首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
(R)-N-[4,4-Bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid (NO 328) has previously been shown to be a potent anticonvulsant in both mice and rats. Here, we report that NO 328 is a potent inhibitor of gamma-[3H]aminobutyric acid [( 3H]GABA) uptake in a rat forebrain synaptosomal preparation (IC50 = 67 nM) and in primary cultures of neurons and astrocytes. Inhibition of [3H]GABA uptake by NO 328 is apparently of a mixed type when NO 328 is preincubated before [3H]GABA uptake; the inhibition is apparently competitive without preincubation. NO 328 itself is not a substrate for the GABA uptake carrier, but NO 328 is a selective inhibitor of [3H]GABA uptake. Binding to benzodiazepine receptors, histamine H1 receptors, and 5-hydroxytryptamine1A receptors was inhibited by NO 328 at 5-30 microM, whereas several other receptors and uptake sites were unaffected. [3H]NO 328 showed saturable and reversible binding to rat brain membranes in the presence of NaCl. The specific binding of [3H]NO 328 was inhibited by known inhibitors of [3H]GABA uptake; GABA and the cyclic amino acid GABA uptake inhibitors were, however, less potent than expected. This indicates that the binding site is not identical to, but rather overlapping with, the GABA recognition site of the uptake carrier. The affinity constant for binding of [3H]NO 328 is 18 nM, and the Bmax is 669 pmol/g of original rat forebrain tissue. The regional distribution of NaCl-dependent [3H]NO 328 binding followed that of synaptosomal [3H]GABA uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The presence of two heterologous alpha subunits and a single benzodiazepine binding site in the GABA(A) receptor implicates the existence of pharmacologically active and inactive alpha subunits. This fact raises the question of whether a particular alpha subtype could predominate performing the benzodiazepine binding site. The hippocampal formation expresses high levels of alpha subunits with different benzodiazepine binding properties (alpha1, alpha2 and alpha5). Thus, we first demonstrated the existence of alpha2-alpha1 (36.3 +/- 5.2% of the alpha2 population) and alpha2-alpha5 (20.2 +/- 2.1%) heterologous receptors. A similar alpha2-alpha1 association was observed in cortex. This association allows the direct comparison of the pharmacological properties of heterologous native GABA(A) receptors containing a common (alpha2) and a different (alpha1 or alpha5) alpha subunit. The alpha2 subunit pharmacologically prevailed over the alpha1 subunit in both cortex and hippocampus (there was an absence of high-affinity binding sites for Cl218,872, zolpidem and [3H]zolpidem). This prevalence was directly probed by zolpidem displacement experiments in alpha2-alpha1 double immunopurified receptors (K(i) = 295 +/- 56 nM and 200 +/- 8 nM in hippocampus and cortex, respectively). On the contrary, the alpha5 subunit pharmacologically prevailed over the alpha2 subunit (low- and high-affinity binding sites for zolpidem and [3H]L-655,708, respectively). This prevalence was probed in alpha2-alpha5 double immunopurified receptors. Zolpidem displayed a single low-affinity binding site (K(i) = 1.73 +/- 0.54 microM). These results demonstrated the existence of a differential dominance between the different alpha subunits performing the benzodiazepine binding sites in the native GABA(A) receptors.  相似文献   

3.
Benzodiazepine receptors on human blood platelets   总被引:3,自引:0,他引:3  
Binding studies conducted on membrane preparation from human platelets using (3H) Ro5-4864 and (3H) diazepam showed specific and saturable binding. Scatchard analysis revealed a single class of binding sites with KD = 10.8 +/- 0.9 nM and Bmax = 775 +/- 105 fmol/mg protein for (3H) Ro5-4864 and KD = 10.5 +/- 1.1 nM and Bmax = 133 +/- 19 fmol/mg for (3H) diazepam. We were unable to detect any GABA binding site on crude membrane preparation, nor did GABA enhance the binding of (3H) Ro5-4864 or (3H) diazepam. This suggests that benzodiazepine receptors are uncoupled to GABA system on human platelets. Ro15-1788, a specific antagonist for "central type" benzodiazepine (BDZ) binding sites was inactive in displacing (3H) Ro5-4864 from membrane receptors, while PK 11195 (a specific ligand for the "peripheral type" receptor) was the most potent of the drugs tested in inhibiting (3H) Ro5-4864 binding. These results indicate that human blood platelets bear "peripheral-type" BDZ receptor. Moreover, we could not detect any (3H) propyl beta carboline specific binding on platelet membranes. Results on benzodiazepine receptors on human circulating lymphocytes are also reported and similarity in pharmacological properties with platelet benzodiazepine receptors is suggested.  相似文献   

