首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cannabinoids (CB) can act as retrograde synaptic mediators of depolarization-induced suppression of inhibition or excitation in hippocampus. This mechanism may underlie the impairment of some cognitive processes produced by these compounds, including short-term memory formation in the hippocampus. In this study, we investigated several compounds known to interact with CB receptors, evaluating their effects on K(+)-evoked release of [3H]D-aspartate ([3H]D-ASP) and [3H]GABA from superfused synaptosomes isolated from the rat hippocampus. [3H]D-ASP and [3H]GABA release were inhibited to different degrees by the synthetic cannabinoids WIN 55,212-2; CP 55,940, and arachidonyl-2'-chloroethylamide/N-(2-chloroethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (ACEA), as well as by the endocannabinoids, anandamide (AEA), and 2-arachidonoylglycerol (2-AG). Both types of release were also inhibited by capsaicin. The inhibition produced by each of the cannabinoid compounds and capsaicin was unaffected by capsazepine or by the CB1-receptor antagonists AM-251 and SR141716A. The mechanism underlying AEA- and synthetic CB-induced inhibition of the release of [3H]GABA and [3H]D-ASP from rat hippocampal synaptosomes might not involve activation of presynaptic CB1 receptors.  相似文献   

2.
Exogenous and endogenous cannabinoids play an important role in modulating the release of neurotransmitters in hippocampal excitatory and inhibitory networks, thus having profound effect on higher cognitive and emotional functions such as learning and memory. In this study we have studied the effect of cannabinoid agonists on the potassium depolarization-evoked [(3)H]GABA release from hippocampal synaptosomes in the wild-type (WT) and cannabinoid 1 receptor (CB(1)R)-null mutant mice. All tested cannabinoid agonists (WIN55,212-2, CP55,940, HU-210, 2-arachidonoyl-glycerol, 2-AG; delta-9-tetra-hydrocannabinol, THC) inhibited [(3)H]GABA release in WT mice with the following rank order of agonist potency: HU-210>CP55,490>WIN55,212-2>2-AG>THC. By contrast, 2-AG and THC displayed the greatest efficacy eliciting almost complete inhibition of evoked [(3)H]GABA efflux, whereas the maximal inhibition obtained by HU-210, CP55,490, and WIN55,212-2 were less, eliciting not more than 40% inhibition. The inhibitory effect of WIN55,212-2, THC and 2-AG on evoked [(3)H]GABA efflux was antagonized by the CB(1) receptor inverse agonist AM251 (0.5 μM) in the WT mice. In the CB(1)R knockout mice the inhibitory effects of all three agonists were attenuated. In these mice, AM251 did not antagonize, but further reduced the [(3)H]GABA release in the presence of the synthetic agonist WIN55,212-2. By contrast, the concentration-dependent inhibitory effects of THC and 2-AG were partially antagonized by AM251 in the absence of CB(1) receptors. Finally, the inhibition of evoked [(3)H]GABA efflux by THC and 2-AG was also partially attenuated by AM630 (1 μM), the CB(2) receptor-selective antagonist, both in WT and CB(1) knockout mice. Our data prove the involvement of CB(1) receptors in the effect of exo- and endocannabinoids on GABA efflux from hippocampal nerve terminals. In addition, in the effect of the exocannabinoid THC and the endocannabinoid 2-AG, non-CB(1), probably CB(2)-like receptors are also involved.  相似文献   

3.
Abstract: The major active ingredient of marijuana, (−)-Δ9-tetrahydrocannabinol, exerts its psychoactive effects via binding to cannabinoid CB1 receptors, which are widely distributed in the brain. Radionuclide imaging of CB1 receptors in living human subjects would help explore the presently unknown physiological roles of this receptor system, as well as the neurochemical consequences of marijuana dependence. Currently available cannabinoid receptor radioligands are exceedingly lipophilic and unsuitable for in vivo use. We report the development of a novel radioligand, [123I]AM281{ N -(morpholin-4-yl)-5-(4-[123I]iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1 H -pyrazole-3-carboxamide}, that is structurally related to the CB1-selective antagonist SR141716A [ N -(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1 H -pyrazole-3-carboxamide]. Baboon single photon emission computed tomography studies, mouse brain dissection studies, and ex vivo autoradiography in rat brain demonstrated rapid passage of [123I]AM281 into the brain after intravenous injection, appropriate regional brain specificity of binding, and reduction of binding after treatment with SR141716A. AM281 has an affinity in the low nanomolar range for cerebellar binding sites labeled with [3H]SR141716A in vitro, and binding of [123I]AM281 is inhibited by several structurally distinct cannabinoid receptor ligands. We conclude that [123I]AM281 has appropriate properties for in vivo studies of cannabinoid CB1 receptors and is suitable for imaging these receptors in the living human brain.  相似文献   

