首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sera from a total of 564 olive baboons collected at six different localities in west central Kenya were examined for the presence of cross-reactive immunoglobulin allotypes with reagents used for human sera. Serum samples were tested for Km (1 and 3), Glm (1–3 and 17), andG3m (5, 6, 10, 11, 13–16, 21, 24, and 26). Polymorphism was found for Glm (1 and 17) and G3m (10, 13, and 15). These findings on antigen presence, absence, and polymorphism show broad similarities to, along with some differences from, previous studies of baboons. Our data support the view that there are variations in allotype frequencies between troops at single localities, as well as differences among geographically separated areas. Linkage disequilibria for Gm allotypes differ in strength and direction among the various local Kenya olive baboon populations.  相似文献   

2.
The populations of India are genetically diverse, both within and between geographic regions; immunoglobulin (GM) allotypes provide important information on genetic differences between populations, since the frequencies of combinations of allotypes (termed "haplotypes") vary dramatically among ethnic groups. As part of a project to assess genetic diversity among defined Indian populations, we have examined eight GM allotypes in a sample of 101 unrelated Sikhs who have migrated to Toronto, Canada: Glm(1, 2, 3, 17) and G3m (5, 15, 16, 21). Sikhs are a religious group that arose in the Punjab about 1500 A.D.; most of the original converts are believed to have been middle to upper-middle caste Hindus. Gm allotyping showed that six Gm haplotypes occurred at polymorphic frequencies (greater than 0.01) in Sikhs: Gm3;5, Gm1,17;21, Gm1,2,17;21, Gm1,17;5, Gm1,17;15,16, and Gm1,3;5. These haplotypes have all been previously reported in Indian populations. The frequencies of the first four haplotypes resembled the published frequencies for lower-caste Hindus of NW India more than upper-caste Hindus. However, the last two haplotypes have been found only in upper-caste Hindus. The frequency of one of these, Gm1,17;15,16 was higher in Sikhs (0.09) than has been reported in any Indian population with the exception of Parsis (who are descended from Iranians). We speculate that the high frequency of this haplotype may have been characteristic of some of the Hindu castes in the Punjab from which Sikhs are descended.  相似文献   

3.
调查了我国24个民族、74个群体的免疫球蛋白同种异型Gm、Km分布。测定了9560例个体的Gm(1,2,3,5,21)因子和9611例个体的Km(1)因子。根据Gm单体型频率计算了遗传距离并绘制了系统树。结果支持作者早前提出的有关中华民族起源于古代两个不同群体的假说。这两个群体大致以北纬30度为界,分别居栖在黄河和长江流域。本文数据和其他主要人种的Gm分布资料相比较,作者认为在人类进化中,尼格鲁人种首先和高加索-蒙古人种分离;然后高加索人种和蒙古人种分离。不同人种间的差异,大于同一人种内不同群体间的差异。蒙古人种明显地被分为南、北两大类型,分别以具有高频率的Gm~(1;21)和Gm~(1,3;5)单体型作为种族的标记。与高加索人种关联的Gm~(3;5)单体型存在于中国西北地区的少数民族中,提示混有高加索人种血缘。很可能来源于中亚地区的高加索人,通过“丝绸之路”进入中国。Km因子在所调查的74个群体中呈随机分布。  相似文献   

4.
We report the results of typings, for immunoglobulin G allotypes, of 5392 Native Americans from ten samples, the typings having been performed over the last 20 years. Four cultural groups are represented: the Pimans-Pima and Papago; the Puebloans-Zuni and Hopi; the Pai-Walapai; and the Athabascans-Apache and Navajo. The haplotype Gm1;21 has the highest frequency in each population while Gm1,2;21 is polymorphic in all except the Hopi. The Mongoloid marker Gm1;11,13 is found primarily in the Athabascans. The Caucasian haplotype Gm3;5,11,13 is found at polymorphic frequencies in several of the populations but its frequency is very low or absent among nonadmixed individuals. Although Nei's standard genetic distance analysis demonstrates genetic similarity at the Gm and Km loci, the heterogeneity that does exist is consistent both with what is known about the prehistory of Native Americans and traditional cultural categories. When the current Gm distributions are analyzed with respect to the three-migration hypothesis, there are three distinct Gm distributions for the postulated migrants: Gm1;21 and Gm1,2;21 for the Paleo-Indians 16,000 to 40,000 years ago; Gm1;21, Gm1,2;21, and Gm1;11,13 for the second wave of Na-Dene hunters 12,000 to 14,000 years ago; and Gm1;21 and Gm1;11,13 for the Eskimo-Aleut migration 9,000 years ago. The Pimans, Puebloans, and the Pai are descendents of the Paleo-Indians while the Apache and Navajo are the contemporary populations related to the Na-Dene. Finally, the Gm distribution in Amerindians is found to be consistent with a hypothesis of one migration of Paleo-Indians to South American, while the most likely homeland for the three ancestral populations is found to be in northeastern Asia.  相似文献   

