首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The influence of chronic administration of eplerenone on the intracrine as well as on the extracellular action of angiotensin II (Ang II) on L-type inward calcium current was investigated in the failing heart of cardiomyopathic hamsters (TO-2).For this, eplerenone (200 mg/kg/day) was administered orally to 2 month-old cardiomyopathic hamsters for a period of 3 months. Measurements of the peak inward calcium current (I(Ca)) was performed in single cells under voltage clamp using the whole cell configuration. The results indicated that eplerenone suppressed the intracrine action of Ang II (10(-)(8) M) on peak I(Ca) density. Moreover, the intracellular dialysis of the peptide did not change the time course of I(Ca) inactivation in animals treated chronically with eplerenone. The extracellular administration of Ang II (10(-)(8) M) incremented the peak I(Ca) density by only 20+/-8% (n=30) compared with 38+/-4% (n=35) (P<0.05) obtained in age-matched cardiomyopathic hamsters not exposed to eplerenone. Interestingly, the inhibitory of eplerenone (10(-7) M) on the intracrine action of Ang II was also found, in vitro, but required an incubation period of, at least, 24 h. The inhibitory action of eplerenone on the intracellular action of Ang II was partially reversed by exposing the eplerenone-treated cells to aldosterone (10 nM) for a period of 24 h what supports the view that: a) the mineralocorticoid receptor(MR) was involved in the modulation of the intracrine action of the peptide; b) the effect of eplerenone on the intracrine as well as on the extracellular action of Ang II was related ,in part, to a decreased expression of membrane-bound and intracellular AT1 receptors. In conclusion: a) eplerenone inhibits the intracrine action of Ang II on inward calcium current and reduces drastically the effect of extracellular Ang II on I(Ca); b) aldosterone is able to revert the effect of eplerenone; c) the mineralocorticoid receptor is an essential component of the intracrine renin angiotensin aldosterone system.  相似文献   

2.
Spironolactone is a diuretic steroid which is capable of blocking the binding of aldosterone to its cytosol receptor at the distal convoluted tubule. In addition, it has been shown that spironolactone is a strong inhibitor of steroidogenesis. More recently, new aldosterone antagonists have been discovered. Some of these compounds are more active than spironolactone in competing with aldosterone and have higher specificity for mineralocorticoid receptors. In this study we compare the direct activity of new antimineralocorticoids (SC 23133, SC 19886, SC 26304, and SC 27169) on aldosterone biosynthesis. Marked differences were found in the activity of these compounds upon steroidogenesis. SC 23133 gave rise to a strong inhibiting activity (90%). This activity was reversible (recovery of spontaneous production occurs 150 min after the end of the administration of SC 23133). SC 19886 totally inhibited aldosterone biosynthesis (95%) in a lasting mean. Conversely, SC 27169 and SC 26304 presented no or weak inhibiting effect. Further experiments showed that SC 27169 was unable to block the stimulation of aldosterone biosynthesis induced by corticotropic peptides, whereas the administration of SC 23133 and SC 19886 totally suppressed the stimulatory effect of ACTH and angiotensin II. Owing to the important stimulation of the renin-angiotensin system induced by antimineralocorticoid treatment, these results suggest that SC 23133 and SC 19886 will exert a higher antinatriuretic activity than SC 27169.  相似文献   