4.
Cannabinoid receptors have been implicated in the regulation of blood flow in the cerebral vasculature. Because the nucleus accumbens (NAc) shows high levels of central cannabinoid receptor 1 (CB1) expression we examined the effects of cannabinoids on the local transient alkaline shifts and increases in extracellular oxygen induced by electrical stimulation of the medial forebrain bundle (MFB) in conscious animals. These changes result from increases in cerebral blood flow (CBF) and metabolism in the NAc that are evoked by the stimulation. Oxygen and pH changes were monitored using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in the NAc of freely moving rats. Administration of the cannabinoid receptor agonist WIN55,212-2 potently inhibited extracellular oxygen and pH changes, an effect that was reversed and prevented by pre-treatment with the CB1 receptor antagonists SR141716A and AM251. The effects on pH following WIN55,212-2 were similar to those following nimodipine, a recognized vasodilator. When AM251 was injected alone, the amplitude of electrically evoked pH shifts was unaffected. Administration of AM404 and VDM11, endocannabinoid transport inhibitors, partially inhibited pH transients in a CB1 receptor-dependent manner. The present findings suggest that CB1 receptor activation modulates changes in two well-established indices of local blood flow and metabolism resulting from electrically evoked activation of ascending fibers. Although endogenous cannabinoid tone alone is not sufficient to modify these responses, uptake blockade demonstrates that the system has the potential to exert CB1-specific effects similar to those of full agonists.  相似文献   

5.
Spinal cord injury (SCI) induces a cascade of processes that may further expand the damage (secondary injury) or, alternatively, may be part of a safeguard response. Here we show that after a moderate-severe contusive SCI in rats there is a significant and very early increase in the spinal cord content of the endocannabinoids 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (anandamide, AEA). Since 2-AG and AEA act through CB1 and CB2 cannabinoid receptors, we administered at 20 minutes after lesion a single injection of their respective antagonists AM281 and AM630 alone or in combination to block the effects of this early endocannabinoid accumulation. We observed that AM281, AM630 or AM281 plus AM630 administration impairs the spontaneous motor recovery of rats according to the Basso-Beattie-Bresnahan (BBB) locomotor scale. However, blockade of CB1, CB2 or both receptors produced different effects at the histopathological level. Thus, AM630 administration results at 90 days after lesion in increased MHC-II expression by spinal cord microglia/monocytes and reduced number of serotoninergic fibres in lumbar spinal cord (below the lesion). AM281 exerted the same effects but also increased oedema volume estimated by MRI. Co-administration of AM281 and AM630 produced the effects observed with the administration of either AM281 or AM630 and also reduced white matter and myelin preservation and enhanced microgliosis in the epicentre. Overall, our results suggest that the endocannabinoids acting through CB1 and CB2 receptors are part of an early neuroprotective response triggered after SCI that is involved in the spontaneous recovery after an incomplete lesion.  相似文献   

6.
Kopczyńska B 《Life sciences》2007,80(19):1738-1745
Anaesthetized and spontaneously breathing rats were used to study the cardio-respiratory effects of intravenous anandamide administration. To investigate the role of particular levels of the afferent pathway in this response rats were challenged with bolus injection of anandamide (1 mg kg(-1)) into the femoral vein while intact, following bilateral superior laryngeal nerves (SLNs) section and after midcervical vagotomy. To test the hypothesis that the activation of the vanilloid receptors (VR1) as well as cannabinoid receptors (CB1) contributes to the anandamide-induced response administrations of anandamide were preceded by nonselective VR1 antagonist ruthenium red or selective CB1 antagonist AM281. Anandamide evoked apnoea of mean duration of 4.84+/-0.75 s in all animals while intact which was shortened by subsequent neurotomies, after SLNs section to 3.3+/-0.57 s (P<0.05) and after midcervical vagi section to 1.99+/-0.24 s (P<0.01). In post-apnoeic breathing tidal volume (V(T)) was reduced in all neural states. Anandamide evoked hypotension in the intact and SLNs neurotomized rats. Midcervical vagotomy reduced this fall in blood pressure. Both antagonists ruthenium red and AM281 eliminated post-anandamide apnoea and hypotension but had no effect on post-apnoeic depression of V(T). Subsequent SLNs and cervical vagi sections did not eliminate but only reduced post-anandamide depression of breathing. Midcervical vagotomy lessened anandamide-induced hypotension. Apnoeic and hypotensive response to anandamide was mediated by both VR1 and CB1 receptors. Post-anandamide decline of V(T) might depend on different type of receptors.  相似文献   

