首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The covalent attachment of ubiquitin to proteins regulates numerous processes in eukaryotic cells. Here we report the identification of 753 unique lysine ubiquitylation sites on 471 proteins using higher-energy collisional dissociation on the LTQ Orbitrap Velos. In total 5756 putative ubiquitin substrates were identified. Lysine residues targeted by the ubiquitin-ligase system show no unique sequence feature. Surface accessible lysine residues located in ordered secondary regions, surrounded by smaller and positively charged amino acids are preferred sites of ubiquitylation. Lysine ubiquitylation shows promiscuity at the site level, as evidenced by low evolutionary conservation of ubiquitylation sites across eukaryotic species. Among lysine modifications a significant overlap (20%) between ubiquitylation and acetylation at site level highlights extensive competitive crosstalk among these modifications. This site-specific crosstalk is not prevalent among cell cycle ubiquitylations. Between SUMOylation and ubiquitylation the preferred interaction is through mixed-chain conjugation. Overall these data provide novel insights into the site-specific selection and regulatory function of lysine ubiquitylation.  相似文献   

2.
In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF(Skp2) substrate p27(Kip1). CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.  相似文献   

3.
Ubiquitin (Ub) and the ubiquitin‐like proteins (Ubls) comprise a remarkable assortment of polypeptides that are covalently conjugated to target proteins (or other biomolecules) to modulate their intracellular localization, half‐life, and/or activity. Identification of Ub/Ubl conjugation sites on a protein of interest can thus be extremely important for understanding how it is regulated. While MS has become a powerful tool for the study of many classes of PTMs, the identification of Ub/Ubl conjugation sites presents a number of unique challenges. Here, we present an improved Ub/Ubl conjugation site identification strategy, utilizing SUMmOn analysis and an additional protease (lysyl endopeptidase C), as a complement to standard approaches. As compared with standard trypsin proteolysis‐database search protocols alone, the addition of SUMmOn analysis can (i) identify Ubl conjugation sites that are not detected by standard database searching methods, (ii) better preserve Ub/Ubl conjugate identity, and (iii) increase the number of identifications of Ub/Ubl modifications in lysine‐rich protein regions. Using this methodology, we characterize for the first time a number of novel Ubl linkages and conjugation sites, including alternative yeast (K54) and mammalian small ubiquitin‐related modifier (SUMO) chain (SUMO‐2 K42, SUMO‐3 K41) assemblies, as well as previously unreported NEDD8 chain (K27, K33, and K54) topologies.  相似文献   

4.
Despite the diverse biological pathways known to be regulated by ubiquitylation, global identification of substrates that are targeted for ubiquitylation has remained a challenge. To globally characterize the human ubiquitin-modified proteome (ubiquitinome), we utilized a monoclonal antibody that recognizes diglycine (diGly)-containing isopeptides following trypsin digestion. We identify ~19,000 diGly-modified lysine residues within ~5000 proteins. Using quantitative proteomics we monitored temporal changes in diGly site abundance in response to both proteasomal and translational inhibition, indicating both a dependence on ongoing translation to observe alterations in site abundance and distinct dynamics of individual modified lysines in response to proteasome inhibition. Further, we demonstrate that quantitative diGly proteomics can be utilized to identify substrates for cullin-RING ubiquitin ligases. Interrogation of the ubiquitinome allows for not only a quantitative assessment of alterations in protein homeostasis fidelity, but also identification of substrates for individual ubiquitin pathway enzymes.  相似文献   

5.
The intracellular level of p27(Kip1), a cyclin-dependent kinase (CDK) inhibitory protein, is rapidly reduced at the G1/S transition phase when the cell cycle pause ceases. In this study, we demonstrated that two posttranslational mechanisms were involved in p27(Kip1) breakdown: degradation via the ubiquitin (Ub)-proteasome pathway and proteolytic processing that rapidly eliminates the cyclin-binding domain. We confirmed that p27(Kip1) was ubiquitinated in vitro as well as in vivo. The p27(Kip1) -ubiquitination activity was higher at the G1/S boundary than during the G0/G1 phase, and p27(Kip1) ubiquitination was reduced significantly when the lysine residues at positions 134, 153, and 165 were replaced by arginine, suggesting that these lysine residues are the targets for Ub conjugation. In parallel with its Ub-dependent degradation, p27(Kip1) was processed rapidly at its N terminus, reducing its molecular mass from 27 to 22 kDa, by a ubiquitination-independent but adenosine triphosphate (ATP)-dependent mechanism with higher activity during the S than the G0/G1 phase. This 22-kDa intermediate had no cyclin-binding domain at its N terminus and virtually no CDK2 kinase inhibitory activity. These results suggest that p27(Kip1) is eliminated by two independent mechanisms, ubiquitin-mediated degradation and ubiquitin-independent processing, during progression from the G1 to S phase.  相似文献   