4.
DMCM (methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate) produces convulsions in mice and rats, probably by interacting with benzodiazepine (BZ) receptors. Investigation of specific binding of [3H]DMCM to rat hippocampus and cortex revealed polyphasic saturation curves, indicating a high-affinity site (KD = 0.5-0.8 nM) and a site with lower affinity (KD = 3-6 nM). BZ receptor ligands of various chemical classes, but not other agents, displace [3H]DMCM from specific binding sites--indicating that [3H]DMCM binds to BZ receptors in rat brain. The regional distribution of [3H]DMCM binding is complementary to that of the BZ1-selective radioligand [3H]PrCC. Specific binding of [3H]DMCM (0.1 nM) was reduced by gamma-aminobutyric acid (GABA) receptor agonist to approximately 20% of the control value at 37 degrees C in chloride-containing buffers; the reduction was bicuculline methiodide- and RU 5135-sensitive. The effective concentrations of 10 GABA analogues in reducing [3H]DMCM binding correlated closely to published values for their GABA receptor affinity. Specific binding of [3H]DMCM is regulated by unknown factors; e.g. enhanced binding was found by Ag+ treatment of membranes, in the presence of picrotoxinin, or by exposure to ultraviolet light in the presence of flunitrazepam. In conclusion, [3H]DMCM appears to bind to high-affinity brain BZ receptors, although the binding properties are different from those of [3H]flunitrazepam and [3H]PrCC. These differences might relate in part to subclass selectivity and in part to differences in efficacy of DMCM at BZ receptors.  相似文献   

5.
The specific binding of [N-methyl-3H]flunitrazepam ([3H]FNZP) to a membrane fraction from the supraoesophageal ganglion of the locust (Schistocerca gregaria) has been measured. The ligand binds reversibly with a KD of 47 nM. The binding is Ca2+-dependent, a property not found for the equivalent binding site in vertebrate brain. The pharmacological characteristics of the locust binding site show similarities to both central and peripheral benzodiazepine receptors in mammals. Thus binding is enhanced by gamma-aminobutyric acid (GABA), a feature of mammalian central receptors, whereas the ligand Ro 5-4864 was more effective in displacing [3H]FNZP than was clonazepam, which is the pattern seen in mammalian peripheral receptors. The locust benzodiazepine binding site was photoaffinity-labelled by [3H]FNZP, and two major proteins of Mr 45K and 59K were specifically labelled. In parallel experiments with rat brain membranes a single major protein of Mr 49K was labelled, a finding in keeping with many reports in the literature. We suggest that the FNZP binding site described here is part of the GABA receptor complex of locust ganglia. The insect receptor appears to have the same general organization as its mammalian counterpart but differs significantly in its detailed properties.  相似文献   

6.
A series of 5-, 6-, 7- and 8-aza analogues of 3-aryl-4-hydroxyquinolin-2(1H)-one was synthesized and assayed as NMDA/glycine receptor antagonists. The in vitro potency of these antagonists was determined by displacement of the glycine site radioligand [(3)H]5,7-dicholorokynurenic acid ([(3)H]DCKA) in rat brain cortical membranes. Selected compounds were also tested for functional antagonism using electrophysiological assays in Xenopus oocytes expressing cloned NMDA receptor (NR) 1A/2C subunits. Among the 5-, 6-, 7-, and 8-aza-3-aryl-4-hydroxyquinoline-2(1H)-ones investigated, 5-aza-7-chloro-4-hydroxy-3-(3-phenoxyphenyl)quinolin-2-(1H)-one (13i) is the most potent antagonist, having an IC(50) value of 110 nM in [(3)H]DCKA binding and a K(b) of 11 nM in the electrophysiology assay. Compound 13i is also an active anticonvulsant when administered systemically in the mouse maximum electroshock-induced seizure test (ED(50)=2.3mg/kg, IP).  相似文献   