7.
Neural reflex mechanisms, such as the baroreflex, are involved in the regulation of cardiovascular system activity. Previous results from our group (Resstel LB, Correa FM. Medial prefrontal cortex NMDA receptors and nitric oxide modulate the parasympathetic component of the baroreflex. Eur J Neurosci 23: 481-488, 2006) have shown that glutamatergic synapses in the ventral portion of the medial prefrontal cortex (vMPFC) modulate baroreflex activity. Moreover, glutamatergic neurotransmission in the vMPFC can be modulated by the endocannabinoids system (eCBs), particularly the endocannabinoid anandamide, through presynaptic CB(1) receptor activation. Therefore, in the present study, we investigated eCBs receptors that are present in the vMPFC, and more specifically whether CB(1) receptors modulate baroreflex activity. We found that bilateral microinjection of the CB(1) receptor antagonist AM251 (100 or 300 pmol/200 nl) into the vMPFC increased baroreflex activity in unanesthetized rats. Moreover, bilateral microinjection of either the anandamide transporter inhibitor AM404 (100 pmol/200 nl) or the inhibitor of the enzyme fatty acid amide hydrolase that degrades anandamide, URB597 (100 pmol/200 nl), into the MPFC decreased baroreflex activity. Finally, pretreatment of the vMPFC with an ineffective dose of AM251 (10 pmol/200 nl) was able to block baroreflex effects of both AM404 and URB597. Taken together, our results support the view that the eCBs in the vMPFC is involved in the modulation of baroreflex activity through the activation of CB(1) receptors, which modulate local glutamate release.  相似文献   

8.
Cannabinoid (CB)1 receptor inverse agonists inhibit food intake in animals and humans but also potentiate emesis. It is not clear whether these effects result from inverse agonist properties or from the blockade of endogenous cannabinoid signaling. Here, we examine the effect of a neutral CB1 antagonist, AM4113, on food intake, weight gain, and emesis. Neutral antagonist and binding properties were confirmed in HEK-293 cells transfected with human CB1 or CB2 receptors. AM4113 had no effect on forskolin-stimulated cAMP production at concentrations up to 630 nM. The Ki value of AM4113 (0.80 +/- 0.44 nM) in competitive binding assays with the CB1/2 agonist [3H]CP55,940 was 100-fold more selective for CB1 over CB2 receptors. We determined that AM4113 antagonized CB1 receptors in brain by blocking hypothermia induced by CP55,940. AM4113 (0-20 mg/kg) significantly reduced food intake and weight gain in rat. Compared with AM251, higher doses of AM4113 were needed to produce similar effects on food intake and body weight. Unlike AM251 (5 mg/kg), a highly anorectic dose of AM4113 (10 mg/kg) did not significantly potentiate vomiting induced by the emetic morphine-6-glucoronide. We show that a centrally active neutral CB1 receptor antagonist shares the appetite suppressant and weight loss effects of inverse agonists. If these compounds display similar properties in humans, they could be developed into a new class of antiobesity agents.  相似文献   

