首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Chromosome 6 phylogeny in primates and centromere repositioning   总被引:21,自引:0,他引:21  
A panel of 15 human BAC/PAC probes, covering the entire chromosome 6, was used in FISH experiments on great apes and on representatives of Old World monkeys, New World monkeys, and lemurs to delineate the chromosome 6 phylogeny in primates. The domestic cat was used as an outgroup. The analysis showed a high marker order conservation, with few rearrangements required to reconcile the hypothesized chromosome 6 organization in primate ancestor with marker arrangement in all the examined species. Contrary to this simple evolutionary scenario, however, the centromere was found to be located in three distinct regions, without any evidence of chromosomal rearrangement that would account for its movement. One of the two centromere repositioning events occurred in great apes ancestor. The centromere moved from 6p22.1 to the present day location after the inversion event that differentiated marker order of the primate ancestor from the ancestor of Catarrhini. A cluster of intrachromosomal segmental duplications was found at 6p22.1, scattered in a region of about 9 Mb, which we interpret as remains of duplicons that flanked the ancestral centromere. Our data, therefore, suggest that some duplicon clusters found in noncentromeric/nontelomeric locations may represent traces of evolutionary silenced centromeres that inactivated after the occurrence of a centromere repositioning. In addition, the neocentromere emergence we have documented in Old World monkeys at 6q24.3 appears to have arisen and progressed without affecting the displaced flanking sequences.  相似文献   

2.
3.
着丝粒(centromere)是真核生物染色体的重要功能结构。在细胞有丝分裂和减数分裂过程中,着丝粒通过招募动粒蛋白行使功能,保障染色体正确分离和传递。真核生物中,含有着丝粒特异组蛋白的CenH3区域被定义为功能着丝粒区,即真正意义上的着丝粒。近年来,借助染色质免疫沉淀技术,人们对功能着丝粒DNA开展了深入研究,揭示其组成、结构及演化特征,并发现功能着丝粒区存在具有转录活性的基因,且部分基因具有重要生物学功能。由于存在大量重复DNA,着丝粒演化之谜一直未能完全揭示。对植物功能着丝粒DNA序列研究进展进行了概述,并重点阐述了着丝粒重复DNA研究的新方法和新进展,以期为深入开展相关研究提供借鉴。  相似文献   

4.
The centromere is a specific chromosomal locus that organizes the assembly of the kinetochore. It plays a fundamental role in accurate chromosome segregation. In most eukaryotic organisms, each chromosome contains a single centromere the position and function of which are epigenetically specified. Occasionally, centromeres form at ectopic loci, which can be detrimental to the cell. However, the mechanisms that protect the cell against ectopic centromeres (neocentromeres) remain poorly understood. Centromere protein-A (CENP-A), a centromere-specific histone 3 (H3) variant, is found in all centromeres and is indispensable for centromere function. Here we report that the overexpression of CENP-ACnp1 in fission yeast results in the assembly of CENP-ACnp1 at noncentromeric chromatin during mitosis and meiosis. The noncentromeric CENP-A preferentially assembles near heterochromatin and is capable of recruiting kinetochore components. Consistent with this, cells overexpressing CENP-ACnp1 exhibit severe chromosome missegregation and spindle microtubule disorganization. In addition, pulse induction of CENP-ACnp1 overexpression reveals that ectopic CENP-A chromatin can persist for multiple generations. Intriguingly, ectopic assembly of CENP-Acnp1 is suppressed by overexpression of histone H3 or H4. Finally, we demonstrate that deletion of the N-terminal domain of CENP-Acnp1 results in an increase in the number of ectopic CENP-A sites and provide evidence that the N-terminal domain of CENP-A prevents CENP-A assembly at ectopic loci via the ubiquitin-dependent proteolysis. These studies expand our current understanding of how noncentromeric chromatin is protected from mistakenly assembling CENP-A.  相似文献   

5.
Allometric principles account for most of the observed variation in maximum life span among mammals. When body-size effects are controlled for, most of the residual variance in mammalian life span can be explained by variations in brain size, metabolic rate and body temperature. It is shown that species with large brains for a given body size and metabolic rate, such as anthropoid primates, also have long maximum life spans. Conversely, mammals with relatively high metabolic rates and low levels of encephalization, as in most insectivores and rodents, tend to have short life spans. The hypothesis is put forward that encephalization and metabolic rate, which may govern other life history traits, such as growth and reproduction, are the primary determinants directing the evolution of mammalian longevity.  相似文献   

