首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Achondroplasia is the most common genetic form of human dwarfism, for which there is presently no effective therapy. C-type natriuretic peptide (CNP) is a newly identified molecule that regulates endochondral bone growth through GC-B, a subtype of particulate guanylyl cyclase. Here we show that targeted overexpression of CNP in chondrocytes counteracts dwarfism in a mouse model of achondroplasia with activated fibroblast growth factor receptor 3 (FGFR-3) in the cartilage. CNP prevented the shortening of achondroplastic bones by correcting the decreased extracellular matrix synthesis in the growth plate through inhibition of the MAPK pathway of FGF signaling. CNP had no effect on the STAT-1 pathway of FGF signaling that mediates the decreased proliferation and the delayed differentiation of achondroplastic chondrocytes. These results demonstrate that activation of the CNP-GC-B system in endochondral bone formation constitutes a new therapeutic strategy for human achondroplasia.  相似文献   

2.
Fibroblast growth factor 2 (FGF-2) has been found to play an anti-anabolic and/or a catabolic role in adult human articular cartilage via regulation of multiple signaling pathways. Upon FGF-2 stimulation, a molecular crosstalk between the mitogen activated protein kinase (MAPK) and protein kinase C δ (PKCδ) pathways are initiated, where PKCδ positively regulates downstream MAPK signaling. In this study, we explored the relationship between fibroblast growth factor receptor 1 (FGFR1), Ras, and PKCδ in FGF-2 signaling in human articular chondrocytes. Pathway-specific inhibition using both chemical inhibitors and siRNA targeting FGFR1 demonstrated that, upon FGF-2 stimulation, FGFR1 controlled both Ras and PKCδ activation, which converged on the Raf-MEK1/2-ERK1/2 axis. No crosstalk was observed between Ras and PKCδ. Quantitative PCR analyses revealed that both Ras and PKCδ contributed to FGF-2-mediated upregulation of MMP-13, ADAMTS5, and repression of aggrecan gene. Correspondingly, FGF-2-mediated proteoglycan loss was effectively reversed by individual pathway-specific inhibitor of Ras, PKCδ, and ERK1/2 in both 3-dimensional alginate bead culture and cartilage organ culture systems. Our findings suggest that FGFR1 interacts with FGF-2 and then activates Ras and PKCδ, which concertedly drive MAPK signaling to mediate biological effects of FGF-2. Such an integration of dual inputs constitutes a novel mechanism of FGF-2 signaling cascade in human articular chondrocytes.  相似文献   

3.
Fibroblast growth factors (FGFs) and their receptors (FGFRs) play significant roles in vertebrate organogenesis and morphogenesis. FGFR3 is a negative regulator of chondrogenesis and multiple mutations with constitutive activity of FGFR3 result in achondroplasia, one of the most common dwarfisms in humans, but the molecular mechanism remains elusive. In this study, we found that chondrocyte-specific deletion of BMP type I receptor a (Bmpr1a) rescued the bone overgrowth phenotype observed in Fgfr3 deficient mice by reducing chondrocyte differentiation. Consistently, using in vitro chondrogenic differentiation assay system, we demonstrated that FGFR3 inhibited BMPR1a-mediated chondrogenic differentiation. Furthermore, we showed that FGFR3 hyper-activation resulted in impaired BMP signaling in chondrocytes of mouse growth plates. We also found that FGFR3 inhibited BMP-2- or constitutively activated BMPR1-induced phosphorylation of Smads through a mechanism independent of its tyrosine kinase activity. We found that FGFR3 facilitates BMPR1a to degradation through Smurf1-mediated ubiquitination pathway. We demonstrated that down-regulation of BMP signaling by BMPR1 inhibitor dorsomorphin led to the retardation of chondrogenic differentiation, which mimics the effect of FGF-2 on chondrocytes and BMP-2 treatment partially rescued the retarded growth of cultured bone rudiments from thanatophoric dysplasia type II mice. Our findings reveal that FGFR3 promotes the degradation of BMPR1a, which plays an important role in the pathogenesis of FGFR3-related skeletal dysplasia.  相似文献   