3.
The present study was to investigate the effects and action mechanisms of digoxin and ouabain on steroidogenesis in human adrenocortical NCI-H295 cells. Administration of digoxin or ouabain for 24 h decreased the basal and angiotensin II (Ang II)-stimulated release of aldosterone by NCI-H295 cells. The conversions of corticosterone (substrate of cytochrome P450 aldosterone synthase, P450c11AS) to aldosterone or deoxycortisol (substrate of cytochrome P450 11beta-hydroxylase, P450c11beta) to cortisol were reduced by digoxin or ouabain. The basal and 22-hydroxy-cholesterol (a membrane-permeable cholesterol, substrate of cytochrome P450 side-chain cleavage enzyme, P450scc)-stimulated pregnenolone release in mitochondria was inhibited by digoxin or ouabain. Digoxin or ouabain suppressed the basal and Ang II-stimulated protein expression of steroidogenic acute regulatory (StAR) protein and P450scc. Incubation of digoxin or ouabain for 24 h reduced P450c11AS mRNA expression in NCI-H295 cells. Digoxin or ouabain (10(-6) M, 24 h)-treated cells showed a lower resting intracellular Ca2+ concentration ([Ca2+]i) and an attenuated response of [Ca2+]i to Ang II. Since no significant cytotoxicity was observed at 10(-6) M digoxin or ouabain, the digoxin- or ouabain-induced decrease of aldosterone or cortisol release was not associated with cytotoxicity. These results demonstrate that digoxin or ouabain inhibits the aldosterone or cortisol release via reduction of P450c11AS or P450c11beta and P450scc activities, inhibition of StAR and P450scc protein expression, suppression of P450c11AS mRNA expression, and attenuation of Ca2+ mobilization in NCI-H295 cells.  相似文献   

4.
5.
In vivo studies have demonstrated that aldosterone is an independent contributor to glomerulosclerosis. In the present study, we have investigated whether aldosterone itself mediated glomerulosclerosis, as angiotensin II (Ang II) did, by inducing cultured renal mesangial cells to produce plasminogen activator inhibitor-1 (PAI-1), and whether these effects were mediated by aldosterone-induced increase in transforming growth factor beta(1) (TGF-beta(1)) expression and cellular reactive oxygen species (ROS) activity. Quiescent rat mesangial cells were treated by aldosterone alone or by combination of aldosterone and spironolactone, Ang II, neutralizing antibody to TGF-beta(1) or antioxidant Nacetylcysteme (NAC). This study indicate that aldosterone can increase PAI-1 mRNA and protein expression by cultured mesangial cells alone, which is independent of aldosterone-induced increases in TGF-beta(1) expression and cellular ROS. The effects on PAI-1, TGF-beta(1) and ROS generation were markedly attenuated by spironolactone, a mineralocorticoid receptor antagonist, which demonstrate that mineralocorticoid receptor (MR) may play a role in mediating these effects of aldosterone.  相似文献   

6.
Modulators are proposed to be novel ether aminophosphoglycerides that stabilize unoccupied and occupied glucocorticoid receptor steroid binding and inhibit glucocorticoid receptor complex activation. Two isoforms, modulator 1 and modulator 2, have been purified from rat liver cytosol [Bodine, P.V., & Litwack, G. (1990) J. Biol. Chem. 265, 9544-9554]. Since the mineralocorticoid receptor is relatively resistant to activation, modulator's effect on rat distal colon mineralocorticoid receptor function was examined. Warming of unoccupied receptor decreased residual specific [3H]aldosterone binding by 86 +/- 2%. Both modulator isoforms completely prevented this destabilization with Km's of 2 +/- 1 microM modulator 1 and 24 +/- 5 microM modulator 2. Warming of occupied mineralocorticoid receptors decreased [3H]aldosterone binding by 56 +/- 3%. Modulator only partially stabilized occupied receptor binding with Km's of 10 +/- 2 microM modulator 1 and 68 +/- 8 microM modulator 2. Modulator inhibited receptor activation with Km's of 3 +/- 1 microM modulator 1 and 33 +/- 10 microM modulator 2. Double-reciprocal analysis showed linear kinetics, and mixing modulator isoforms together had additive effects on unoccupied and occupied receptor steroid binding stabilization and activation inhibition. Colon cytosol contained a low molecular weight, heat-stable factor(s) which inhibited receptor activation and stabilized occupied receptor steroid binding. Molybdate completely stabilized unoccupied mineralocorticoid receptor steroid binding and inhibited activation with half-maximal effects at 3-4 mM but only stabilized occupied receptor binding by approximately 40%. These data indicate that (i) apparent physiologic concentrations of modulator stabilize mineralocorticoid receptor steroid binding and inhibit receptor activation, (ii) an aldosterone-responsive tissue contains a modulator-like activity, and (iii) molybdate mimics the effects of modulator.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
RALES, EPHESUS and redox   总被引:4,自引:0,他引:4  
In RALES, low doses of the mineralocorticoid receptor (MR) antagonist spironolactone, added to standard of care for severe heart failure, improved survival by 30% and lowered hospitalization by 35%. Animal studies with the selective MR antagonist eplerenone have similarly shown MR blockade to prevent the cerebral, renal and coronary vascular inflammatory response to elevated aldosterone levels. There is now general acceptance that aldosterone concentrations inappropriate for salt status have major deleterious effects on the cardiovascular system.