5.
Serum samples from 526 baboons (Papio cynocephalus) from 10 troops from the Laikipia district of northern Kenya, from 60 baboons from two troops from the Awash National Park, central Ethiopia, and from 127 baboons from South Africa were tested for Gm and Inv allotypes. Four of the 10 troops from Kenya formed a western cluster and six formed an eastern cluster. The clusters were separated by approximately 10 miles. The samples were tested for Gm (1, 2, 3, 5, 6, 11, 13, 14, 15, 16, 17, 21, 24) and for Inv (1, 2, 3). All samples were negative for Gm (2, 6, 14, 16, 24). All from Kenya and Ethiopia were negative for Inv (2), and all were positive for Gm (11, 17) and for Inv (3). The south African samples differed from the others in that 10 were negative for Gm (11) and four were positive for Inv (2). Taking all animals into account, polymorphism was present for Gm (1, 3, 5, 11, 13, 15, 21) and for Inv (1, 2). No two Kenya troops had the same array of phenotypes or of haplotypes, but the four western troops were more similar to each other than to the six eastern troops. Three haplotypes were present in the eastern troops that were not present in the western troops and five were present in the western troops that were not present in the eastern troops. Five haplotypes appeared in at least some troops of each cluster of troops. The samples from each of the two troops from Ethiopia show the same three phenotypes but with significantly different frequencies. It is suggested that the variation in haplotype frequencies observed among the 10 troops from Kenya is the result of a founder effect deriving largely from fission of a large troop into two smaller troops. The data show that speculations about the evolutionary origin of the allotypes are premature. For most species, too few animals have been tested and except for those in this study their origins are not known. Finally, the samples have been from too restricted an area.  相似文献   

6.
Serum samples from two populations of Catalonia, Spain, 208 from Olot (Gerona) and 209 from Tortosa (Tarragona), were typed for G1m (1, 2, 3, 17), G3m (5, 10, 11, 13, 14, 15, 16, 26), and Km (1). The Gm patterns of the Catalonian populations are characterized by the presence of four haplotypes, Gm 1,17;21,26 Gm 1,2,17;21,26 Gm 1,3;5,10,11,13,14,26 and Gm 3;5,10,11,13,14,26. The homogeneity for haplotype Gm 1,17;21,26 among our data and other European populations suggests the existence of an isofrequency line which starts from the Mediterranean zone of Iberian Peninsula and continues through the northwestern part of Europe. From this line a decreasing cline towards the south can be observed. For the haplotype Gm 1,2;17,21,26, affinities are observed between Catalonian populations and other populations from central Europe. This confirms the existence of a gradient towards low values from NW to SE. The presence of the typical Mongoloid haplotype Gm 1,3;5,10,11,13,14,26 is discussed in this paper. No significant differences in the frequencies of the Km1 allele were observed among the European populations.  相似文献   

7.
In a sample of n = 133 non-related patients suffering from pulmonary tuberculosis, Gm and Km typings have been carried out and compared with healthy controls from the same geographical area. All the Gm allotypes tested were found to be more preponderant in the patients than in the healthy controls and these differences were found to be statistically significant for Gm (1) and Gm (5) only and not for the other immunoglobulin allotypes e.g. Gm (2). The frequency of Km (1) was lower and that of Km (3) was higher in the patients than in the controls. These differences were, however, statistically not significant.  相似文献   