7.
In vitro effects of dihydroergotoxine, dihydroergosine, dihydroergotamine, alpha-dihydroergocriptine (ergot alkaloids), diazepam, methyl-beta-Carboline-3-carboxilate (beta-CCM), flumazenil (benzodiazepines), gamma-amino butyric acid (GABA) and thiopental (barbiturate) were studied on mouse brain (cerebrum minus cerebral cortex) benzodiazepine binding sites labeled with 3H-flunitrazepam. Specific, high affinity (affinity constant, Kd = 57.7 8.6 nM) binding sites for 3H-flunitrazepam on mouse brain membranes were identified. All benzodiazepine drugs inhibited 3H-flunitrazepam binding with nanomolar potencies. In contrast to benzodiazepines, all ergot drugs, GABA and thiopental produced an enhancement of 3H-flunitrazepam binding to its binding site at the GABAA receptor of the mouse brain. The rank order of potency was: neurotransmitter (GABA) > dihydroergotoxine > thiopental > alpha-dihydroergocriptine > dihydroergosine > dihydroergotamine. The results suggest that dihydrogenated ergot derivatives do not bind to the brain benzodiazepine binding sites labeled with 3H-flunitrazepam. However, an enhancement of 3H-flunitrazepam binding by all ergot drugs tested, clearly identifies an allosteric interaction with the benzodiazepine binding sites of GABAA receptors.  相似文献   

8.
The effect of gamma-aminobutyric acid (GABA) on the binding of PK 8165, a quinoline derivative, and CGS 8216, a pyrazoloquinoline, was assessed in two different regions of the rat brain. PK 8165, a compound with reported anxiolytic properties, inhibited [3H]-propyl beta-carboline-3-carboxylate labeled receptors in the cerebellum with an IC50 of 844 nM and 370 nM in the absence and presence of micro M GABA, respectively. GABA (100 micro M) was less effective in the cerebral cortex, decreasing the IC50 value from 280 to 197 nM. In saturation isotherm studies with [3H]-CGS 8216, a benzodiazepine receptor antagonist, GABA (100 micro M) induced a small but significant reduction in the apparent affinity of [3H]-CGS 8216 for benzodiazepine receptors in the cerebral cortex but the Bmax was unchanged.  相似文献   

9.
6,3'-dibromoflavone and 6-nitro-3'-bromoflavone inhibited [(3)H]flunitrazepam binding to the benzodiazepine binding site of the gamma amino butyric acid receptor complex with K(i) values between 17 and 36 nM in different brain regions. Their gamma amino butyric acid ratio for [(3)H]flunitrazepam binding to cerebral cortex membranes indicated partial agonistic properties. Both compounds had similar pharmacological effects: they produced anxiolytic-like effects at low doses but did not alter locomotor activity or muscle tonicity; sedation was caused only at doses higher than 30 mg/kg in mice. These synthetic flavone derivatives join an existing family of 6,3'-disubstituted flavone compounds with high affinity for the benzodiazepine binding site and partial agonistic profiles.  相似文献   

10.
Structure-activity relationships of 2-phenyl-imidazo[2,1-i]purin-5-ones as ligands for human A(3) adenosine receptors (ARs) were investigated. An ethyl group in the 8-position of the imidazoline ring of 4-methyl-2-phenyl-imidazopurinone leading to chiral compounds was found to increase affinity for human A(3) ARs by several thousand-fold. Propyl substitution instead of methyl at N4 decreased A(3) affinity but increased A(1) affinity leading to potent A(1)-selective AR antagonists. The most potent A(1) antagonist of the present series was (S)-8-ethyl-2-phenyl-4-propyl-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one (S-3) exhibiting a K(i) value of 7.4 nM at rat A(1) ARs and greater than 100-fold selectivity versus rat A(2A) and human A(3) ARs. At human A(1) ARs 2-phenylimidazo[2,1-i]purin-5-ones were generally less potent and therefore less A(1)-selective (S-3: K(i)=98 nM). 2-, 3-, or 4-Mono-chlorination of the 2-phenyl ring reduced A(3) affinity but led to an increase in affinity for A(1) ARs, whereas di- (3,4-dichloro) or polychlorination (2,3,5-trichloro) increased A(3) affinity. The most potent and selective A(3) antagonist of the present series was the trichlorophenyl derivative (R)-8-ethyl-4-methyl-2-(2,3,5-trichlorophenyl)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one (R-8) exhibiting a subnanomolar K(i) value at human A(3) ARs and greater than 800-fold selectivity versus the other AR subtypes. Methylation of 4-alkyl-2-phenyl-substituted imidazo[2,1-i]purin-5-ones led exclusively to the N9-methyl derivatives, which exhibited largely reduced AR affinities as compared to the unmethylated compounds. [35S]GTP gamma S binding studies of the most potent 2-phenyl-imidazo[2,1-i]purin-5-ones at membranes of Chinese hamster ovary cells expressing the human A(3) AR revealed that the compounds were inverse agonists at A(3) receptors under standard test conditions. Due to their high A(3) affinity, selectivity, and relatively high water-solubility, 2-phenyl-imidazo[2,1-i]purin-5-ones may become useful research tools.  相似文献   