4.
Mutations in the gene for human fibroblast growth factor receptor 3 (hFGFR3) cause a variety of skeletal dysplasias, including the most common genetic form of dwarfism, achondroplasia (ACH). Evidence indicates that these phenotypes are not due to simple haploinsufficiency of FGFR3 but are more likely related to a role in negatively regulating skeletal growth. The effects of one of these mutations on FGFR3 signaling were examined by constructing chimeric receptors composed of the extracellular domain of human platelet-derived growth factor receptor beta (hPDGFR beta) and the transmembrane and intracellular domains of hFGFR3 or of an ACH (G375C) mutant. Following stable transfection in PC12 cells, which lack platelet-derived growth factor (PDGF) receptors, all clonal cell lines, with either type of chimera, showed strong neurite outgrowth in the presence of PDGF but not in its absence. Antiphosphotyrosine immunoblots showed ligand-dependent autophosphorylation, and both receptor types stimulated strong phosphorylation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase, an event associated with the differentiative response of these cells. In addition, ligand-dependent phosphorylation of phospholipase Cgamma and Shc was also observed. All of these responses were comparable to those observed from ligand activation, such as by nerve growth factor, of the native PC12 cells used to prepare the stable transfectants. The cells with the chimera bearing the ACH mutation were more rapidly responsive to ligand with less sustained MAPK activation, indicative of a preactivated or primed condition and consistent with the view that these mutations weaken ligand control of FGFR3 function. However, the full effect of the mutation likely depends in part on structural features of the extracellular domain. Although FGFR3 has been suggested to act as a negative regulator of long-bone growth in chrondrocytes, it produces differentiative signals similar to those of FGFR1, to which only positive effects have been ascribed, in PC12 cells. Therefore, its regulatory effects on bone growth likely result from cellular contexts and not the induction of a unique FGFR3 signaling pathway.  相似文献   

5.
6.
Thyroid hormone (T3) and the T3 receptor (TR) alpha gene are essential for bone development whereas adult hyperthyroidism increases the risk of osteoporotic fracture. We isolated fibroblast growth factor receptor-1 (FGFR1) as a T3-target gene in osteoblasts by subtraction hybridization. FGFR1 mRNA was induced 2- to 3-fold in osteoblasts treated with T3 for 6-48 h, and FGFR1 protein was stimulated 2- to 4-fold. Induction of FGFR1 was independent of mRNA half-life and abolished by actinomycin D and cycloheximide, indicating the involvement of an intermediary protein. Fibroblast growth factor 2 (FGF2) stimulated MAPK in osteoblasts, and pretreatment with T3 for 6 h induced a more rapid response to FGF that was increased in magnitude by 2- to 3-fold. Similarly, T3 enhanced FGF2-activated autophosphorylation of FGFR1, but did not modify FGF2-induced phosphorylation of the docking protein FRS2. These effects were abolished by the FGFR-selective inhibitors PD166866 and PD161570. In situ hybridization analyses of TRalpha-knockout mice, which have impaired ossification and skeletal mineralization, revealed reduced FGFR1 mRNA expression in osteoblasts and osteocytes, whereas T3 failed to stimulate FGFR1 mRNA or enhance FGF2-activated MAPK signaling in TRalpha-null osteoblasts. These findings implicate FGFR1 signaling in T3-dependent bone development and the pathogenesis of skeletal disorders resulting from thyroid disease.  相似文献   