In many instances, however (e.g. Randomized Aldactone Evaluation Study (RALES), EPHESUS) aldosterone levels are normal and salt status unremarkable and yet MR blockade has unquestioned benefits. In these instances, there is increasing evidence that coronary and cardiac MR are activated by normal circulating cortisol levels, in the cellular context of generation of reactive oxygen species (ROS) and/or alteration in intracellular redox status.

MR in VSMC and cardiomyocytes are normally predominantly occupied by cortisol in tonic inhibitory mode. Blockade of 11β hydroxysteroid dehydrogenase type II (11βHSD2) or ROS generation both serve to activate cortisol–MR complexes, thus mimicking the effects of mineralocorticoid/salt imbalance on blood vessels and the heart. In RALES and EPHESUS, it is likely that the antagonists are blocking normal levels of cortisol, not aldosterone, from activating MR in the context of tissue damage and ROS generation. If this is the case, MR antagonists may be of wide therapeutic potential in cardiovascular disease and not confined to those characterized by aldosterone/salt excess. Finally, the pathophysiologic roles of always-occupied MR in ‘unprotected’ tissues such as cardiomyocytes or neurons in response to altered intracellular redox status remain to be explored.  相似文献   


8.
Adipose tissue inflammation and insulin resistance are central to the pathogenesis of the metabolic syndrome. Spironolactone, an antagonist of mineralocorticoid receptor, glucocorticoid receptor and androgen receptor, and agonist of progesterone receptor, has anti-inflammatory activity. Blockade of the renin-angiotensin-aldosterone system has been shown to improve glucose metabolism. We have investigated whether spironolactone has direct effects on glucose uptake and interleukin-6 secretion in human adipocytes. Spironolactone, but not its active metabolite canrenoic acid, significantly increased basal and insulin-stimulated glucose uptake in cultured IN VITRO-differentiated adipocytes of women, without affecting insulin sensitivity. The effect was not due to changes in abundance of glucose transporters 1 or 4 or in degree of cell differentiation. Spironolactone, but not canrenoic acid, significantly reduced basal interleukin-6 secretion by cultured stromal-vascular cells. These effects of spironolactone were not mediated by ligand-dependent antagonism of the mineralocorticoid, glucocorticoid, or androgen receptors. Spironolactone may have a novel role in increasing glucose uptake into adipose cells and attenuating adipose tissue inflammation, with implications for management of metabolic syndrome.  相似文献   

9.
Rat C6 glioma cells contain two receptors for adrenocorticoids—the predominant glucocorticoid receptor and low densities of the Type I corticosteroid (mineralocorticoid) receptor. Nanomolar concentrations of deoxycorticosterone, corticosterone and aldosteceptor. Nanomolar concentrations of deoxycorticosterone, corticosterone and aldosterone, which fully occupy Type I receptors, produced a slight stimulatory effect on C6 cell growth in serum-free media. However, spironolactone, a Type I receptor antagonist, and pregnenolone, which does not bind to Type I receptors, had similar effects. Therefore, the slight growth stimulation produced by low steroid concentrations is not mediated by Type I or glucocorticoid receptors, but may be due to an effect on cell membrane properties or other receptor-independent action. Occupation of glucocorticoid receptors by higher concentrations of corticosteroids inhibited C6 cell growth.  相似文献   

