首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of 5-hydroxytryptamine (= serotonin = 5-HT) and noradrenalin (NA) in the enteric plexuses of the rat ileum was studied using immunocytochemical techniques. 5-HT-like immunoreactive fibers were observed only in the myenteric plexus, surrounding the ganglionic cells, which are all unreactive. NA-like immunoreactive fibers were present in all layers of the ileum: in the myenteric plexus, they were localized in the nodes, forming a network all round the neuronal perikarya; in the Meissner plexus, positive axons were arranged in a delicate network; submucosal blood vessels were often provided by NA-immunopositive nerve plexus. In the inner circular muscle layer the immunoreactive NA-positive fibers run within nerve bundles mainly parallel with the smooth muscle cells. The 5-HT immunoreactive material was depleted by treatment with reserpine; depletion of NA by 6-hydroxy-dopamine was also observed; on the contrary, no depletion of 5-HT by 5,7-dihydroxytryptamine was obtained. To confirm the validity of these results, specific antibodies to tyrosine hydroxylase (TH) and aromatic 1-aminoacid-decarboxylase (AADC), two enzymes involved in the synthesis of catecholamines, were used. In conclusion these experiments indicate that 5-HT is present, probably as a transmitter, in certain fibres of the rat myenteric plexus, distributed in a way similar to that of NA-containing fibers. However, at variance with NA fibers, 5-HT fibers are not present in other regions of the intestine wall.  相似文献   

2.
Summary The distribution of serotonin in the hypothalamus and the mesencephalon of guinea-pigs pretreated with both pargyline and L-tryptophan was investigated immunohistochemically using monoclonal antibodies to 5-HT. 5-HT-positive fibers and varicosities appeared distributed throughout the hypothalamus. Some areas showed a greater density of immunoreactivity: the suprachiasmatic nucleus, the region of the supraoptic crest, the area of the medial forebrain bundle, the ventral part of the nucleus ventromedialis, the median eminence and the ventral part of the mammillary bodies. 5-HT nerve fibers were also scattered in the posterior lobe of the pituitary. An extensive supraependymal plexus of immunoreactive axons was observed in most ventricular regions. No 5-HT positive cell bodies were present in the hypothalamus of the guinea-pig under our experimental conditions, whereas an intense serotonin immunoreactivity was detected in perikarya of the brain stem. 5-HT cell bodies were found predominantly in the raphe region including the nucleus raphe dorsalis and raphe medianus, nucleus interpeduncularis, reticular formation and dorsal area of the medial lemniscus.  相似文献   

3.
It has been proposed that serotonin (5-HT) facilitates the chemosensory activity of the carotid body (CB). In the present study, we investigated mRNA expression and immunohistochemical localization of the 5-HT synthetic enzyme isoforms, tryptophan hydroxylase 1 (TPH1) and TPH2, and the 5-HT plasma membrane transport protein, 5-HT transporter (SERT), in the CB of the rat. RT-PCR analysis detected the expression of mRNA for TPH1 and SERT in extracts of the CB. Using immunohistochemistry, 5-HT immunoreactivity was observed in a few glomus cells. TPH1 and SERT immunoreactivities were observed in almost all glomus cells. SERT immunoreactivity was seen on nerve fibers with TPH1 immunoreactivity. SERT immunoreactivity was also observed in varicose nerve fibers immunoreactive for dopamine beta-hydroxylase, but not in nerve fibers immunoreactive for vesicular acetylcholine transporters or nerve terminals immunoreactive for P2X3 purinoreceptors. These results suggest that 5-HT is synthesized and released from glomus cells and sympathetic nerve fibers in the CB of the rat, and that the chemosensory activity of the CB is regulated by 5-HT from glomus cells and sympathetic nerve fibers.  相似文献   