7.
FGFR3 (fibroblast growth factor receptor 3) is a negative regulator of endochondral ossification. Gain-of-function mutations in FGFR3 are responsible for achondroplasia, the most common genetic form of dwarfism in humans. Autophagy, an evolutionarily conserved catabolic process, maintains chondrocyte viability in the growth plate under stress conditions, such as hypoxia and nutritional deficiencies. However, the role of autophagy and its underlying molecular mechanisms in achondroplasia remain elusive. In this study, we found activated FGFR3 signaling inhibited autophagic activity in chondrocytes, both in vivo and in vitro. By employing an embryonic bone culture system, we demonstrated that treatment with autophagy inhibitor 3-MA or chloroquine led to cartilage growth retardation, which mimics the effect of activated-FGFR3 signaling on chondrogenesis. Furthermore, we found that FGFR3 interacted with ATG12–ATG5 conjugate by binding to ATG5. More intriguingly, FGFR3 signaling was found to decrease the protein level of ATG12–ATG5 conjugate. Consistently, using in vitro chondrogenic differentiation assay system, we showed that the ATG12–ATG5 conjugate was essential for the viability and differentiation of chondrocytes. Transient transfection of ATG5 partially rescued FGFR3-mediated inhibition on chondrocyte viability and differentiation. Our findings reveal that FGFR3 inhibits the autophagic activity by decreasing the ATG12–ATG5 conjugate level, which may play an essential role in the pathogenesis of achondroplasia.  相似文献   

8.
Spreds (Sprouty-related proteins with an Ena/Vasodilator-stimulated phosphoprotein homology-1 domain) are a new protein family inhibiting the mitogen-activated protein kinase (MAPK) signaling pathway. Different RNA and protein studies already revealed an almost ubiquitous Spred-2 expression pattern. But until now, only few data were available on the in situ Spred-2 promoter activity. Here, we show a detailed in situ analysis of a mouse strain with a trapped Spred-2 gene, bringing a beta-galactosidase and neomycin fusion gene (beta-geo) under the control of the endogenous Spred-2 promoter. This allowed us to monitor Spred-2 promoter activity in practically every organ and their corresponding sub-compartments. X-Gal staining of newborn and adult mice revealed a nearly congruent Spred-2 promoter activity pattern. Our detailed data provide information for further studies of the still enigmatic physiological functions of Spred-2 in various organs by identifying the tissues with strong Spred-2 promoter activity.  相似文献   

9.
10.
Fibroblast growth factor receptors (FGFR) 1 and 3 have distinct mitogenic activities in vitro. In several cultured cell lines, FGFR1 transmits a potent mitogenic signal, whereas FGFR3 has little or no mitogenic activity. However, in other in vitro assays the FGFR3 intracellular domain is comparable with that of FGFR1. In vivo, FGFR3 negatively regulates chondrocyte proliferation and differentiation, and activating mutations are the molecular etiology of achondroplasia. By contrast, FGFR1 transmits a proliferative signal in various cell types in vivo. These observations suggest that inhibition of the proliferating chondrocyte could be a unique property of FGFR3 or, alternatively, a unique property of the proliferating chondrocyte. To test this hypothesis, FGFR1 signaling was activated in the growth plate in cells that normally express FGFR3. Comparison of transgenic mice with an activated FGFR1 signaling pathway with an achondroplasia-like mouse that expresses a similarly activated FGFR3 signaling pathway demonstrated that both transgenes result in a similar achondroplasia-like dwarfism. These data demonstrate that suppression of mitogenic activity by FGFR signaling is a property that is unique to growth plate chondrocytes. Surprisingly, we observed that in transgenic mice expressing an activated FGFR, some synovial joints failed to develop and were replaced by cartilage. The defects in the digit joints phenocopied the symphalangism that occurs in Apert syndrome and the number of affected joints was dependent on transgene dose. In contrast to the phenotype in the growth plate, the joint phenotype was more severe in transgenic mice with an activated FGFR1 signaling pathway. The failure of joint development resulted from expanded chondrification in the presumptive joint space, suggesting a crucial role for FGF signaling in regulating the transition of condensed mesenchyme to cartilage and in defining the boundary of skeletal elements.  相似文献   