8.
Distribution of Gm and Km allotypes among five populations in China   总被引:3,自引:0,他引:3  
Serum samples from five populations in China [173 from Huhehote (Naimengu Zhizhiqu), 195 from the Beijing area, 131 from Hefei (Anhui Province), 155 from Hangzhou (Zhejiang Province), and 152 from Guangzhou (Guangdong Province)] were tested for G1m(1, 2, 3, and 17), G2m(23), G3m(5, 10, 11, 13, 14, 15, 16, 21, and 26), and Km(1). The Gm pattern of the Chinese populations are characterized by the presence of four haplotypes, Gm1, 17;..;21, 26, Gm1, 2, 17;..;21, 26, Gm1, 17;..;10, 11, 13, 15, 16, and Gm1, 3;23;5, 10, 11, 13, 14, 26, which are characteristic of Mongoloid populations. Agreement was obtained in all Chinese samples between the observed and expected frequencies on the basis of the Hardy-Weinberg equilibrium of phenotypes. Heterogeneity tests of the haplotypic distributions among the five populations showed no significant differences in the distributions of Gm phenotypes between Huhehote and Beijing nor between Hefei and Hangzhou, whereas highly significant differences were observed among the three districts: northern part (Huhehote and Beijing), central part (Hefei and Hangzhou), and southern part (Guangzhou). The data indicate a south to north genocline, ranging from Huhehote to Guangzhou in which Gm1, 17;..;21, 26 changes from 0.471 to 0.183, Gm1, 17;..;10, 11, 13, 15, 16 from 0.097 to 0.033, and Gm1, 3;23;5, 10, 11, 13, 14, 26 from 0.229 to 0.730. In contrast to the Gm system, no significant regional differences in the frequencies of the Km1 allele were observed among the five populations.  相似文献   

9.
The Gm and Km immunoglobulin allotypes are presented, for the first time, for six South American Indian tribes (Baniwa, Kanamari, Kraho, Makiritare, Panoa, and Ticuna) and one Central American tribe (Guaymi). Additional allotype information is presented for five previously reported South American tribes (Cayapo, Piaroa, Trio, Xavante and Yanomama). The distributions of the Gm and Km allotypes among all the tribal populations tested to date are reviewed and evidence is presented for the presence of a north (high) -south (low) cline in Km frequency. The wave theory of the populating of the South American continent was tested by an examination of the distribution of six alleles (Gmax;g, Gma;b0,3,t, Dia, Rz, TFD Chi, and 6PGDC), absent in some populations but with polymorphic proportions in others. The present, limited, data failed to confirm the theory.  相似文献   

10.
Data are presented on the distribution of the Gm and Inv allotypes of human IgG in samples from Melanesian populations, three from Malaita and three from Bougainville of the Solomon Islands. The Lau from Malaita are polymorphic for the phenogroup, Gm1, 2, 5, 13, 14. This phenogroup is not known to be polymorphic in any other population of the world. The Inv1 frequencies of the populations from Malaita are lower than the lowest observed in samples from Bougainville, and this may indicate an extension of the north-south cline for Inv1 previously reported for Bougainville. Samples from Aita in the north of Bougainville and from the Nagovisi in the south confirm the existence of the north-south cline for Inv1 in Bougainville and suggest the presence of a Gm cline.  相似文献   

11.
Summary This paper reports the distribution of immunoglobulin Gm and Km allotypes in 74 Chinese geographical populations. These populations are derived from 24 nationalities comprising 96.6% of the total population of China. A total of 9,560 individuals were phenotyped for Gm(1,2,3,5,21) factors, and 9,611 were phenotyped for Km(1). Phylogenetic trees were constructed on the basis of Gm haplotype frequencies and genetic distances. The results of cluster analysis show the heterogeneity of the Chinese nation, and confirm the hypothesis that the modern Chinese nation originated from two distinct populations, one population originating in the Yellow River valley and the other originating in the Yangtze River valley during early neolithic times (3,000–7,000 years ago). Frequencies of the Gm haplotype of 74 Chinese populations were compared with those of 33 populations from major racial groups. The results suggest that during human evolution, the Negroid group and Caucasoid-Mongoloid group diverged first, followed by a divergence between the Caucasoid and Mongoloid. Interrace divergence is high in comparison with intrarace divergence. There appear to be two distinct subgroups of Mongoloid, northern and southern Mongoloid. The northern and southern Mongoloid have Gm1;21 and Gm1,3;5 haplotypes as race-associate markers, respectively. Furthermore, the Caucasian-associated haplotype Gm3;5 was found in several of the minorities living in the northwest part of China. The presence of the Gm3;5 haplotype is attributed to the Caucasians living in Central Asia throughout the Silk Road. The amount of Caucasian admixture has been estimated. In contrast to the Gm haplotype distribution, Km1 gene frequencies showed a random distribution in the populations studied.  相似文献   