9.
10.
The ECS (endocannabinoid system) plays an important role in the onset of obesity and metabolic disorders, implicating central and peripheral mechanisms predominantly via CB1 (cannabinoid type 1) receptors. CB1 receptor antagonist/inverse agonist treatment improves cardiometabolic risk factors and insulin resistance. However, the relative contribution of peripheral organs to the net beneficial metabolic effects remains unclear. In the present study, we have identified the presence of the endocannabinoid signalling machinery in skeletal muscle and also investigated the impact of an HFD (high-fat diet) on lipid-metabolism-related genes and endocannabinoid-related proteins. Finally, we tested whether administration of the CB1 inverse agonist AM251 restored the alterations induced by the HFD. Rats were fed on either an STD (standard/low-fat diet) or an HFD for 10 weeks and then treated with AM251 (3 mg/kg of body weight per day) for 14 days. The accumulated caloric intake was progressively higher in rats fed on the HFD than the STD, resulting in a divergence in body weight gain. AM251 treatment reduced accumulated food/caloric intake and body weight gain, being more marked in rats fed on the HFD. CB2 (cannabinoid type 2) receptor and PPARα (peroxisome-proliferator-activated receptor α) gene expression was decreased in HFD-fed rats, whereas MAGL (monoglyceride lipase) gene expression was up-regulated. These data suggest an altered endocannabinoid signalling as a result of the HFD. AM251 treatment reduced CB2 receptor, PPARγ and AdipoR1 (adiponectin receptor 1) gene expression in STD-fed rats, but only partially normalized the CB2 receptor in HFD-fed rats. Protein levels corroborated gene expression results, but also showed a decrease in DAGL (diacylglycerol) β and DAGLα after AM251 treatment in STD- and HFD-fed rats respectively. In conclusion, the results of the present study indicate a diet-sensitive ECS in skeletal muscle, suggesting that blockade of CB1 receptors could work towards restoration of the metabolic adaption imposed by diet.  相似文献   

11.
The CB1 and CB2 cannabinoid receptors have been described as two prime sites of action for endocannabinoids. Both the localization and pharmacology of these two G-protein-coupled receptors are well-described, and numerous selective ligands have been characterized. The physiological effects of Cannabis sativa (cannabis) and a throughout study of the endocannabinoid system allowed for the identification of several pathophysiological conditions--including obesity, dyslipidemia, addictions, inflammation, and allergies--in which blocking the cannabinoid receptors might be beneficial. Many CB1 receptor antagonists are now in clinical trials, and the results of several studies involving the CB1 antagonist lead compound rimonabant (SR141716A) are now available. This review describes the pharmacological tools that are currently available and the animal studies supporting the therapeutic use of cannabinoid receptor antagonists and inverse agonists. The data available from the clinical trials are also discussed.  相似文献   

12.
Involvement of the endocannabinoid system in periodontal healing   总被引:1,自引:0,他引:1  
Endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are important lipid mediators for immunosuppressive effects and for appropriate homeostasis via their G-protein-coupled cannabinoid (CB) receptors in mammalian organs and tissues, and may be involved in wound healing in some organs. The physiological roles of endocannabinoids in periodontal healing remain unknown. We observed upregulation of the expression of CB1/CB2 receptors localized on fibroblasts and macrophage-like cells in granulation tissue during wound healing in a wound-healing model in rats, as well as an increase in AEA levels in gingival crevicular fluid after periodontal surgery in human patients with periodontitis. In-vitro, the proliferation of human gingival fibroblasts (HGFs) by AEA was significantly attenuated by AM251 and AM630, which are selective antagonists of CB1 and CB2, respectively. CP55940 (CB1/CB2 agonist) induced phosphorylation of the extracellular-regulated kinases (ERK) 1/2, p38 mitogen-activated protein kinase (p38MAPK), and Akt in HGFs. Wound closure by CP55940 in an in-vitro scratch assay was significantly suppressed by inhibitors of MAP kinase kinase (MEK), p38MAPK, and phosphoinositol 3-kinase (PI3-K). These findings suggest that endocannabinoid system may have an important role in periodontal healing.  相似文献   