11.
12.
Achondroplasia (ACH), the most common form of short-limbed dwarfism, and its related disorders are caused by constitutively activated point-mutated fibroblast growth factor receptor 3 (FGFR3). Recent studies have provided a large body of evidence to prove chondrocyte proliferation and differentiation in these disorders. However, little is known about the possible effects of the FGFR3 mutants on apoptosis of chondrocytes. In the present study, we analyzed apoptosis using a chondrogenic cell line, ATDC5, expressing the FGFR3 mutants causing ACH and thanatophoric dysplasia, which is a more severe neonatal lethal form comprising type I and type II. We found that the introduction of these mutated FGFR3s into ATDC5 cells decreased mRNA expression of parathyroid hormone-related peptide (PTHrP) and induced apoptosis. Importantly, replacement of PTHrP prevented the apoptotic changes in ATDC5 cells expressing ACH mutant. Insulin-like growth factor (IGF)-I, which is an important mediator of growth hormone (GH), also reduced apoptosis in ATDC5 cells expressing ACH mutant. IGF-I prevented apoptosis through the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways, indicating the mechanisms by which GH treatment improves disturbed bone growth in ACH.  相似文献   

13.
14.
The docking protein SNT1/FRS2 (fibroblast growth factor receptor substrate 2) is implicated in the transmission of extracellular signals from the fibroblast growth factor receptor (FGFR), which plays vital roles during embryogenesis. Activating FGFR mutations cause several craniosynostoses and dwarfism syndromes in humans. Here we show that the Xenopus homolog of mammalian FRS-2 (XFRS2) is essential for the induction of oocyte maturation by an XFGFR1 harboring an activating mutation (XFGFR1act). Using a dominant-negative form of kinase suppressor of Ras, we show the Mek activity is required for germinal vesicle breakdown (GVBD) induced by co-expression of XFGFR1act and XFRS2, but this activity is not required for progesterone-induced GVBD. Furthermore, Mek/MAPK activity is critical for the induction and/or maintenance of H1 kinase activity at metaphase of meiosis II in progesterone-treated oocytes. An activated XFGFR1 containing a mutation in the phospholipase Cgamma binding site (XFGFR1actY672F) displayed a reduced ability to induce cell-cycle progression in oocytes, suggesting phospholipase Cgamma may not be necessary but that it augments XFGFR signaling in this system. Oocytes co-expressing XFGFR1act and XFRS2 showed substantial H1 kinase activity, but this activity was blocked when the oocytes were treated with the phosphatidylinositol 3-kinase inhibitor LY294002. Although phosphatidylinositol 3-kinase activity is essential for XFGFR1act/XFRS2-induced oocyte maturation, this activity is not required for maturation induced by progesterone. Finally, ectopic expression of Xspry2, a negative regulator of XFGFR signaling, greatly reduced MAPK activation and GVBD induced by the expression of either XFGFR1act plus XFRS2 or activated Ras (H-RasV12). In contrast, Xspry2 did not prevent GVBD induced by an activated form of Raf1, suggesting that Xspry2 exerts its inhibitory function upstream or parallel to Raf and downstream of Ras.  相似文献   

15.
Fibroblast growth factor receptors (FGFRs) are a family of transmembrane tyrosine kinases involved in signaling via interactions with the family of fibroblast growth factors. Alternative splicing of the juxtamembrane region of FGFR1-3 leads to the inclusion or exclusion of two amino acids, valine and threonine, the VT site. The presence or absence of VT (VT+ or VT-, respectively) affects the signaling potential of the receptor. The VT+ receptor isoform is required for Erk2 phosphorylation, a component of the mitogen-activated protein kinase signaling pathway. FRS2 is an adaptor protein that links FGFRs to the mitogen-activated protein kinase signaling pathway. FRS2 interacts with a region of the juxtamembrane domain of FGFR1 that includes the alternatively spliced VT site. We investigated the interaction of FRS2 with murine Fgfr1 juxtamembrane domain. We showed the alternatively spliced VT motif, at the juxtamembrane domain of Fgfr1 is required for FRS2 interaction with Fgfr1. Activation of signaling pathways from FRS2 is likely to be regulated by controlling the Fgfr1/FRS2 interaction through alternative splicing of the VT motif of Fgfr1.  相似文献   