11.
Ethyl beta-carboline-3-carboxylate has recently been isolated from human urine and it was proposed that derivatives of this compound might be related to an endogenous ligand for benzodiazepine receptors. In the present study we investigated high-affinity binding of [3H]propyl beta-carboline-3-carboxylate ([3H]PrCC) to rat brain membranes. [3H]PrCC binds specifically and with high affinity (half-maximal binding at ca. 1nM) to rat brain membranes. The regional and subcellular distributions of specific [3H]PrCC binding are similar, but not identical, to the distributions of [3H]flunitrazepam or [3H]-diazepam binding. The total numbers of binding sites labelled by [3H]PrCC and [3H]flunitrazepam in rat cerebellum are closely similar, and both ligands bind to cerebellar membranes in a mutually exclusive way. The pharmacological selectivity of [3H]PrCC and [3H]diazepam binding is almost identical. Binding of [3H]PrCC like binding of [3H]diazepam, can be increased in vitro by muscimol, GABA and SQ 20.009. Although subtle differences in binding characteristics were observed, these results indicate that [3H]PrCC and benzodiazepines bind to a common recognition site on benzodiazepine receptors.  相似文献   

12.
Pyrazole 2a is a novel, potent ligand for insect GABA receptors obtained from housefly head membrane preparations (K(i)=8 nM). It is 500-fold selective against the mammalian receptor (mouse brain preparations). Its specifically tritiated version (2b) was synthesized by reduction of disulfide 10 with NaBH(4) followed by alkylation with [3H(3)]-CH(3)I.  相似文献   

13.
Inherited congenital myoclonus (ICM) of Poll Hereford cattle is a neurological disease in which there are severe alterations in spinal cord glycine-mediated neurotransmission. There is a specific and marked decrease, or defect, in glycine receptors and a significant increase in neuronal (synaptosomal) glycine uptake. Here we have examined the characteristics of the cerebral gamma-aminobutyric acid (GABA) receptor complex, and demonstrate that the malfunction of the spinal cord inhibitory system is accompanied by a change in the major inhibitory system in the cerebral cortex. In synaptic membrane preparations from ICM calves, both high-and low-affinity binding sites for the GABA agonist [3H]muscimol were found (KD = 9.3 +/- 1.5 and 227 +/- 41 nM, respectively), whereas only the high-affinity site was detectable in controls (KD = 14.0 +/- 3.1 nM). The density and affinity of benzodiazepine agonist binding sites labelled by [3H]diazepam were unchanged, but there was an increase in GABA-stimulated benzodiazepine binding. The affinity for t-[3H]butylbicyclo-o-benzoate, a ligand that binds to the GABA-activated chloride channel, was significantly increased in ICM brain membranes (KD = 148 +/- 14 nM) compared with controls (KD = 245 +/- 33 nM). Muscimol-stimulated 36Cl- uptake was 12% greater in microsacs prepared from ICM calf cerebral cortex, and the uptake was more sensitive to block by the GABA antagonist picrotoxin. The results show that the characteristics of the GABA receptor complex in ICM calf cortex differ from those in cortex from unaffected calves, a difference that is particularly apparent for the low-affinity, physiologically relevant GABA receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Specific binding of [3H]diazepam at a free concentration of 2 nM was found to be maximally potentiated by 117% in Tris-HCl buffer and 160% in Tris-citrate buffer by ethylenediamine (EDA), but only at relatively high concentrations of EDA (ED50 = 5 X 10(-5) M), although this potentiation was susceptible to a low dose (6 microM) of bicuculline. Dose-response curves show that EDA differs from GABA with respect to both potency and efficacy. In additivity experiments no evidence was found that EDA could act as a partial agonist at GABA receptors, and it was concluded that EDA and GABA apparently do not potentiate [3H]diazepam binding by acting on the same receptor. Scatchard analysis lends support to this hypothesis, indicating that the potentiation of [3H]diazepam binding by 3.16 X 10(-3) M EDA is due to an increase in receptor number (from 930 to 1170 fmol/mg protein) and not receptor affinity (remaining constant about 20 nM). Subsequent studies showed the potentiation to be reversible. It is concluded that EDA can act on the GABA-benzodiazepine receptor ionophore complex but that this is probably not a direct action on the GABA receptor. It is suggested that EDA can be used to differentiate GABA receptors linked to benzodiazepine receptors from those not so linked.  相似文献   