4.
Two experiments were carried out to evaluate the relative contributions of thalamocortical and raphe-cortical fibers to the transient somatotopically organized pattern of serotonin (5-HT) immunoreactivity that appears in the primary somatosensory cortex (SI) of rats during the first 2 weeks of life. In the first experiment, the specific 5-HT uptake inhibitors, fluoxetine and paroxetine, were administered systemically, animals were killed 3, 6, or 12 h later, and cortices evaluated for 5-HT immunoreactivity. Fluoxetine treatment had no appreciable effect on the density of 5-HT immunoreactivity in the cortex. Paroxetine treatment caused a reduction in 5-HT immunoreactivity which was maximal 6 h after administration. Examination of the cortices of these animals revealed a loss of very fine dust-like 5-HT immunoreactivity, but a vibrissae-related pattern remained visible in thicker fibers. In a second experiment, raphe-cortical fibers were destroyed by systemic administration of 5,7-dihydroxytryptamine on the day of birth. Six days after this manipulation, 5-HT was applied directly to the cortex in vivo and the animals were then killed and cortices processed to demonstrate 5-HT immunoreactivity. The cortices of these rats revealed a fine dust-like immunoreactivity organized in a somatotopic pattern, but only very few 5-HT-positive axons. The results of these experiments suggest that both raphe-cortical axons and thalamocortical fibers contribute to the patterned 5-HT immunoreactivity observed in SI of perinatal rats.  相似文献   

5.
We have previously demonstrated that treatment of pregnant C57BL mice from gestation days 8 to 14 with alcohol with 20% ethanol-derived calories (EDC) reduced the number of serotonin (5-HT) neurons and retarded their migration in the fetal brains. In the present study, we obtained similar results with the use of 25% EDC and extended our previous findings by demonstrating that besides the alteration of the number of 5-HT neurons, prenatal alcohol exposure also affects their projecting fibers in their early development. Pregnant C57BL mice were divided into an alcohol-exposed (ALC) group given 25% EDC (4.49%, v/v), a pair-fed group to the ethanol-fed group (PF) and a chow-fed group (Chow). The PF and Chow groups served as controls. Our results showed that in the ALC group, when compared with the control groups, prenatal alcohol exposure with 25% EDC reduced the number of 5-HT-immunoreactive neurons in both the median and dorsal raphe, and the amount of 5-HT-immunoreactive fibers in the medial forebrain bundle (MFB). The diameter of the 5-HT-immunoreactive MFB was also reduced as a result of treatment. No significant differences of the above parameters were found between the PF and Chow groups. The previous and present work confirmed that alcohol reduces the normal formation and growth of 5-HT neurons in the midbrain. Furthermore, the projection of 5-HT fibers, in density as well as in distribution, is reduced in the major trajectory bundle. This may affect the amount of 5-HT fibers available to the forebrain. In light of the importance of the 5-HT system in brain development, alcohol may affect the growth of the forebrain through its effect on 5-HT signaling.  相似文献   

6.
Anatomical relationships between serotoninergic (5-HT) fibers and cerebral ventricles were studied in rats from the 16th fetal day until the 9th postnatal day with immunocytochemistry and radioautography. In the latter case, 5-HT neuronal elements were detected according to their specific uptake of intraventricularly injected 3H-5-HT. On the 16th fetal day, occasional 5-HT fibers first spread from the main place of their origin in the raphe nuclei to the dorsocaudal portion of the 3rd ventricle and aqueduct. Two days later, a more extensive network of 5-HT fibers appeared around the dorsal portion of the 3rd ventricle, whereas fibers only rarely penetrated fibers became noticeable in the lateral and 3rd ventricles. The functional significance of hypothalamic and ventricular 5-HT is discussed from the standpoint of its being either a modulator of growth and differentiation of the developing brain, or a factor involved in some specific neuroendocrine functions.  相似文献   

7.
Distributional and morphological features, especially characteristics of the ramification of serotonin-containing supraependymal fibers (SEF), were studied in the ventricular systems of mammals (mouse, rat, guinea pig, rabbit, cat, dog, monkey) by means of a modified peroxidase antiperoxidase technique, using antiserotonin antiserum prepared in our laboratory. SEF were present in all ventricular systems, except on the third ventricle floor and in the choroid plexus. The density of SEF was higher in the smaller species. In the rat, light- and scanning electron microscopical SEF were almost completely abolished 1 week after intraventricular administration of 5,6-dihydroxytryptamine. Ramification of SEF was complicated; the SEF formed a true network with frequent anastomosing. In the ventricular system of rats rendered hydrocephalic by kaolin administration, the mode of axonal branching in the supraependymal plexus could best be analyzed by the scanning electron microscope because the meshes of the plexus were spread out.  相似文献   