16.
17.
18.
Human craniosynostosis syndromes, resulting from activating or neomorphic mutations in fibroblast growth factor receptor 2 (FGFR2), underscore an essential role for FGFR2 signaling in skeletal development. Embryos harboring homozygous null mutations in FGFR2 die prior to skeletogenesis. To address the role of FGFR2 in normal bone development, a conditional gene deletion approach was adopted. Homologous introduction of cre recombinase into the Dermo1 (Twist2) gene locus resulted in robust expression of CRE in mesenchymal condensations giving rise to both osteoblast and chondrocyte lineages. Inactivation of a floxed Fgfr2 allele with Dermo1-cre resulted in mice with skeletal dwarfism and decreased bone density. Although differentiation of the osteoblast lineage was not disturbed, the proliferation of osteoprogenitors and the anabolic function of mature osteoblasts were severely affected.  相似文献   

19.
Bone morphogenetic protein (BMP) signaling pathways are essential regulators of chondrogenesis. However, the roles of these pathways in vivo are not well understood. Limb-culture studies have provided a number of essential insights, including the demonstration that BMP pathways are required for chondrocyte proliferation and differentiation. However, limb-culture studies have yielded contradictory results; some studies indicate that BMPs exert stimulatory effects on differentiation, whereas others support inhibitory effects. Therefore, we characterized the skeletal phenotypes of mice lacking Bmpr1a in chondrocytes (Bmpr1a(CKO)) and Bmpr1a(CKO);Bmpr1b+/- (Bmpr1a(CKO);1b+/-) in order to test the roles of BMP pathways in the growth plate in vivo. These mice reveal requirements for BMP signaling in multiple aspects of chondrogenesis. They also demonstrate that the balance between signaling outputs from BMP and fibroblast growth factor (FGF) pathways plays a crucial role in the growth plate. These studies indicate that BMP signaling is required to promote Ihh expression, and to inhibit activation of STAT and ERK1/2 MAPK, key effectors of FGF signaling. BMP pathways inhibit FGF signaling, at least in part, by inhibiting the expression of FGFR1. These results provide a genetic in vivo demonstration that the progression of chondrocytes through the growth plate is controlled by antagonistic BMP and FGF signaling pathways.  相似文献   

20.
Fibroblast growth factor receptor 3 (FGFR3) signaling pathways are essential for normal longitudinal bone growth. Mutations in this receptor lead to various human growth disorders, including Achondroplasia, disproportionately short-limbed dwarfism, characterized by narrowing of the hypertrophic region of the epiphyseal growth plates. Here we find that FGF9, a preferred ligand for FGFR3 rapidly induces the upregulation and secretion of the matrix resident phosphoprotein, osteopontin (OPN) in cultured chicken chondrocytes. This effect was observed as early as two hours post stimulation and at FGF9 concentrations as low as 1.25 ng/ml at both mRNA and protein levels. OPN expression is known to be associated with chondrocyte and osteoblast differentiation and osteoclast activation. Unexpectedly, FGF9 induced OPN was accompanied by inhibition of differentiation and increased proliferation of the treated chondrocytes. Moreover, FGF9 stimulated OPN expression irrespective of the differentiation stage of the cells or culture conditions. In situ hybridization analysis of epiphyseal growth plates from chicken or mice homozygous for the Achondroplasia, G369C/mFGFR3 mutation demonstrated co-localization of OPN expression and osteoclast activity, as evidenced by tartarate resistant acid phosphatase positive cells in the osteochondral junction. We propose that FGF signaling directly activates OPN expression independent of chondrocytes differentiation. This may enhance the recruitment and activation of osteoclasts, and increase in cartilage resorption and remodeling in the chondro-osseus border.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号