10.
11.
12.
13.
Manipulating the metabolism of glucocorticoids may serve as a useful adjunct in the treatment of breast cancer. The 11β-hydroxysteroid dehydrogenase type 2 enzyme (11βHSD2) potently inactivates glucocorticoids thereby protecting the non-selective mineralocorticoid receptor (MR) in fluid transporting tissues. In the present study, Western blot analysis showed the presence of 11βHSD2 in 66% of the breast tumor samples. The 11βHSD2 and MR are also present in the breast tumor cell line PMC42. Glycyrrhetinic acid abolished glucocorticoid metabolism and inhibited cell growth by 40%, the latter at concentrations consistent with glucocorticoid receptor (GR) and MR binding studies. Metabolism was increased by glucocorticoids, the anti-glucocorticoid RU 38486 and anti-mineralocorticoid spironolactone, while aldosterone had no effect. Neither cortisol nor aldosterone affected cell proliferation, but both RU 38486 and spironolactone caused a significant decrease in cell number. The effects of RU 38486 were only observed at micromolar concentrations and are inconsistent with an action via GR or progesterone receptor (PR). This study shows that 11βHSD2 activity and cell proliferation of PMC42 cells can be modulated via steroid receptors.  相似文献   

14.
The role of aldosterone in the pathogenesis of heart failure (HF) is still poorly understood. Recently, aldosterone has been shown to modulate the function of cardiac Ca(2+) and K(+) channels, thus playing a role in the electrical remodeling process. The goal of this work was to investigate the role of aldosterone on the cardiac Na(+) current (I(Na)). We analyzed the effects of aldosterone on I(Na) in isolated adult mouse ventricular myocytes, using the whole cell patch-clamp technique. After 24 h incubation with 1 microM aldosterone, the I(Na) density was significantly increased (+55%), without alteration of the biophysical properties and the cell membrane capacitance. Aldosterone (10 nM) increased the I(Na) by 23%. In 24-h coincubation experiments, with the use of actinomycin D, cycloheximide, or brefeldin A, the effect of aldosterone on I(Na) was abolished. Spironolactone (mineralocorticoid receptor antagonist, 10 microM) prevented the 1 microM aldosterone-dependent I(Na) increase, whereas RU-38486 (glucocorticoid receptor antagonist, 10 microM) did not. The action potential duration (APD) was longer in aldosterone-treated (APD(90): +53%) than in control myocytes. In addition, the L-type Ca(2+) current was also upregulated (+48%). We performed quantitative RT-PCR measurements and Western blots to quantify the mRNA and protein levels of Na(v)1.5 and Ca(v)1.2 (main channels mediating cardiac I(Na) and I(Ca)), but no significant difference was found. In conclusion, this study shows that aldosterone upregulates the cardiac I(Na) and suggest that this phenomenon may contribute to the HF-induced electrical remodeling process that may be reversed by spironolactone.  相似文献   