8.
Summary The serotonergic innervation of the genital chamber of the female cricket, Acheta domestica, has been investigated applying anti-serotonin (5-HT) immunocyto-chemistry at both light- and electron-microscopic levels as well as using conventional electron microscopy. Whole mount and pre-embedding chopper techniques of immuno-cytochemistry reveal a dense 5-HT-immunoreactive network of varicose fibers in the musculature of the genital chamber. All of these immunoreactive fibers originate from the efferent serotonergic neuron projecting through the nerve 8v to the genital chamber (Hustert and Topel 1986; Elekes et al. 1987). At the electron-microscopic level, 5-HT-immunoreactive nerve terminals, which contain small (50–60 nm) and large ( 100 nm) agranular vesicles as well as granular vesicles (100nm), contact the muscle fibers or the sarcoplasmic processes without establishing specialized neuromuscular connections. In addition to the 5-HT-immunoreactive axons, two types of immunonegative axons can also be found in the musculature. By use of conventional electron microscopy, three ultrastructurally distinct types of axon processes can be observed, one of which resembles 5-HT-immunoreactive axons. While the majority of the varicosities do not synapse on the muscle fibers, terminals containing small (50–60 nm) agranular vesicles occasionally form specialized neuromuscular contacts. It is suggested that the 5-HTergic innervation plays a non-synaptic modulatory role in the regulation circular musculature in the genital chamber of the cricket, while the musculature as a whole may be influenced by both synaptic and modulatory mechanisms.Fellow of the Alexander von Humboldt-Stiftung  相似文献   

9.
Summary Immunocytochemical methods were applied to study the distribution of putative neurotransmitters (5-HT, substance P, GABA, glutamate and aspartate) in the nerve plexuses of the foot and the anterior byssus retractor muscle (ABRM) of Mytilus galloprovincialis (Mollusca, Bivalvia). The foot presents extensive nerve plexuses containing 5-HT and substance P-like immunoreactive material with a similar distribution beneath the surface epithelium, around the vessels and in the glandular regions. Coexistence of the two putative neurotransmitters was observed in a few nerve fibers, Conversely, muscle fibers, both in the foot and in the ABRM, are innervated only by 5-HT-positive fibers, while substance P-like material is present only in the networks of the ABRM epimysial sheath. Immunoreactivity for glutamate and aspartate was not demonstrated, while rare GABA-positive nerve cells and fibers were found only in the foot. The results of this investigation provide a morphological background to previous physiological studies on 5-HT in the nervous system of bivalve molluscs. Moreover, they confirm that the nervous system of Mytilus contains a remarkable amount of a substance related to the vertebrate tachykinin family.  相似文献   

10.
Each olfactory (antennal) lobe of the moth Manduca sexta contains a single serotonin (5-HT) immunoreactive neuron whose processes form tufted arbors in the olfactory glomeruli. To extend our present understanding of the intercellular interactions involved in glomerulus development to the level of an individual, identified antennal lobe neuron, we first studied the morphological development of the 5-HT neuron in the presence and absence of receptor axons. Development of the neuron's glomerular tufts depends, as it does in the case of other multiglomerular neurons, on the presence of receptor axons. Processes of the 5-HT neuron are excluded from the region in which the initial steps of glomerulus construction occur and thus cannot provide a physical scaffolding on which the array of glomeruli is organized. Because the neuron's processes are present in the antennal lobe neuropil throughout postembryonic development, 5-HT could provide signals that influence the pattern of development in the lobe. By surgically producing 5-HT-depleted antennal lobes, we also tested the importance of 5-HT in the construction of olfactory glomeruli. Even in the apparent absence of 5-HT, the glomerular array initiated by the receptor axons was histologically normal, glial cells migrated to form glomerular borders, and receptor axons formed terminal branches in their normal region within each glomerulus. In some cases, 5-HT-immunoreactive processes from abnormal sources entered the lobe and formed the tufted intraglomerular branches typical of most antennal lobe neurons, suggesting that local cues strongly influence the branching patterns of developing antennal lobe neurons. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
《Peptides》1986,7(5):877-884
The distribution of somatostatin (SRIF) was examined in normal human forebrain, using thick vibratome cut sections. The unlabeled antibody enzyme method of immunocytochemistry revealed a widespread distribution of SRIF immunoreactive neurons and fibers throughout the septum, diencephalon and corpus striatum. Within the septum SRIF neurons and fibers were observed in the medial and lateral septal nuclei, the nucleus of the diagonal band, the nucleus accumbens and the bed nucleus of the stria terminalis. SRIF neurons and fibers were found in several hypothalamic and anterior thalamic nuclei as well as all regions of the corpus striatum. An interesting collection of SRIF immunoreactive neurons and processes were observed forming a wide band extending anteriorly from the lateral preoptic area through the lateral hypothalamus and substantia innominata posteriorly. This report on the localization of immunoreactive SRIF in the human forebrain extends previous anatomical findings and lends morphological support to recent biochemical studies.  相似文献   