13.
Cannabinoid CB(1) and the metabotropic GABA(B) receptors have been shown to display similar pharmacological effects and co-localization in certain brain regions. Previous studies have reported a functional link between the two systems. As a first step to investigate the underlying molecular mechanism, here we show cross-inhibition of G-protein signaling between GABA(B) and CB(1) receptors in rat hippocampal membranes. The CB(1) agonist R-Win55,212-2 displayed high potency and efficacy in stimulating guanosine-5'-O-(3-[(35)S]thio)triphosphate, [(35)S]GTPgammaS binding. Its effect was completely blocked by the specific CB(1) antagonist AM251 suggesting that the signaling was via CB(1) receptors. The GABA(B) agonists baclofen and SKF97541 also elevated [(35)S]GTPgammaS binding by about 60%, with potency values in the micromolar range. Phaclofen behaved as a low potency antagonist with an ED(50) approximately 1mM. However, phaclofen at low doses (1 and 10nM) slightly but significantly attenuated maximal stimulation of [(35)S]GTPgammaS binding by the CB(1) agonist R-Win55,212-2. The observation that higher concentrations of phaclofen had no such effect rule out the possibility of its direct action on CB(1) receptors. The pharmacologically inactive stereoisomer S-Win55,212-3 had no effect either alone or in combination with phaclofen establishing that the interaction is stereospecific in hippocampus. The specific CB(1) antagonist AM251 at a low dose (1 nM) also inhibited the efficacy of G-protein signaling of the GABA(B) receptor agonist SKF97541. Cross-talk of the two receptor systems was not detected in either spinal cord or cerebral cortex membranes. It is speculated that the interaction might occur via an allosteric interaction between a subset of GABA(B) and CB(1) receptors in rat hippocampal membranes. Although the exact molecular mechanism of the reciprocal inhibition between CB(1) and GABA(B) receptors will have to be explored by future studies it is intriguing that the cross-talk might be involved in balance tuning the endocannabinoid and GABAergic signaling in hippocampus.  相似文献   

14.
Cardio-respiratory effects of an intravenous injection of arvanil, a structural "hybrid" between capsaicin and anandamide, were investigated in 40 urethane-chloralose anaesthetized and spontaneously breathing rats. In the group of rats the response to arvanil was checked to establish the appropriate dose of the drug. To analyze the pattern of the cardio-respiratory effects rats were challenged with bolus injection of arvanil (0.8 mg kg(-1)) into the femoral vein. Administration of the drug evoked, in all tested rats, a significant increase of tidal volume (V(T)) and diaphragm activity, hypertension coupled with a fall in respiratory rate (f). To test the contribution of vanilloid (VR1) and cannabinoid (CB1) receptors to post-arvanil response, administrations of the drug were preceded by nonselective VR1 antagonist ruthenium red, selective VR1 antagonist SB366791 or selective CB1 antagonist AM281. All antagonists eliminated an increase in V(T) but failed to block the hypertension evoked by arvanil. Ruthenium red as well as SB366791 abolished post-arvanil fall in respiratory rate. The rise of diaphragm activity was totally eliminated by ruthenium red and markedly reduced by SB366791. AM281 blockade of post-arvanil changes in f and diaphragm activity was ineffective. These findings indicated that the post-arvanil rise of V(T) was mediated by both VR1 and CB1 receptors. Only vanilloid receptors were involved in the increase of diaphragm activity and decrease of respiratory frequency. Hypertensive response to arvanil might depend on different types of receptors.  相似文献   

15.
Khaksar  Sepideh  Salimi  Mona  Zeinoddini  Hadi  Naderi  Nima 《Neurochemical research》2022,47(5):1226-1242

In this research, the involvement of CB1 and TRPV1 receptors in the possible protective effects of anandamide were investigated in the kindling model of epilepsy. The basolateral amygdala of the rat brain was chosen to put stimulating electrodes. Semi-rapid kindling was induced by a repetitive sub-threshold stimulation for 5–9 consecutive days. There were seven groups, six of which were kindled and used for drug testing by intracerebroventricular (i.c.v.) microinjection. (i) Sham, (ii) control group received vehicles, (iii) anandamide (AEA; 100 ng/rat), (iv) capsazepine (TRPV1 antagonist; 100 ng/rat), (v) AM251 (CB1 antagonist; 100 ng/rat), (vi) AM251?+?anandamide, and (vii) capsazepine?+?anandamide. The after-discharge duration, seizure duration, and stage five duration were measured in rats. Moreover, the expressions of the extracellular signal-regulated kinase (ERK) and the cAMP responsive element binding (CREB) proteins in the hippocampus were also studied. The anandamide-treated group showed a significant decrease in seizure scores, while no change was shown in seizure scores in the capsazepine- and AM251-treated groups compared with the control group. Co-administrations of either capsazepine?+?AEA or AM251?+?AEA attenuated the protective effect of AEA against seizure. Furthermore, the group received AEA showed a decrease in the expressions of CREB and p-CREB possibly through the activation of the CB1 and TRPV1 receptors. Activation of CB1 and TRPV1 receptors might be involved in AEA anticonvulsant effect in kindling model of epilepsy. This effect could be due to suppression of CREB phosphorylation in hippocampal neurons.