15.
Inhibitory effects of flavonoid phytochemicals, flavones, flavonols and isoflavones on cortisol production were examined in human adrenal H295R cells stimulated with di-buthylyl cAMP. In addition, the inhibitory effects of these chemicals on the activity of P450scc, 3beta-HSD type II (3beta-HSD II), P450c17, P450c21 and P45011beta, steroidogenic enzymes involved in cortisol biosynthesis, were examined in the same cells. Exposure to 12.5 microM of the flavonoids 6-hydroxyflavone, 4'-hydroxyflavone, apigenin, daidzein, genistein and formononetin significantly decreased cortisol production (by 6.3, 69.6, 47.5, 26.6, 13.8 and 11.3%, respectively), and biochanin A significantly decreased cortisol production (by 47.3%) at a concentration of 25 microM without any significant cytotoxic effects or changes in cell number. Daidzin, the 7-glucoside of daidzein, did not alter cortisol production by H295R cells at concentrations over 10 microg/ml (24 microM). Daidzein-induced reduction of cortisol production by H295R cells was not inhibited by the estrogen receptor antagonist ICI 182,780. The flavonoids 6-hydroxyflavone, daidzein, genistein, biochanin A and formononetin strongly and significantly inhibited microsomal 3beta-HSD II activity at concentrations from 1 to 25 microM, and I(50) values were estimated to be 1.3, 2, 1, 0.5 and 2.7 microM, respectively. In addition, these flavonoids significantly inhibited microsomal P450c21 activity at 12.5 and/or 25 microM. In addition, 6-hydroxyflavone inhibited activity of microsomal P450c17 and mitochondrial P45011beta at 12.5 and/or 25 microM. Results of Lineweaver-Burk's plot analysis indicate that daidzein is a competitive inhibitor of the activity of 3beta-HSD II and P450c21. K(m) and V(max) values of 3beta-HSD II for DHEA were estimated to be 6.6 microM and 328pmol/minmg protein, respectively. K(m) and V(max) values of P450c21 for progesterone were estimated to be 2.8 microM and 16pmol/minmg protein, respectively. K(i) values of 3beta-HSD II and P450c21 for daidzein were estimated to be 2.9 and 33.3 microM, respectively.  相似文献   

16.
The steroid hormone output of the adrenal gland is crucial in the maintenance of hormonal homeostasis, with hormonal imbalances being associated with numerous clinical conditions which include, amongst others, hypertension, metabolic syndrome, cardiovascular disease, insulin resistance and type 2 diabetes. Aspalathus linearis (Rooibos), which has been reported to aid stress-related symptoms linked to metabolic diseases, contains a wide spectrum of bioactive phenolic compounds of which aspalathin is unique. In this study the inhibitory effects of Rooibos and the dihydrochalcones, aspalathin and nothofagin, were investigated on adrenal steroidogenesis. The activities of both cytochrome P450 17α-hydroxylase/17,20 lyase and cytochrome P450 21-hydroxylase were significantly inhibited in COS-1 cells. In order to study the effect of these compounds in H295R cells, a human adrenal carcinoma cell line, a novel UPLC-MS/MS method was developed for the detection and quantification of twenty-one steroid metabolites using a single chromatographic separation. Under both basal and forskolin-stimulated conditions, the total amount of steroids produced in H295R cells significantly decreased in the presence of Rooibos, aspalathin and nothofagin. Under stimulated conditions, Rooibos decreased the total steroid output 4-fold and resulted in a significant reduction of aldosterone and cortisol precursors. Dehydroepiandrosterone-sulfate levels were unchanged, while the levels of androstenedione (A4) and 11β-hydroxyandrostenedione (11βOH-A4) were inhibited 5.5 and 2.3-fold, respectively. Quantification of 11βOH-A4 showed this metabolite to be a major product of steroidogenesis in H295R cells and we confirm, for the first time, that this steroid metabolite is the product of the hydroxylation of A4 by human cytochrome P450 11β-hydroxylase. Taken together our results demonstrate that Rooibos, aspalathin and nothofagin influence steroid hormone biosynthesis and the flux through the mineralocorticoid, glucocorticoid and androgen pathways, thus possibly contributing to the alleviation of negative effects arising from elevated glucocorticoid levels.  相似文献   

17.
A low-salt diet is known to decrease and salt excess to increase blood pressure in humans and rodents. Sex steroids seem to play a role in salt dependent hypertension. However, little is known about sex differences in mineralocorticoid receptor blockade between male and female rats. The objective of the work was at first to investigate the effects of a low-salt vs. a high-salt diet on blood pressure without the influence of gonadal steroids in male and female rats. Second, to determine the sex-specific effects of mineralocorticoid receptor blockade by spironolactone in high-salt and low-salt fed gonadectomized male and female animals. Normotensive male and female Wistar rats were gonadectomized and put on a low (NaCl<0.03%) or high (NaCl=4%) salt diet. On each diet animals received spironolactone or placebo. Blood pressure was measured by tail-cuff-method; 24-h urine samples were collected in metabolic cages and blood was collected for hormonal measurements. High-salt diet significantly increased systolic blood pressure in both sexes. This effect could be blocked effectively by spironolactone only in male rats. Spironolactone treatment significantly increased aldosterone levels in males and females independent of the sodium content of the diet. High sodium diet significantly increased relative kidney weight, which was not altered by spironolactone treatment. Independently of gonadal steroids a high-salt diet increased blood pressure in gonadectomized male and female rats. Spironolactone lowered blood pressure only in male not in female rats on a high-salt diet clearly indicating sex-specific effects of the mineralo-corticoid antagonist spironolactone.  相似文献   