12.
Summary The distribution of serotonin (5-HT) positive fibers in the olfactory bulb of the rat, cat and monkey was studied using the peroxidase-anti-peroxidase (PAP) immunohistochemical method and highly specific antibodies to 5-HT. In general, 5-HT fibers were present throughout all layers in the olfactory bulb of these species except for the olfactory nerve layer and different as well as restricted laminar patterns of 5-HT distribution were observed. There were also species-related differences in the pattern of 5-HT distribution, in each layer. The most notable species difference was apparent in the glomerular layer of the main olfactory bulb. In case of the rat and cat, a very dense plexus of 5-HT fibers was observed to be diffuse in the glomerulus, while in the monkey, the distribution of 5-HT fibers was scanty and partial, as was seen in the accessory olfactory bulb of the rat.This work was supported by grant (No. 56440022) from the Ministry of Education, Science and Culture, Japan  相似文献   

13.
One aspect of integration of implanted neurons into the neuronal circuitry of a defective host brain is the re-establishment of a host-to-graft afferent innervation. We addressed this issue by using the adult cerebellum of Purkinje cell degeneration (pcd) mutant mice, which lack virtually all Purkinje cells after postnatal day (P) 45. Purkinje cells constitute one of the cerebellar cell types being innervated by axons of raphé serotonin (5-HT) neurons. In normal mice, 5-HT-immunoreactive fibers are distributed to all cerebellar folia. Following Purkinje cell loss inpcd mice, cerebellar 5-HT-immunoreactive fibers persist. Cerebellar cell suspensions were prepared from embryonic day (E) 11–13 normal mouse embryos and were intraparenchymally grafted into the cerebellum ofpcd mutants either directly or after pre-treatment with 5, 7-dihydroxytryptamine (5,7-DHT) to selectively remove 5-HT cells of donor origin. The state of Purkinje cells and 5-HT axons was monitored in alternate sections by 28-kDa Ca2+-binding protein (CaBP) and 5-HT immunocytochemistry, respectively. Serotonin-immunoreactive axons were seen in the grafts from 5 to 32 days after transplantation. In some of the grafts which had not been pre-treated with 5,7-DHT, a small number of 5-HT-immunoreactive cell bodies was found, indicating that part of the 5-HT fiber innervation of the graft could actually derive from donor cells. On the other hand, in grafts pre-treated with 5,7-DHT, no 5-HT cell bodies were seen in the grafted cerebellum; 5-HT fibre innervation of the grafts occurred, but it appeared to be slightly less robust compared to situations of co-grafted 5-HT cell bodies. These findings suggest that host 5-HT fibers are able to provide afferent innervation to donor cerebellar tissue; the presence of co-grafted 5-HT cells may augment such an innervation.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

14.
It is now a recognized principle that various neuropeptides are neuronally co-localized with biogenic amine or aminoacid neurotransmitters. In the rat CNS it has previously been shown that TRH is co-localized with 5-HT (and also with substance P) in cell bodies of the posterior raphe that project to the spinal cord. Although TRH cell bodies are known to be widely distributed throughout the forebrain there is no other known co-localization with 5-HT. In this study we further specify the anatomical relationship of TRH with 5-HT by use of surgical and neurotoxic lesioning with reference to limbic forebrain regions wherein TRH is greatly increased following seizures. In groups of rats, the fimbria-fornix was lesioned alone, or combined with a lesion of the dorsal perforant path or the ventral perforant path. There was a sham lesioned control group. Additional groups were lesioned with 5, 7 dihydroxytryptamine, 100 g i.v.t., 45 min. after i.p. desipramine, 25 mg/kg. All rats were sacrificed three weeks after lesions. Indoleamines were determined by HPLC in left anterior cortex, left pyriform/olfactory cortex, left dorsal hippocampus and left ventral hippocampus. TRH was determined by specific RIA in the corresponding right brain regions. The modal n was 7 rats. The surgical lesions reduced 5-HT to below the detection limit in dorsal hippocampus in all three groups, and to 31–52% of control in all the ventral hippocampus groups. 5-HIAA was reduced to 19–37% of control in dorsal and to 30–51% of control in ventral hippocampus. TRH was reduced to 44–61% of control in dorsal hippocampus and to 48–53% of control in ventral hippocampus. As was repeatedly observed in our previous reports all TRH levels in ventral hippocampus were higher than in dorsal hippocampus. The 5, 7 dihydroxytryptamine treatment nearly eliminated the indoleamines from all the forebrain regions examined while TRH levels were unchanged. These results can be explained by our previous data showing that immunoreactive TRH is intrinsic and localized to the vicinity of both CA and dentate granule cells of the hippocampus, but about half of hippocampal TRH enters via fibers of the fimbria-fornix. The perforant path appears to contribute no TRH to hippocampus, but, results with the combined lesion groups showed some reduction of 5-HIAA in ventral hippocampus as is expected from the known perforant path contribution of 5-HT. Since the neurotoxic lesion had no effect on TRH, the 5-HT pathway through the fimbria-fornix is probably anatomically separate from a parallel TRH pathway there. This study shows that co-localization of TRH with 5-HT is very unlikely in four specific limbic forebrain regions.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