6.
Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signalling and repair proteins to the site of lesion. Protein modification with ubiquitin is crucial for the signalling cascade, but how ubiquitylation coordinates the dynamic assembly of these complexes is poorly understood. Here, we show that the human ubiquitin-selective protein segregase p97 (also known as VCP; valosin-containing protein) cooperates with the ubiquitin ligase RNF8 to orchestrate assembly of signalling complexes and efficient DSB repair after exposure to ionizing radiation. p97 is recruited to DNA lesions by its ubiquitin adaptor UFD1-NPL4 and Lys-48-linked ubiquitin (K48-Ub) chains, whose formation is regulated by RNF8. p97 subsequently removes K48-Ub conjugates from sites of DNA damage to orchestrate proper association of 53BP1, BRCA1 and RAD51, three factors critical for DNA repair and genome surveillance mechanisms. Impairment of p97 activity decreases the level of DSB repair and cell survival after exposure to ionizing radiation. These findings identify the p97-UFD1-NPL4 complex as an essential factor in ubiquitin-governed DNA-damage response, highlighting its importance in guarding genome stability.  相似文献   

7.
Conjugation of ubiquitin (Ub) to numerous substrate proteins regulates virtually all cellular processes. Eight distinct ubiquitin polymer linkages specifying different functional outcomes are generated in cells. However, the roles of some atypical poly‐ubiquitin topologies, in particular linkages via lysine 27 (K27), remain poorly understood due to a lack of tools for their specific detection and manipulation. Here, we adapted a cell‐based ubiquitin replacement strategy to enable selective and conditional abrogation of K27‐linked ubiquitylation, revealing that this ubiquitin linkage type is essential for proliferation of human cells. We demonstrate that K27‐linked ubiquitylation is predominantly a nuclear modification whose ablation deregulates nuclear ubiquitylation dynamics and impairs cell cycle progression in an epistatic manner with inactivation of the ATPase p97/VCP. Moreover, we show that a p97‐proteasome pathway model substrate (Ub(G76V)‐GFP) is directly modified by K27‐linked ubiquitylation, and that disabling the formation of K27‐linked ubiquitin signals or blocking their decoding via overexpression of the K27 linkage‐specific binder UCHL3 impedes Ub(G76V)‐GFP turnover at the level of p97 function. Our findings suggest a critical role of K27‐linked ubiquitylation in supporting cell fitness by facilitating p97‐dependent processing of ubiquitylated nuclear proteins.  相似文献   

8.
A growing number of yeast and mammalian plasma membrane proteins are reported to be modified with K63-linked ubiquitin (Ub) chains. However, the relative importance of this modification versus monoubiquitylation in endocytosis, Golgi to endosome traffic, and sorting into the multivesicular body (MVB) pathway remains unclear. In this study, we show that K63-linked ubiquitylation of the Gap1 permease is essential for its entry into the MVB pathway. Carboxypeptidase S also requires modification with a K63-Ub chain for correct MVB sorting. In contrast, monoubiquitylation of a single target lysine of Gap1 is a sufficient signal for its internalization from the cell surface, and Golgi to endosome transport of the permease requires neither its ubiquitylation nor the Ub-binding GAT (Gga and Tom1) domain of Gga (Golgi localizing, gamma-ear containing, ARF binding) adapter proteins, the latter being crucial for subsequent MVB sorting of the permease. Our data reveal that K63-linked Ub chains act as a specific signal for MVB sorting, providing further insight into the Ub code of membrane protein trafficking.  相似文献   