12.
The immunoglobulin (Ig) allotypes (Gm, Am, and Km systems) are the genetic markers of the human IgG1, IgG2, IgG3(Gm), IgA2(Am), and kappa light chain(Km). The Gm system, with 18 allotypes shows the greatest degree of polymorphism and we define two Am and three Km allotypes. In this review, we report all the results observed in non-human primates belonging to Hominoidea, Cercopithecoidea, Ceboidea, Lorisoidea, Lemuroidea, and Tupaoidea superfamilies (72 species and subspecies). They concern published data and new unpublished ones. The distribution of the human allotypes and their localization are reported, as well as discordant results observed in some cases with anti-allotype reagents of the same specificity (human and animal origin). Some allotypes are restricted to man. Hominoidea have the greatest number of Gm allotypes and the richest polymorphism. Relatively few allotypes have been found in Cercopithecoidea and Prosimians; most Platyrrhinian species have no allotype. The epitopic polymorphism has been interpreted in terms of evolution of Ig allotypes from primate to man and of the phylogenetic relationships of non-human primate species.  相似文献   

13.
Blood samples from 448 people living in six villages in the Huon Peninsula in northeast Papua, New Guinea, were tested for Gm(1,2,3,5,6,10,11,13,14,17,21,24,26) and Inv(1) [Km(1)]. All the people are non-Austronesian (NAN) speakers. As expected, there was a low frequency of the Gm1,3,5,10,11,13,14,26 haplotype, but in contradiction to expectations there was a complete absence of the Gm1,2,17,21,26 haplotype. In addition, samples from people in one village (Yupna) and probably those for two other villages (Irumu 13 and 14) have the rare haplotype Gm1,5,10,11,13,14,21,26 at polymorphic frequencies. Two samples from people living in Yupna had the rare phenotype Gm(1,3,17,21,26), indicating the presence of any one of several rare haplotypes that had been observed in other populations. These are discussed.  相似文献   

14.
Summary Serum samples from Armenians, and from Libyan and Ashkenazi Jews living in Israel were tested for Gm (1, 2, 3, 5, 6, 10, 11, 13, 14, 17, 21, 24, 26) and for Inv(1) [Km(1)].The Gm data indicate that all three populations have Negroid and Mongoloid admixture. The minimum amount of admixture varies from 3.1% (Armenians) to 5.5% (Libyan Jews). This admixture had not been detected by the study of other polymorphisms, thus once again underlining the sensitivity of the Gm system. The haplotype frequencies among the Libyan Jews are markedly different from those among the Ashkenazi Jews. Surprisingly (coincidentally?) the haplotype frequencies among the Ashkenazi Jews and the Armenians are similar.The Libyan Jews have a significantly higher frequency of Inv 1 than do the Ashkenazi Jews and among the latter, Inv 1 is at least twice as frequent among Polish Jews as it is among Russian Jews.  相似文献   

15.
Data from population and family studies show that the human immunoglobulin Gm allotypes prove to be unique genetic markers in studies of human genetics, particularly in the characterization of different race or population determined by the differences in Gm hapolotype composition and its frequency. In this paper, a total of 5,641 individuals from 40 populations were typed for Gma, f, x, b, and g factors. The genetic distances between 13 minorities (Zhuang, Uygur, Dong, Hui, Korean, Kazak, Bai, Tibetan, Mongolian, and Oroqen) and 27 Han populations were computed by Nei's method on the basis of Gm haplotype frequencies and a phylogenetic tree was constructed. The conclusions were (1) The common Gm haplotype are afb, axg, a, and ag. The Gmfb haplotype is observed only in Uygur, Hui, and Kazak. (2) There is a parallel relationship between genetic distance and geographic distance for these populations. (3) The Gmafb haplotype frequency increases sharply from north to south, and there is a concomitant sharp decrease in ag and axg frequencies. (4) A hypothesis was proposed by the author that the origin of the Chinese nation might exist in both the Yellow River and the Yangtze River region and the most likely boundary between the Southern and the Northern Chinese is near the thirty degrees north latitude.  相似文献   