15.
The binding of [3H]diazepam to cell homogenates of embryonic rat brain neurons grown in culture was examined. Under the conditions used to prepare and maintain these neurons, only a single, saturable, high-affinity binding site was observed. The binding of [3H]diazepam was potently inhibited by the CNS-specific benzodiazepine clonazepam (Ki = 0.56 +/- 0.08 nM) but was not affected by the peripheral-type receptor ligand Ro5-4864. The KD for [3H]diazepam bound specifically to cell homogenates was 2.64 +/- 0.24 nM, and the Bmax was 952 +/- 43 fmol/mg of protein. [3H]Diazepam binding to cell membranes washed three times was stimulated dose-dependently by gamma-aminobutyric acid (GABA), reaching 112 +/- 7.5% above control values at 10(-4) M. The rank order for potency of drug binding to the benzodiazepine receptor site in cultured neurons was clonazepam greater than diazepam greater than beta-carboline-3-carboxylate ethyl ester greater than Ro15-1788 greater than CL218,872 much greater than Ro5-4864. The binding characteristics of this site are very similar to those of the Type II benzodiazepine receptors present in rat brain. These data demonstrate that part, if not all, of the benzodiazepine-GABA-chloride ionophore receptor complex is being expressed by cultured embryonic rat brain neurons in the absence of accompanying glial cells and suggest that these cultures may serve as a model system for the study of Type II benzodiazepine receptor function.  相似文献   

16.
[3H]Strychnine binding to rat pons + medulla membranes was used as a measure of glycine receptors or glycine receptor-coupled chloride channels in vitro. A series of compounds structurally related to 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), which previously were shown to antagonize glycine responses in cat spinal cord, inhibited [3H]strychnine binding in micromolar concentrations. The most potent of these glycine antagonists, 5,6,7,8-tetrahydro-4H-isoxazolo[3,4-d]azepin-3-ol (iso-THAZ), was also the most potent inhibitor of [3H]strychnine binding, with a Ki of 1,400 nM. The Ki value for strychnine was 7.0 nM, whereas the Ki value for the mixed gamma-aminobutyric acid (GABA)/glycine antagonist 3 alpha-hydroxy-16-imino-5 beta-17-aza-androstan-11-one (RU 5135) was only 4.6 nM. Sodium chloride (1,000 mM) enhanced the affinity of strychnine, brucine, isostrychnine, and the nonselective GABA antagonist pitrazepin for [3H]strychnine binding sites, whereas the affinities of glycine, beta-alanine, and taurine were reduced. These sodium chloride shifts, however, were not predictive of antagonist or agonist properties, since the sodium chloride shift for the glycine antagonist iso-THAZ and of the other THIP-related antagonists were similar to those of the glycine-like agonists. The various sodium chloride shifts show that different groups of ligands bind to glycine receptor sites in different ways.  相似文献   

17.
Protoporphyrinogen oxidase (Protox, EC 1.3.3.4) has attracted great interest during the last decades due to its unique biochemical characteristics and biomedical significance. As a continuation of our research work on the development of new PPO inhibitors, 23 new 1,3,4-thiadiazol-2(3H)-ones bearing benzothiazole substructure were designed and synthesized. The in vitro assay indicated that the newly synthesized compounds 1a-w displayed good inhibition activity against human PPO (hPPO) with K(i) values ranging from 0.04μM to 245μM. To the knowledge, compound 1a, O-ethyl S-(5-(5-(tert-butyl)-2-oxo-1,3,4-thiadiazol-3(2H)-yl)-6-fluorobenzothiazol-2-yl)carbonothioate, with the K(i) value of 40nM, is so far known as the most potent inhibitor against hPPO. Based on the molecular docking and modified molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) calculations, the quantitative structure-activity relationships of 1,3,4-thiadiazol-2(3H)-ones and 1,3,4-oxadiazol-2(3H)-one derivatives were established with excellent correlation relationships (r(2)=0.81) between the calculated and experimental binding free energies. Some important insights were also concluded for guiding the future rational design of new hPPO inhibitors with improved potency.  相似文献   