9.
Identification of a substrate recognition site on Ubc9   总被引:1,自引:0,他引:1  
Human Ubc9 is homologous to ubiquitin-conjugating enzymes. However, instead of conjugating ubiquitin, it conjugates a ubiquitin homologue, small ubiquitin-like modifier 1 (SUMO-1), also known as UBL1, GMP1, SMTP3, PIC1, and sentrin. The SUMO-1 conjugation pathway is very similar to that of ubiquitin with regard to the primary sequences of the ubiquitin-activating enzymes (E1), the three-dimensional structures of the ubiquitin-conjugating enzymes (E2), and the chemistry of the overall conjugation pathway. The interaction of substrates with Ubc9 has been studied using NMR spectroscopy. Peptides with sequences that correspond to those of the SUMO-1 conjugation sites from p53 and c-Jun both bind to a surface adjacent to the active site Cys93 of human Ubc9, which has been previously shown to include residues that demonstrate the most significant dynamics on the microsecond to millisecond time scale. Mutations in this region, Q126A, Q130A, A131D, E132A, Y134A, and T135A, were constructed to evaluate the role of these residues in SUMO-1 conjugation. These alterations have significant effects on the conjugation of SUMO-1 with the target proteins p53, E1B, and promyelocytic leukemia protein and define a substrate binding site on Ubc9. Furthermore, the SUMO-1 conjugation site of p53 does not form any defined secondary structure when either free or bound to Ubc9. This suggests that a defined secondary structure at SUMO-1 conjugation sites in target proteins is not necessary for recognition and conjugation by the SUMO-1 pathway.  相似文献   

10.
Post-translational modification of proteins by ubiquitin is a fundamentally important regulatory mechanism. However, proteome-wide analysis of endogenous ubiquitylation remains a challenging task, and almost always has relied on cells expressing affinity tagged ubiquitin. Here we combine single-step immunoenrichment of ubiquitylated peptides with peptide fractionation and high-resolution mass spectrometry to investigate endogenous ubiquitylation sites. We precisely map 11,054 endogenous putative ubiquitylation sites (diglycine-modified lysines) on 4,273 human proteins. The presented data set covers 67% of the known ubiquitylation sites and contains 10,254 novel sites on proteins with diverse cellular functions including cell signaling, receptor endocytosis, DNA replication, DNA damage repair, and cell cycle progression. Our method enables site-specific quantification of ubiquitylation in response to cellular perturbations and is applicable to any cell type or tissue. Global quantification of ubiquitylation in cells treated with the proteasome inhibitor MG-132 discovers sites that are involved in proteasomal degradation, and suggests a nonproteasomal function for almost half of all sites. Surprisingly, ubiquitylation of about 15% of sites decreased more than twofold within four hours of MG-132 treatment, showing that inhibition of proteasomal function can dramatically reduce ubiquitylation on many sites with non-proteasomal functions. Comparison of ubiquitylation sites with acetylation sites reveals an extensive overlap between the lysine residues targeted by these two modifications. However, the crosstalk between these two post-translational modifications is significantly less frequent on sites that show increased ubiquitylation upon proteasome inhibition. Taken together, we report the largest site-specific ubiquitylation dataset in human cells, and for the first time demonstrate proteome-wide, site-specific quantification of endogenous putative ubiquitylation sites.  相似文献   

11.
12.
Post-translational modification by small ubiquitin-like modifier 1 (SUMO-1) is a highly conserved process from yeast to humans and plays important regulatory roles in many cellular processes. Sumoylation occurs at certain internal lysine residues of target proteins via an isopeptide bond linkage. Unlike ubiquitin whose carboxyl-terminal sequence is RGG, the tripeptide at the carboxyl terminus of SUMO is TGG. The presence of the arginine residue at the carboxyl terminus of ubiquitin allows tryptic digestion of ubiquitin conjugates to yield a signature peptide containing a diglycine remnant attached to the target lysine residue and rapid identification of the ubiquitination site by mass spectrometry. The absence of lysine or arginine residues in the carboxyl terminus of mammalian SUMO makes it difficult to apply this approach to mapping sumoylation sites. We performed Arg scanning mutagenesis by systematically substituting amino acid residues surrounding the diglycine motif and found that a SUMO variant terminated with RGG can be conjugated efficiently to its target protein under normal sumoylation conditions. We developed a Programmed Data Acquisition (PDA) mass spectrometric approach to map target sumoylation sites using this SUMO variant. A web-based computational program designed for efficient identification of the modified peptides is described.  相似文献   