  相似文献   

16.
It is known that marijuana use decreases saliva secretion. Therefore, we hypothesized that cannabinoid receptors (CBs) are located in salivary glands to mediate that effect. In these experiments, we used the submandibular gland (SMG) of male rats, which is one of the major salivary glands. Mammalian tissues contain at least two types of CBs, CB1 and CB2, mainly located in the nervous system and peripheral tissues, respectively. Both receptors are coupled to Gi protein and respond by inhibiting the activity of adenylyl cyclase. We demonstrated that both CB1 and CB2 are present in the SMG, each showing specific localizations. The best-known endocannabinoid is anandamide (AEA), which binds with high affinity to CB1 and CB2. We showed that AEA markedly reduced forskolin-induced increase of cAMP content in vitro. This effect was blocked by AM251 and AM630 (CB1 and CB2 antagonists, respectively), indicating that both receptors are implicated in SMG physiology. In addition, we showed that AEA injected intraglandularly to anesthetized rats inhibited norepinephrine (NE)- and methacholine (MC)-stimulated saliva secretion in vivo and that both AM251 or AM630 prevented the inhibitory action of AEA. Also, the intraglandular injection of AM251 increased saliva secretion induced by lower doses of NE or MC. This increase was synergized after coinjection with AM630. Therefore, we concluded that AEA decreases saliva secretion in the SMG acting through CB1 and CB2 receptors.  相似文献   

17.
Endocannabinoids and CB1 receptors have been implicated in endotoxin (LPS)-induced hypotension: LPS stimulates the synthesis of anandamide in macrophages, and the CB1 antagonist SR-141716 inhibits the hypotension induced by treatment of rats with LPS or LPS-treated macrophages. Recent evidence indicates the existence of cannabinoid receptors distinct from CB1 or CB2 that are inhibited by SR-141716 but not by other CB1 antagonists such as AM251. In pentobarbital-anesthetized rats, intravenous injection of 10 mg/kg LPS elicited hypotension associated with profound decreases in cardiac contractility, moderate tachycardia, and an increase in lower body vascular resistance. Pretreatment with 3 mg/kg SR-141716 prevented the hypotension and decrease in cardiac contractility, slightly attenuated the increase in peripheral resistance, and had no effect on the tachycardia caused by LPS, whereas pretreatment with 3 mg/kg AM251 did not affect any of these responses. SR-141716 also elicited an acute reversal of the hypotension and decreased contractility when administered after the response to LPS had fully developed. The LPS-induced hypotension and its inhibition by SR-141716 were similar in pentobarbital-anesthetized wild-type, CB1(-/-), and CB1(-/-)/CB2(-/-) mice. We conclude that SR-141716 inhibits the acute hemodynamic effects of LPS by interacting with a cardiac receptor distinct from CB1 or CB2 that mediates negative inotropy and may be activated by anandamide or a related endocannabinoid released during endotoxemia.  相似文献   

18.
Recent investigations in our laboratory showed that voltage-gated sodium channels (VGSCs) in brain are sensitive to inhibition by various synthetic cannabinoids and endocannabinoids. The present experiments examined the effects of the cannabinoid-1 (CB1) receptor agonist CP-55,940 and ethyl arachidonate on [(3)H]batrachotoxinin A 20 alpha-benzoate ([(3)H]BTX-B]) binding and VGSC-dependent depolarization of the nerve membrane in synaptoneurosomes isolated from mouse whole brain. CP-55,940 acted as a full inhibitor of [(3)H]BTX-B binding and its IC(50) was established at 22.3 microM. At its maximum effect concentration, ethyl arachidonate achieved partial (approximately 70%) inhibition and was less effective than CP-55,940 as an inhibitor of binding (IC(50)=262.7 microM). The potent CB1 receptor antagonist AM251 (2 microM) had no significant effect on the displacement of [(3)H]BTX-B by either compound (P>0.05). Scatchard analyses showed that CP-55,940 and ethyl arachidonate reduce the binding of [(3)H]BTX-B by lowering its B(max) but ethyl arachidonate also increased the K(d) of radioligand binding. In kinetic experiments, CP-55,940 and ethyl arachidonate were found to boost the dissociation of [(3)H]BTX-B from VGSCs to rates that exceed the maximum velocity achievable by veratridine, indicating they operate as allosteric inhibitors of [(3)H]BTX-B binding. Neither compound was effective at changing the initial rate of association of [(3)H]BTX-B with sodium channels. CP-55,940 and ethyl arachidonate inhibited veratridine-dependent (TTX-suppressible) depolarization of the plasma membrane of synaptoneurosomes with IC(50)s of 3.2 and 50.1 microM respectively. These inhibitory effects were again not influenced by 2 microM AM251. Our data demonstrate that the potent cannabinoid receptor agonist CP-55,940 and the ethyl ester of arachidonic acid have the ability to associate with VGSCs and inhibit their function independently of effects on CB1 receptors. Binding data comparisons using mouse brain preparations indicate CP-55,940 is approximately 10,000 times more potent as a CB1 receptor ligand than a sodium channel ligand while ethyl arachidonate shows a much smaller differential. Ethyl arachidonate has been shown previously to be the principal metabolite of ethanol in the brains of intoxicated individuals and effects of this ester on VGSCs and CB1 receptors may contribute to the depressant effects of alcohol.  相似文献   