6.
新生幼仔通常非常脆弱,需要亲代抚育才能成活,哺乳动物的亲代抚育主要由雌性完成。雌性在分娩前后所展现出的寻找分娩地点、筑造产房、分娩、舔仔、授乳、护仔等一系列动作称为母性行为,其对家养及野生动物幼仔的成活和发育均至关重要。母性行为受遗传、管理等因素影响,环境中残留的各类新型污染物也给正常母性行为的激发和维持带来了新挑战。此外,虽然母性行为是评判优良个体的重要参考,但由于母性行为性状遗传力低,这使得仅从遗传角度很难做出科学评价,而应结合行为表观遗传学综合分析上述因素对母性行为的整体影响。综述了遗传、营养、环境、管理以及疾病等因素对哺乳动物母性行为的影响,并重点指出塑化剂、重金属等残留在环境中的内分泌干扰物,以及电磁污染、光污染等是母性行为异常的新诱因。此外,还对动物生产及野生动物保护工作中如何在遗传学基础上,综合优化营养、环境、管理等措施来改善和培育优良母性行为性状提出了展望。可为下一步深入探究哺乳动物母性行为影响因素及调控机制提供参考,并为预防和改善动物母性行为异常以及提高动物母性照料能力提供依据,同时,还能为探索生态健康养殖、提高母幼福利提供一定的参考。  相似文献   

7.
Meiotic recombination shapes evolution and helps to ensure proper chromosome segregation in most species that reproduce sexually. Recombination itself evolves, with species showing considerable divergence in the rate of crossing‐over. However, the genetic basis of this divergence is poorly understood. Recombination events are produced via a complicated, but increasingly well‐described, cellular pathway. We apply a phylogenetic comparative approach to a carefully selected panel of genes involved in the processes leading to crossovers—spanning double‐strand break formation, strand invasion, the crossover/non‐crossover decision, and resolution—to reconstruct the evolution of the recombination pathway in eutherian mammals and identify components of the pathway likely to contribute to divergence between species. Eleven recombination genes, predominantly involved in the stabilization of homologous pairing and the crossover/non‐crossover decision, show evidence of rapid evolution and positive selection across mammals. We highlight TEX11 and associated genes involved in the synaptonemal complex and the early stages of the crossover/non‐crossover decision as candidates for the evolution of recombination rate. Evolutionary comparisons to MLH1 count, a surrogate for the number of crossovers, reveal a positive correlation between genome‐wide recombination rate and the rate of evolution at TEX11 across the mammalian phylogeny. Our results illustrate the power of viewing the evolution of recombination from a pathway perspective.  相似文献   

8.
《Current biology : CB》2019,29(18):3072-3080.e5
  1. Download : Download high-res image (267KB)
  2. Download : Download full-size image
  相似文献   

9.
Centromeres are universally conserved functional units in eukaryotic linear chromosomes, but little is known about the structure and dynamics of the centromere in lower photosynthetic eukaryotes. Here we report the identification of a centromere marker protein CENH3 and visualization of centromere dynamics in the ultra-small primitive red alga Cyanidioschyzon merolae. Immunoblotting and immunofluorescence microscopy showed that CENH3 increased rapidly during S phase, followed by a drastic reconstitution into two discrete foci adjacent to the spindle poles at metaphase, suggesting the cell-cycle-regulated expression of CENH3. Immunoelectron microscopy revealed that the CENH3 signals were associated with the nuclear envelope, implying interplay between the kinetochore complex and the nuclear envelope. These results demonstrate dynamic centromere reconstitution during the cell cycle in an organism in which the chromosomes do not condense at metaphase.  相似文献   

10.
Centromeres are epigenetically specified by the histone H3 variant CENP-A and typically associated with highly repetitive satellite DNA. We previously discovered natural satellite-free neocentromeres in Equus caballus and Equus asinus. Here, through ChIP-seq with an anti-CENP-A antibody, we found an extraordinarily high number of centromeres lacking satellite DNA in the zebras Equus burchelli (15 of 22) and Equus grevyi (13 of 23), demonstrating that the absence of satellite DNA at the majority of centromeres is compatible with genome stability and species survival and challenging the role of satellite DNA in centromere function. Nine satellite-free centromeres are shared between the two species in agreement with their recent separation. We assembled all centromeric regions and improved the reference genome of E. burchelli. Sequence analysis of the CENP-A binding domains revealed that they are LINE-1 and AT-rich with four of them showing DNA amplification. In the two zebras, satellite-free centromeres emerged from centromere repositioning or following Robertsonian fusion. In five chromosomes, the centromeric function arose near the fusion points, which are located within regions marked by traces of ancestral pericentromeric sequences. Therefore, besides centromere repositioning, Robertsonian fusions are an important source of satellite-free centromeres during evolution. Finally, in one case, a satellite-free centromere was seeded on an inversion breakpoint. At 11 chromosomes, whose primary constrictions seemed to be associated with satellite repeats by cytogenetic analysis, satellite-free neocentromeres were instead located near the ancestral inactivated satellite-based centromeres; therefore, the centromeric function has shifted away from a satellite repeat containing locus to a satellite-free new position.  相似文献   

