor stiffness were affected after 80 k cycles at 5% strain. Treated fibers were not cytotoxic to tendon fibroblasts. Fibroblasts attached and proliferated on NDGA treated collagen normally. NDGA-fibers did not elicit a foreign body response nor did they stimulate an immune reaction during six weeks in vivo. The fibers survived 6 weeks with little evidence of fragmentation or degradation. The polymerization scheme described here produces a fiber-reinforced NDGA-polymer with mechanical properties approaching an elastic solid. The strength, stiffness and fatigue properties of the NDGA-treated fibers are comparable to those of tendon. These fibers are biocompatible with tendon fibroblasts and elicit little rejection or antigenic response in vivo. These results indicate that NDGA polymerization may provide a viable approach for producing collagenous materials that can be used to bridge gaps in ruptured or lacerated tendons. The tendon-like properties of the NDGA-fiber would allow early mobilization after surgical repair. We predict that timely loading of parted tendons joined by this novel biomaterial will enhance mechanically driven production of neo-tendon by the colonizing fibroblasts and result in superior repair and rapid return to normal properties.  相似文献   

16.
Injuries to the tendon (e.g., wrist tendonitis, epicondyltis) due to overuse are common in sports activities and the workplace. Most are associated with repetitive, high force hand activities. The mechanisms of cellular and structural damage due to cyclical loading are not well known. The purpose of this video is to present a new system that can simultaneously load four tendons in tissue culture. The video describes the methods of sterile tissue harvest and how the tendons are loaded onto a clamping system that is subsequently immersed into media and maintained at 37 degrees C. One clamp is fixed while the other one is moved with a linear actuator. Tendon tensile force is monitored with a load cell in series with the mobile clamp. The actuators are controlled with a LabView program. The four tendons can be repetitively loaded with different patterns of loading, repetition rate, rate of loading, and duration. Loading can continue for a few minutes to 48 hours. At the end of loading, the tendons are removed and the mid-substance extracted for biochemical analyses. This system allows for the investigation of the effects of loading patterns on gene expression and structural changes in tendon. Ultimately, mechanisms of injury due to overuse can be studies with the findings applied to treatment and prevention.  相似文献   

17.
Different tendons are (i) subject to very different stresses from their muscles and (ii) differ in their susceptibility to fatigue damage. The fatigue quality of each tendon is matched to the stress it experiences, so that, in life, all tendons are similarly prone to damage. On-going damage must be routinely repaired to maintain homeostasis and prevent damage from becoming symptomatic. The discovery of major differences in fatigue quality among tendons, which had previously seemed fairly similar in their mechanical properties, raises a wide range of new questions. (A) What structural and chemical differences underlie the variations in fatigue quality? (B) What molecular structure in the tendon is damaged and how is repair organised? (C) Is fatigue quality adaptable and if so what is the trigger for adaptation? Putting these questions into context leads to an integrated review of tendon, including structure and chemistry, the turnover of proteins, the cross-linking of collagen and the response of tenocytes to load on the tendon.  相似文献   

18.
Conservative treatment (non-operative) of Achilles tendon ruptures is suggested to produce equivalent capacity for return to function; however, long term results and the role of return to activity (RTA) for this treatment paradigm remain unclear. Therefore, the objective of this study was to evaluate the long term response of conservatively treated Achilles tendons in rodents with varied RTA. Sprague Dawley rats (n = 32) received unilateral blunt transection of the Achilles tendon followed by randomization into groups that returned to activity after 1-week (RTA1) or 3-weeks (RTA3) of limb casting in plantarflexion, before being euthanized at 16-weeks post-injury. Uninjured age-matched control animals were used as a control group (n = 10). Limb function, passive joint mechanics, tendon properties (mechanical, histological), and muscle properties (histological, immunohistochemical) were evaluated. Results showed that although hindlimb ground reaction forces and range of motion returned to baseline levels by 16-weeks post-injury regardless of RTA, ankle joint stiffness remained altered. RTA1 and RTA3 groups both exhibited no differences in fatigue properties; however, the secant modulus, hysteresis, and laxity were inferior compared to uninjured age-matched control tendons. Despite these changes, tendons 16-weeks post-injury achieved secant stiffness levels of uninjured tendons. RTA1 and RTA3 groups had no differences in histological properties, but had higher cell numbers compared to control tendons. No changes in gastrocnemius fiber size or type in the superficial or deep regions were detected, except for type 2x fiber fraction. Together, this work highlights RTA-dependent deficits in limb function and tissue-level properties in long-term Achilles tendon and muscle healing.  相似文献   

19.
Different tendons are designed to withstand different mechanical loads in their individual environments. Variable physiologic loading ranges and correspondingly different injury thresholds lead to tendon heterogeneity. Also, tendon heterogeneity is evident when examining how different tendons regulate their response to changes in mechanical loading (over- and under-loading). The response of tendons to changes in mechanical loading plays an important role in the induction and progression of tendinosis which is tendon degeneration without inflammation. Tendon overuse injury is likely related to abnormal mechanical loading that deviates from normal mechanical loading in magnitude, frequency, duration and/or direction. Mechanical loading that results in tendon overuse injury can initiate a repair process but, after failed initial repair, non-resolving chronic attempted repair appears to lead to a "smoldering" fibrogenesis. Contributions of regulatory components, including minor components in the "nerve-mast cell-myofibroblast axis", are key features in the development and progression of tendinosis. Hormonal and genetic factors may also influence risk for tendinosis. Further understanding of how tendinosis induction is related to mechanical use/overuse, how tendinosis progression is related to abnormal regulation of attempted repair, and how induction and/or progression are modulated by other risk factors may lead to interventions that mitigate risk and enhance functional repair.  相似文献   

20.
Effects of the overstressing induced by the harvest of grafts from the patellar tendon on the mechanical properties and morphometry of remaining tendon were studied using a rabbit model. The width of the patellar tendon was reduced by one-fourth or one-half equally removing the medial and lateral portions; by this surgery, the cross-sectional area was decreased by 25 or 50 percent from the original area. After all the rabbits were allowed unrestricted activities in cages for 3 to 12 weeks, their patellar tendons were harvested for mechanical and histological studies. The one-fourth removal induced no significant changes in the mechanical properties, but significantly increased the cross-sectional area. In the case of one-half removal, tensile strength and tangent modulus did not change in some tendons, although the cross-sectional area increased significantly. In the other central half tendons, mechanical strength decreased markedly, while the cross-sectional area increased; hypercellular areas and breakage of collagen bundles were observed in these tendons. These results indicate that the patellar tendon has an ability of functionally adapting to overstressing by changing the cross-sectional area, while keeping the mechanical properties unchanged, if the extent of overstressing is less than 30 percent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号