13.
Three different binding sites of Cks1 are required for p27-ubiquitin ligation   总被引:12,自引:0,他引:12  
Previous studies have shown that the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1) is targeted for degradation by an SCF(Skp2) ubiquitin ligase complex and that this process requires Cks1, a member of the highly conserved Suc1/Cks family of cell cycle regulatory proteins. All proteins of this family have Cdk-binding and anion-binding sites, but only mammalian Cks1 binds to Skp2 and promotes the association of Skp2 with p27 phosphorylated on Thr-187. The molecular mechanisms by which Cks1 promotes the interaction of the Skp2 ubiquitin ligase subunit to p27 remained obscure. Here we show that the Skp2-binding site of Cks1 is located on a region including the alpha2- and alpha1-helices and their immediate vicinity, well separated from the other two binding sites. All three binding sites of Cks1 are required for p27-ubiquitin ligation and for the association of Skp2 with Cdk-bound, Thr-187-phosphorylated p27. Cks1 and Skp2 mutually promote the binding of each other to a peptide similar to the 19 C-terminal amino acids of p27 containing phosphorylated Thr-187. This latter process requires the Skp2- and anion-binding sites of Cks1, but not its Cdk-binding site. It is proposed that the Skp2-Cks1 complex binds initially to the C-terminal region of phosphorylated p27 in a process promoted by the anion-binding site of Cks1. The interaction of Skp2 with the substrate is further strengthened by the association of the Cdk-binding site of Cks1 with Cdk2/cyclin E, to which phosphorylated p27 is bound.  相似文献   

14.

Background

The conjugation of ubiquitin to a substrate protein (protein ubiquitylation), which involves a sequential process – E1 activation, E2 conjugation and E3 ligation, is crucial to the regulation of protein function and activity in eukaryotes. This ubiquitin-conjugation process typically binds the last amino acid of ubiquitin (glycine 76) to a lysine residue of a target protein. The high-throughput of mass spectrometry-based proteomics has stimulated a large-scale identification of ubiquitin-conjugated peptides. Hence, a new web resource, UbiSite, was developed to identify ubiquitin-conjugation site on lysines based on large-scale proteome dataset.

Results

Given a total of 37,647 ubiquitin-conjugated proteins, including 128026 ubiquitylated peptides, obtained from various resources, this study carries out a large-scale investigation on ubiquitin-conjugation sites based on sequenced and structural characteristics. A TwoSampleLogo reveals that a significant depletion of histidine (H), arginine (R) and cysteine (C) residues around ubiquitylation sites may impact the conjugation of ubiquitins in closed three-dimensional environments. Based on the large-scale ubiquitylation dataset, a motif discovery tool, MDDLogo, has been adopted to characterize the potential substrate motifs for ubiquitin conjugation. Not only are single features such as amino acid composition (AAC), positional weighted matrix (PWM), position-specific scoring matrix (PSSM) and solvent-accessible surface area (SASA) considered, but also the effectiveness of incorporating MDDLogo-identified substrate motifs into a two-layered prediction model is taken into account. Evaluation by five-fold cross-validation showed that PSSM is the best feature in discriminating between ubiquitylation and non-ubiquitylation sites, based on support vector machine (SVM). Additionally, the two-layered SVM model integrating MDDLogo-identified substrate motifs could obtain a promising accuracy and the Matthews Correlation Coefficient (MCC) at 81.06 % and 0.586, respectively. Furthermore, the independent testing showed that the two-layered SVM model could outperform other prediction tools, reaching at 85.10 % sensitivity, 69.69 % specificity, 73.69 % accuracy and the 0.483 of MCC value.

Conclusion

The independent testing result indicated the effectiveness of incorporating MDDLogo-identified motifs into the prediction of ubiquitylation sites. In order to provide meaningful assistance to researchers interested in large-scale ubiquitinome data, the two-layered SVM model has been implemented onto a web-based system (UbiSite), which is freely available at http://csb.cse.yzu.edu.tw/UbiSite/. Two cases given in the UbiSite provide a demonstration of effective identification of ubiquitylation sites with reference to substrate motifs.
  相似文献   

15.
16.
Ubiquitination involves the attachment of ubiquitin to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Ubiquitin attachment to different lysine residues can generate diverse substrate-ubiquitin structures, targeting proteins to different fates. The mechanisms of lysine selection are not well understood. Ubiquitination by the largest group of E3 ligases, the RING-family E3 s, is catalyzed through co-operation between the non-catalytic ubiquitin-ligase (E3) and the ubiquitin-conjugating enzyme (E2), where the RING E3 binds the substrate and the E2 catalyzes ubiquitin transfer. Previous studies suggest that ubiquitination sites are selected by E3-mediated positioning of the lysine toward the E2 active site. Ultimately, at a catalytic level, ubiquitination of lysine residues within the substrate or ubiquitin occurs by nucleophilic attack of the lysine residue on the thioester bond linking the E2 catalytic cysteine to ubiquitin. One of the best studied RING E3/E2 complexes is the Skp1/Cul1/F box protein complex, SCFCdc4, and its cognate E2, Cdc34, which target the CDK inhibitor Sic1 for K48-linked polyubiquitination, leading to its proteasomal degradation. Our recent studies of this model system demonstrated that residues surrounding Sic1 lysines or lysine 48 in ubiquitin are critical for ubiquitination. This sequence-dependence is linked to evolutionarily conserved key residues in the catalytic region of Cdc34 and can determine if Sic1 is mono- or poly-ubiquitinated. Our studies indicate that amino acid determinants in the Cdc34 catalytic region and their compatibility to those surrounding acceptor lysine residues play important roles in lysine selection. This may represent a general mechanism in directing the mode of ubiquitination in E2 s.  相似文献   