11.
运动形式的适应性演化与生物的捕食、防御、繁殖和通讯等生存行为紧密相关.哺乳动物演化出的多种多样的运动方式对占领新栖息地和获取新生存资源有着举足轻重的作用,其中滑翔和飞行能力是哺乳动物为适应环境而演化出的特殊运动形式,该类群动物已成为适应性演化研究的热点模型之一.为了适应生存,滑翔和飞行哺乳动物在形态、生理和行为方面都发...  相似文献   

12.
Social interactions help group-living organisms cope with socio-environmental challenges and are central to survival and reproductive success. Recent research has shown that social behaviour and relationships can change across the lifespan, a phenomenon referred to as ‘social ageing’. Given the importance of social integration for health and well-being, age-dependent changes in social behaviour can modulate how fitness changes with age and may be an important source of unexplained variation in individual patterns of senescence. However, integrating social behaviour into ageing research requires a deeper understanding of the causes and consequences of age-based changes in social behaviour. Here, we provide an overview of the drivers of late-life changes in sociality. We suggest that explanations for social ageing can be categorized into three groups: changes in sociality that (a) occur as a result of senescence; (b) result from adaptations to ameliorate the negative effects of senescence; and/or (c) result from positive effects of age and demographic changes. Quantifying the relative contribution of these processes to late-life changes in sociality will allow us to move towards a more holistic understanding of how and why these patterns emerge and will provide important insights into the potential for social ageing to delay or accelerate other patterns of senescence.  相似文献   

13.
The evolutionary history of human chromosome 20 in primates was investigated using a panel of human BAC/PAC probes spaced along the chromosome. Oligonucleotide primers derived from the sequence of each human clone were used to screen horse, cat, pig, and black lemur BAC libraries to assemble, for each species, a panel of probes mapping to chromosomal loci orthologous to the loci encompassed by the human BACs. This approach facilitated marker-order comparison aimed at defining marker arrangement in primate ancestor. To this goal, we also took advantage of the mouse and rat draft sequences. The almost perfect colinearity of chromosome 20 sequence in humans and mouse could be interpreted as evidence that their form was ancestral to primates. Contrary to this view, we found that horse, macaque, and two New World monkeys share the same marker-order arrangement from which the human and mouse forms can be derived, assuming similar but distinct inversions that fully account for the small difference in marker arrangement between humans and mouse. The evolutionary history of this chromosome unveiled also two centromere repositioning events in New World monkey species.  相似文献   

14.
Biologists have long searched for mechanisms responsible for the increase in species richness with decreasing latitude. The strong correlation between species richness and climate is frequently interpreted as reflecting a causal link via processes linked to energy or evolutionary rates. Here, we investigate how the aggregation of clades, as dictated by phylogeny, can give rise to significant climate–richness gradients without gradients in diversification or environmental carrying capacity. The relationship between climate and species richness varies considerably between clades, regions and time periods in a global-scale phylogenetically informed analysis of all terrestrial mammal species. Many young clades show negative richness–temperature slopes (more species at cooler temperatures), with the ages of these clades coinciding with the expansion of temperate climate zones in the late Eocene. In carnivores, we find steeply positive richness–temperature slopes in clades with restricted distributions and tropical origins (e.g. cat clade), whereas widespread, temperate clades exhibit shallow, negative slopes (e.g. dog–bear clade). We show that the slope of the global climate–richness gradient in mammals is driven by aggregating Chiroptera (bats) with their Eutherian sister group. Our findings indicate that the evolutionary history should be accounted for as part of any search for causal links between environment and species richness.  相似文献   

15.
不良孕产夫妇着丝粒—动粒复合体的细胞遗传学研究   总被引:5,自引:0,他引:5  
焦海燕  陈银涛  彭亮  于黎明  张翠霞 《遗传》2001,23(4):344-346
为研究不良孕产夫妇着丝粒-动粒复合体(centromere kinetochore complex,CKC)变异与不良孕产的相关性,探索不良孕产中非整倍体表成的细胞遗传学基础,应用改良的着丝粒点-核仁组织区(Cd-NOR)同步银染技术,分别对53对不明原因的不良孕产夫妇和57对已生育正常儿的正常夫妇外周血淋巴细胞染色体CKC变异类型及频率进行研究和分析。结果发现,不良孕产夫妇其小Cd,Cd消失、Cd迟滞和Cd-NOR融合频率均较正常对照组明显增高,两相比有显性差异(P<0.05)。CKC变异频率增高可能是导致不良孕产非整倍体形成的主要原因之一。  相似文献   