18.
A series of substituted 3,4-dihydronaphthalen-1(2H)-ones with high binding affinity for the benzodiazepine site of GABAA receptors containing the alpha5-subunit has been identified. These compounds have consistently higher binding affinity for the GABAA alpha5 receptor subtype over the other benzodiazepine-sensitive GABAA receptor subtypes (alpha1, alpha2 and alpha3). Compounds with a range of efficacies for the benzodiazepine site of alpha5-containing GABAA receptors were identified, including the alpha5 inverse agonist 3,3-dimethyl-8-methylthio-5-(pyridin-2-yl)-3,4-dihydronaphthalen-1(2H)-one 22 and the alpha5 agonist 8-ethylthio-3-methyl-5-(1-oxidopyridin-2-yl)-3,4-dihydronaphthalen-1(2H)-one 19.  相似文献   

19.
The equilibrium binding parameters of the benzodiazepine antagonist [3H]Ro 15-1788 (8-fluoro-3-carboethoxy-5,6-dihydro-5-methyl-6-oxo-4H-imidazol-[1,5-a]-1,4 benzodiazepine) were evaluated in brain membranes of the saltwater teleost fish, Mugil cephalus. To test receptor subtype specificity, displacement studies were carried out by competitive binding of [3H]Ro 15-1788 against six benzodiazepine receptor ligands, flunitrazepam [5-(2-fluoro-phenyl)-1,3-dihydro-1-methyl-7-nitro-2H-1,4-benzodiazepin-2-one], alpidem [N,N-dipropyl-6-chloro-2-(4-chlorophenyl)imidazo[1,2-a]pyridine-3-acetamide], zolpidem [N,N-6 trimethyl-2-(4-methyl-phenyl)imidazo[1,2-a]pyridine-3-acetamide hemitartrate], and beta-CCM (methyl beta-carboline-3-carboxylate). Saturation studies showed that [3H]Ro 15-1788 bound saturatably, reversibly and with a high affinity to a single class of binding sites (Kd value of 1.18-1.5 nM and Bmax values of 124-1671 fmol/mg of protein, depending on brain regions). The highest concentration of benzodiazepine recognition sites labeled with [3H]Ro 15-1788 was present in the optic lobe and the olfactory bulb and the lowest concentration was found in the medulla oblongata, cerebellum and spinal cord. The rank order of displacement efficacy of unlabelled ligands observed suggested that central-type benzodiazepine receptors are present in one class of binding sites (Type I-like) in brain membranes of Mugil cephalus. Moreover, the uptake of 36Cl- into M. cephalus brain membrane vesicles was only marginally stimulated by concentrations of GABA that significantly enhanced the 36Cl- uptake into mammalian brain membrane vesicles. The results may indicate a different functional activity of the GABA-coupled chloride ionophore in the fish brain as compared with the mammalian brain.  相似文献   

20.
The hypnotic triazolam (TZ), a triazolobenzodiazepine displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. Our major objectives were the direct measurement of the temperature dependence and the gamma-aminobutyric acid (GABA) effect of [3H]TZ binding in the rat brain. Saturation studies showed a shift to lower affinity with increasing temperatures (Kd = 0.27 +/- 08 nM at 0 degree C; Kd = 1.96 +/- 0.85 nM at 37 degrees C) while the Bmax values remained unchanged (1220 +/- 176 fmoles/mg protein at 0 degree C and 1160 +/- 383 fmoles/mg protein at 37 degrees C). Saturation studies of [3H]TZ binding in the presence or absence of GABA (100 microM) showed a GABA-shift. At 0 degrees C the Kd values were (Kd = 0.24 +/- 0.03 nM/-GABA; Kd = 0.16 +/- 0.04/+GABA) and at 37 degrees C the Kd values were (Kd = 1.84 +/- 0.44 nM/-GABA; Kd = 0.95 +/- 0.29 nM/+GABA). In contrast to reported literature, our findings show that TZ interacts with benzodiazepine receptors with a temperature dependence and GABA-shift consistent with predicted behavior for benzodiazepine agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号