15.
The immunohistochemical localization of nine different neuropeptides was studied in the central nervous system of the amphioxus, Branchiostoma belcheri. In the brain, perikarya immunoreactive for urotensin I and FMRFamide were localized in the vicinity of the central canal. One of the processes of each of these perikarya was found to cross the dorso ventral slit-like lumen of the central canal. Oxytocin-immunoreactive short fibers, but not perikarya, were detected in the ventral part of the brain. Perikarya immunoreactive for arginine vasopressin/vasotocin, oxytocin and FMRFamide were widely distributed in the spinal cord. Arginine vasopressin/vasotocin-immunoreactive fibers often made contacts with Rohde cell axons. Angiotensin II-immunoreactive perikarya were observed in the posterior half of the spinal cord, and urotensin I-immunoreactive perikarya were found in the caudal region of the spinal cord. Cholecystokinin/gastrin-immunoreactive fibers, but not perikarya, were detected in the spinal cord; some extended as far as the ependymal layer of the cerebral ventricle. No colocalization of the peptides examined was observed. No immunoreactivity for atrial and brain natriuretic peptides nor for urotensin II was detected. The present study indicates that there are at least six separate neuronal systems that contain different peptides, respectively, in the central nervous system of the amphioxus. Their functions remain to be determined.Part of this investigation has previously been presented in abstract form (Uemura et al. 1989)  相似文献   

16.
Immunocytochemical localization of Na+ channel subtypes RI and RII showed that RI immunoreactivity is relatively low and homogeneous along the rostral-caudal extent of sagittal brain sections, whereas RII staining is heterogeneous and relatively dense in the forebrain, substantia nigra, hippocampus, and cerebellum. The somata of the dentate granule cells, hippocampal pyramidal cells, cerebellar Purkinje cells, and spinal motor neurons are immunoreactive for RI but not RII. In contrast, areas rich in unmyelinated nerve fibers, such as the mossy fibers of the dentate granule cells, the stratum radiatum and stratum oriens of the hippocampus, and the molecular layer of the cerebellum, are strongly immunoreactive for RII but not RI. Differential regulation of expression of RI and RII genes may allow differential modulation of Na+ channel density in somata and axons. The sites of RI localization correlate closely with sites where sustained Na+ currents have been recorded.  相似文献   

17.
中华大蟾蜍多种组织内5—羟色胺免疫染色细胞的分布   总被引:16,自引:0,他引:16  
The distribution of 5-hydroxytryptamine (5-HT) immunostaining cells in the digestive tracts (hibernation and nonhibernation), the brain and other various tissues of Bufo bufo gargarizans was studied by peroxidase anti-peroxidase immunocytochemical method. In the brain, 5-HT immunostaining cells were localized in the raphen nuclear area of brain stem and in the ependyma cell area of the ventriclus tertius of diencephalon. These immunostaining cells were round or oval. The cells usually possess processes which were filled with immunoreactive substance. Some of the processes were contact with the processes of other cells. A few 5-HT positive reactive nerve fibers were observed in the brain stem and the diencephalon. The density of 5-HT immunostaining cells in the digestive tubes were the highest in the pylorus, fundus, cardia of gaster, and moderate in the esophagus and duodenum and the lowest in the large intestine and the small intestine. The density of 5-HT immunostaining cells in the digestive tubes were higher in nonhibernant toads than in hibernant toads. By the statistical method, the difference of the density between the two sorts of toads were notable (P less than 0.05). The 5-HT immunostaining cells were visualized to distribute between the epithelium cells of the mucosa or the epithelium cells of gland. These positive cells usually had one or more processes which contained 5-HT immunoreactive substance. Some were reached into lumen surface of the gland or intestine. Some were extended into lamina propria through the basal membrane. These results indicate that the 5-HT immunostaining cells in digestive tubes could release 5-HT by both endocrine and exocrine ways.  相似文献   