16.
In 1917, sex chromosomes in plants were discovered in a liverwort with hetermorphic U and V chromosomes. Such heteromorphy is unexpected because, unlike the XY chromosomes in diploid-dominant plants, in haploid-dominant plants the female U and the male V chromosomes experience largely symmetrical potential recombination environments. Here we use molecular cytogenetics and super-resolution microscopy to study Frullania dilatata, a liverwort with one male and two female sex chromosomes. We applied a pipeline to Illumina sequences to detect abundant types of repetitive DNA and developed FISH probes to microscopically distinguish the sex chromosomes. We also determined the phenotypic population sex ratio because biased ratios have been reported from other liverworts with heteromorphic sex chromosomes. Populations had male-biased sex ratios. The sex chromosomes are monocentric, and of 14 probes studied (eight satellites, five transposable elements and one plastid region), four resulted in unique signals that differentiated the sex chromosomes from the autosomes and from each other. One FISH probe selectively marked the centromeres of both U chromosomes, so we could prove that during meiosis each U chromosome associates with one of the opposite telomeres of the V chromosome, resulting in a head-to-head trivalent. The similarity of the two U chromosomes to each other in size and in their centromere FISH signal positions points to their origin via a non-disjunction event (aneuploidy), which would fit with the general picture of sex chromosomes rarely crossing-over and being prone to suffer from non-disjunction.  相似文献   

17.
Mammalian communities alter their taxonomic composition through time as the species composing them change their biogeographic range, become extinct, or evolve into new species. When taxonomic compositions change through these processes, inevitably the links between taxa and communities change too, resulting in evolution from one ecosystem into the next. Late Quaternary examples suggest that on a timescale encompassing a few thousand to a few hundred thousand years (the “multi‐millennial timescale"), climatic change is perhaps the most important driver of ecosystem evolution because it periodically forces biogeographic changes and extinction. Climatic change over this timescale, which essentially slips between “geological time”; and “ecological time”;, is not very closely in phase with population‐level evolution of a species analyzed for this study, the meadow vole Microtus pennsylvanicus; therefore climatic oscillations on the multi‐millennial timescale may not stimulate speciation much. Instead, speciation may contribute to ecosystem evolution independent of climatic change and over a longer time scale.  相似文献   

18.
《Molecular cell》2023,83(13):2188-2205.e13
  1. Download : Download high-res image (201KB)
  2. Download : Download full-size image
  相似文献   

19.
Centromeric chromatin is uniquely marked by the centromere-specific histone CENP-A. For assembly of CENP-A into nucleosomes to occur without competition from H3 deposition, it was proposed that centromeres are among the first or last sequences to be replicated. In this study, centromere replication in Drosophila was studied in cell lines and in larval tissues that contain minichromosomes that have structurally defined centromeres. Two different nucleotide incorporation methods were used to evaluate replication timing of chromatin containing CID, a Drosophila homologue of CENP-A. Centromeres in Drosophila cell lines were replicated throughout S phase but primarily in mid S phase. However, endogenous centromeres and X-derived minichromosome centromeres in vivo were replicated asynchronously in mid to late S phase. Minichromosomes with structurally intact centromeres were replicated in late S phase, and those in which centric and surrounding heterochromatin were partially or fully deleted were replicated earlier in mid S phase. We provide the first in vivo evidence that centromeric chromatin is replicated at different times in S phase. These studies indicate that incorporation of CID/CENP-A into newly duplicated centromeres is independent of replication timing and argue against determination of centromere identity by temporal sequestration of centromeric chromatin replication relative to bulk genomic chromatin.  相似文献   

20.
Major histocompatibility complex (MHC) genes in vertebrates are vital in defending against pathogenic infections. To gain new insights into the evolution of MHC Class I (MHCI) genes and test competing hypotheses on the origin of the MHCI region in eutherian mammals, we studied available genome assemblies of nine species in Afrotheria, Xenarthra, and Laurasiatheria, and successfully characterized the MHCI region in six species. The following numbers of putatively functional genes were detected: in the elephant, four, one, and eight in the extended class I region, and κ and β duplication blocks, respectively; in the tenrec, one in the κ duplication block; and in the four bat species, one or two in the β duplication block. Our results indicate that MHCI genes in the κ and β duplication blocks may have originated in the common ancestor of eutherian mammals. In the elephant, tenrec, and all four bats, some MHCI genes occurred outside the MHCI region, suggesting that eutherians may have a more complex MHCI genomic organization than previously thought. Bat‐specific three‐ or five‐amino‐acid insertions were detected in the MHCI α1 domain in all four bats studied, suggesting that pathogen defense in bats relies on MHCIs having a wider peptide‐binding groove, as previously assayed by a bat MHCI gene with a three‐amino‐acid insertion showing a larger peptide repertoire than in other mammals. Our study adds to knowledge on the diversity of eutherian MHCI genes, which may have been shaped in a taxon‐specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号