19.
Anandamide (arachidonoylethanolamide or AEA) is an endocannabinoid that acts at vanilloid (VR1) as well as at cannabinoid (CB1/CB2) and NMDA receptors. Here, we show that AEA, in a dose-dependent manner, causes cell death in cultured rat cortical neurons and cerebellar granule cells. Inhibition of CB1, CB2, VR1 or NMDA receptors by selective antagonists did not reduce AEA neurotoxicity. Anandamide-induced neuronal cell loss was associated with increased intracellular Ca(2+), nuclear condensation and fragmentation, decreases in mitochondrial membrane potential, translocation of cytochrome c, and upregulation of caspase-3-like activity. However, caspase-3, caspase-8 or caspase-9 inhibitors, or blockade of protein synthesis by cycloheximide did not alter anandamide-related cell death. Moreover, AEA caused cell death in caspase-3-deficient MCF-7 cell line and showed similar cytotoxic effects in caspase-9 dominant-negative, caspase-8 dominant-negative or mock-transfected SH-SY5Y neuroblastoma cells. Anandamide upregulated calpain activity in cortical neurons, as revealed by alpha-spectrin cleavage, which was attenuated by the calpain inhibitor calpastatin. Calpain inhibition significantly limited anandamide-induced neuronal loss and associated cytochrome c release. These data indicate that AEA neurotoxicity appears not to be mediated by CB1, CB2, VR1 or NMDA receptors and suggest that calpain activation, rather than intrinsic or extrinsic caspase pathways, may play a critical role in anandamide-induced cell death.  相似文献   

20.
We employed in vivo microdialysis to characterize the effect of an ethanol challenge injection on endocannabinoid levels in the nucleus accumbens of ethanol-naïve and chronic ethanol-treated rats. Ethanol (0.75 and 2 g/kg, i.p.) dose-dependently increased dialysate 2-arachidonoylglycerol (to a maximum 157 ± 20% of baseline) and decreased anandamide (to a minimum 52 ± 9% of baseline) in ethanol-naïve rats. The endocannabinoid clearance inhibitor N -(4-hydrophenyl) arachidonoylamide (AM404; 3 mg/kg) potentiated ethanol effects on 2-arachidonoylglycerol levels but did not alter ethanol-induced decreases in anandamide. AM404 alone did not alter dialysate levels of either endocannabinoid. Then, we characterized the effect of ethanol challenge on nucleus accumbens endocannabinoid levels in rats previously maintained on an ethanol-containing liquid diet. Ethanol challenge produced a greater and more prolonged increase in 2-arachidonoylglycerol (to a maximum 394 ± 135% of baseline) in ethanol-experienced than in ethanol-naïve rats. The profile in ethanol-experienced rats was similar to that produced by AM404 pre-treatment in ethanol-naïve rats. AM404 in ethanol-experienced rats led to a further enhancement in the 2-arachidonoylglycerol response to ethanol challenge (to a maximum 704 ± 174% of baseline). Our findings demonstrate that ethanol-induced increases in nucleus accumbens 2-arachidonoylglycerol are potentiated in animals with a history of ethanol consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号