18.
19.
Cardiac aldosterone levels have not been evaluated in diastolic heart failure (DHF), and its roles in this type of heart failure remain unclear. This study aimed to detect cardiac aldosterone by use of a liquid chromatographic-mass spectrometric method and to assess the effects of mineralocorticoid receptor blockade on hypertensive DHF. Dahl salt-sensitive rats fed 8% NaCl diet from 7 wk (hypertensive DHF model) were divided at 13 wk into three groups: those treated with subdepressor doses of eplerenone (12.5 or 40 mg x kg(-1) x day(-1)) and an untreated group. Dahl salt-sensitive rats fed 0.3% NaCl diet served as controls. Cardiac aldosterone was detected in the DHF rats but not in the control rats, with increased ventricular levels of mineralocorticoid receptor. Cardiac levels of 11-deoxycorticosterone, corticosterone, and 11-dehydrocorticosterone were not different between the control and DHF rats, but the tissue level of corticosterone that has an affinity to mineralocorticoid receptor was 1,000 times as high as that of aldosterone. Aldosterone synthase activity and CYP11B2 mRNA were undetectable in the ventricular tissue of the DHF rats. Administration of eplerenone attenuated ventricular hypertrophy, ventricular fibrosis, myocardial stiffening, and relaxation abnormality, leading to the prevention of overt DHF. In summary, the myocardial aldosterone level increased in the DHF rats. However, its value was extremely low compared with corticosterone, and no evidence for enhancement of intrinsic myocardial aldosterone production was found. The upregulation of mineralocorticoid receptor may play a central role in the pathogenesis of DHF, and blockade of mineralocorticoid receptor is likely an effective therapeutic regimen of DHF.  相似文献   

20.
Aldosterone stimulates epidermal growth factor receptor expression   总被引:6,自引:0,他引:6  
The steroid hormone aldosterone plays an important role during pathological tissue modifications, similar to cardiovascular or renal fibrosis. The underlying mechanisms for the pathological actions are not understood. Interaction of aldosterone with the epidermal growth factor (EGF) receptor is an attractive hypothesis to explain pathological tissue remodeling elicited by aldosterone, because (i) mineralocorticoids can sensitize cells for EGF, (ii) mineralocorticoid receptor (MR)-antagonists reduce EGFR-mRNA expression, (iii) EGFR itself supports the development of cardiovascular or renal fibrosis, and (iv) signaling elements involved in the pathological action of aldosterone (similar to ERK1/2 or NFkB) are typical downstream modules during EGF signaling. In addition, an interaction of aldosterone and EGF with respect to ERK1/2 activation has been described. Here we show that aldosterone stimulates EGFR expression in renal tissue of adrenalectomized rats and in human renal primary cell cultures. Furthermore, Chinese hamster ovary (CHO) cells normally devoid of EGFR or MR express EGFR after transfection with human MR (CHO-MR cells) but not after transfection with human glucocorticoid receptor (CHO-GR cells). In CHO-MR cells, EGFR-expression is up-regulated by aldosterone and inhibited by spironolactone. CHO-MR cells but not CHO-GR cells respond with ERK1/2 phosphorylation to EGF exposure. The responsiveness to other peptide hormones was virtually not affected. These data suggest that EGFR is an aldosterone-induced protein and is involved in the manifold (patho)biological actions of aldosterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号