18.
T Tashiro  M A Ruda 《Peptides》1988,9(2):383-391
Axons containing both serotonin-like (5-HT)-LI and substance P-like (SP)-LI immunoreactivity were identified in all laminae of the cat spinal cord at the level of the lumbar enlargement. Using an immunologically-specific, double immunofluorescence method, coexistent 5-HT-LI and SP-LI immunoreactivity could be visualized in the same tissue section with appropriate FITC and rhodamine fluorescent filter sets. The fewest number of coexistent axons were observed in the superficial laminae of the dorsal horn, while their number increased in the more ventral dorsal horn laminae. Numerous coexistent axons were observed in the area adjacent to the central canal. The greatest number of coexistent axons was found in the ventral horn, especially in the motoneuronal cell groups. This study demonstrates that axons containing coexistent 5-HT-LI and SP-LI immunoreactivity are found in all laminae of the cat lumbar spinal cord and are thus involved in both sensory and motor functions. Their more frequent occurrence in the ventral horn suggests a greater role for coexistent 5-HT and SP in motor function. Since axons containing coexistent 5-HT and SP, and those containing only 5-HT, likely originate from different populations of neurons, our observations provide evidence for a diverse origin of descending 5-HT afferents to the different spinal laminae.  相似文献   

19.
Summary Growth of descending noradrenaline (NA) and 5-hydroxytryptamine (5-HT) axons in the rat spinal cord during ontogenesis and following mechanical or chemical, 6-hydroxydopamine (6-OH-DA) induced, axotomy, was studied with the Falck-Hillarp histochemical fluorescence method for monoamines.The major NA and 5-HT axon bundles and terminal innervation areas are present already at birth and an essentially mature pattern of innervation is reached after two weeks.Complete degeneration of both 5-HT and NA nerves in the distal segment is obtained by a transection of the spinal cord. Sprouting of the cut monoamine fibers into the necrotic zone and scar tissue is vigorous in both immature and mature animals, but regeneration into the distal segment is very poor.Selective degeneration of the descending NA axons and terminals is obtained by a localized intraspinal 6-OH-DA injection. Thus, the 5-HT fiber systems as well as all other parts of the spinal cord are left intact. The method should therefore prove useful for evaluating the exact functional role of the NA and 5-HT neuron systems in the spinal cord.Reinnervation of the distal part of the spinal cord by new NA fibers following 6-OH-DA induced denervation is described. This process is faster in younger animals but takes place also in adult animals. The present evidence suggests that reinnervation mainly is the result of downgrowth of the axotomized fibers, but growth in the form of collateral sprouting from a few possibly surviving fibers in the distal region may also contribute. Reinnervation lead to a normal innervation pattern within 1–2 months in the various age groups.It is suggested that the poor regeneration of many spinal nerve tracts often reported in the literature following transection of the spinal cord is due to extraneuronal factors such as scar tissue and impaired circulation rather than to the nerves per se since reinnervation by NA nerves was very poor following mechanical transection but good following chemical, 6-OH-DA-induced axotomy.  相似文献   

20.
Summary The distribution of serotonin (5-HT) immunoreactive structures has been investigated in the brain of the crested newt by means of indirect immunofluorescence, and unlabeled antibody peroxidase-antiperoxidase-complex (PAP) or biotin-avidin-system (BAS) techniques. In the newt, the bulk of the serotoninergic system extends from the raphe region of the medulla oblongata, through the isthmus, toward the mesencephalic tegmentum, and is characterized by pyriform neurons mainly located in a subependymal position, close to the midline. Also in the caudal hypothalamus, in addition to some 5-HT-positive adenohypophysial cells, many immunoreactive CSF-contacting neurons are found lining the paraventricular organ and the nucleus infundibularis dorsalis. A rich serotoninergic innervation was observed in the preoptic area and in the habenular complex. Concerning the telencephalon, immunopositive nerve fibers are encountered in the dorsal pallium, primordium hippocampi, striatum and olfactory bulbs. The general organization of serotoninergic systems in the newt brain exhibit close similarities to that described in higher vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号