17.
Dopamine levels in the brain are controlled by the plasma membrane dopamine transporter (DAT). The amount of DAT at the cell surface is determined by the relative rates of its internalization and recycling. Activation of protein kinase C (PKC) leads to acceleration of DAT endocytosis. We have recently demonstrated that PKC activation also results in ubiquitylation of DAT. To directly address the role of DAT ubiquitylation, lysine residues in DAT were mutated. Mutations of each lysine individually did not affect ubiquitylation and endocytosis of DAT. By contrast, ubiquitylation of mutants carrying multiple lysine substitutions was reduced in cells treated with phorbol ester to the levels detected in nonstimulated cells. Altogether, mutagenesis data suggested that Lys19, Lys27, and Lys35 clustered in the DAT amino-terminus are the major ubiquitin-conjugation sites. The data are consistent with the model whereby at any given time only one of the lysines in DAT is conjugated with a short ubiquitin chain. Importantly, cell surface biotinylation, immunofluorescence and down-regulation experiments revealed that PKC-dependent internalization of multilysine mutants was essentially abolished. These data provide the first evidence that the ubiquitin moieties conjugated to DAT may serve as a molecular interface of the transporter interaction with the endocytic machinery.  相似文献   

18.
The ubiquitin-like protein NEDD8 is highly conserved in eukaryotes, from man to Schizosaccharomyces pombe. NEDD8 conjugation to cullin proteins is a prerequisite for cullin based E3 ubiquitin ligase activity, and essential for S. pombe viability. Here, we have performed alanine scanning mutagenesis of all conserved surface residues and show that the majority of essential residues were located around the hydrophobic patch and the C-terminus. However, we further identified essential residues not previously reported to be involved in ubiquitin ligase regulation that importantly do not prevent Ned8p conjugation. We also find that mutation of all conserved lysine residues in Ned8p, did not affect yeast viability, suggesting that mono-neddylation is sufficient for yeast viability under most conditions.  相似文献   

19.
GGAs (Golgi-localizing, gamma-adaptin ear domain homology, ADP-ribosylation factor (ARF)-binding proteins), constitute a family of monomeric adaptor proteins and are associated with protein trafficking from the trans-Golgi network to endosomes. Here, we show that GGA3 is monoubiquitylated by a RING-H2 type-ubiquitin ligase hVPS18 (human homologue of vacuolar protein sorting 18). By in vitro ubiquitylation assays, we have identified lysine 258 in the GAT domain as a major ubiquitylation site that resides adjacent to the ubiquitin-binding site. The ubiquitylation is abolished by a mutation in either the GAT domain or ubiquitin that disrupts the GAT-ubiquitin interaction, indicating that the ubiquitin binding is a prerequisite for the ubiquitylation. Furthermore, the GAT domain ubiquitylated by hVPS18 no longer binds to ubiquitin, indicating that ubiquitylation negatively regulates the ubiquitin-binding ability of the GAT domain. These results suggest that the ubiquitin binding and ubiquitylation of GGA3-GAT domain are mutually inseparable through a ubiquitin ligase activity of hVPS18.  相似文献   

20.
In eukaryotic cells, ubiquitylation of proteins plays a critical role in regulating diverse cell processes by the ubiquitin activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin protein ligase (E3). E3 is the key component that confers specificity to ubiquitylation and directs the conjugation of ubiquitin to a specific target protein. RING domains are small structured protein domains that require the coordination of zinc ions for a stable tertiary fold and some of them are involved in the E3 family. In this study, we reported the detailed relationships between the two zinc ions and the structural stability of the c-Cbl RING domain by molecular dynamics simulations. Our results show that these two zinc ions play an important role in maintaining both the secondary and tertiary structural stabilities of the c-Cbl RING domain. Our results also reveal that the secondary structural stability of the c-Cbl RING domain is mainly determined by the hydrogen-bonding networks in or near the two zinc ion binding sites. Our results further demonstrate that zinc ion binding site 2 is more structurally stable than site 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号