16.
The aim of this study was to evaluate the intra- and inter-population variability of the Gm/Km system in the Madonie Mountains, one of the main geographical barriers in north-central Sicily. We analysed 392 samples: 145 from Alia, 128 from Valledolmo, 25 from Cerda and 94 from Palermo. Serum samples were tested for G1m (1,2,3,17), G2m (23), G3m (5,6,10,11,13,14,15,16,21,24,28) and Km (1) allotypes by the standard agglutination-inhibition method. We found the typical genetic patterns of populations in peripheral areas of the Mediterranean basin, with a high frequency of haplotypes Gm5*;3;23 and Gm5*;3;... The frequency of Gm21,28;1,17;... (about 16%) is rather high compared with other southern areas. Of great importance is the presence of the common African haplotype Gm 5*;1,17;..., ranging in frequency from 1.56% at Valledolmo to 5.5% at Alia. The presence of this haplotype suggests past contacts with peoples from North Africa. The introduction of African markers could be due to the Phoenician colonization at the end of the 2nd millennium b.c. or to the more recent Arab conquest (8th–9th centuries a.d.).  相似文献   

17.
Distribution of Gm and Km allotypes among ten populations of Assam, India   总被引:1,自引:0,他引:1  
Serum samples from ten endogamous populations of Assam, India-Brahmins, Kalitas, Kaibartas, Muslims, Ahoms, Karbis, Kacharis, Sonowals, Chutiyas, and Rajbanshis-were typed for G1m (1, 2, 3, 17), G3m (5, 10, 11, 13, 14, 15, 16, 21, 26), and Km (1). Among Brahmins, Kalitas, Kaibartas, Muslims, Ahoms, Sonowals, Chutiyas, and Rajbanshis, five different Gm haplotypes were found: Gm1,17;21,26; Gm1,17;10,11,13,15,16; Gm1,2,17;21,26; Gm1,3;5,10,11,13,14,26; and Gm3;5,10,11,13,14,26. Kacharis and Karbis show only four of these haplotypes: Gm3;5,10,11,13,14,26 is absent among them. The intergroup variability in the distribution of these haplotypes is considerable, which can be explained by the ethnohistory of these populations. Genetic distance analysis, in which five Chinese population samples were included, revealed the existence of three main clusters: 1) North and Central Chinese; 2) Kalitas, Kaibartas, Chutiyas, Rajbanshis, Muslims, and Brahmins; and 3) Ahoms, Sonowals, Kacharis, South Chinese, and Karbis. The clusters suggest some genetic relation between these four Assamese populations and South Chinese, which is again understandable considering the ethnohistory of the populations of Northeast India. In the Km system, too, a remarkable variability is seen in distribution of phenotype and allele frequency.  相似文献   

18.
In sexually polymorphic species, reproductive morphology governs mating patterns and the character of negative frequency-dependent selection. If local environmental conditions cause sexual morphs to differ between populations, then frequency-dependent selection should create corresponding geographic variation in morph frequencies. We investigate this relation with a model of morph-ratio evolution and analysis of geographic variation in the heterostylous plant Narcissus triandrus. Unlike other tristylous species, N. triandrus possesses both imperfect reciprocity among morphs in sex-organ position and a self-incompatibility system that permits outcrossing within and between morphs. We sampled 137 populations throughout the Iberian Peninsula for floral-morph ratios, and measured floral morphology in 31 populations. Morph ratios exhibited three atypical features: (1) predominance of the long-styled (L) morph; (2) absence of the mid-styled (M) morph from 17.5% of populations; and (3) a negative relation between the frequencies of the L and M morphs among populations. Morph ratios varied geographically, with decreasing frequency of the M morph from the southeast to the northwest of the species' range. Much of this variation accompanied allometric change in the positions of sex organs, especially the mid-level organs, with the M morph declining in frequency and ultimately being lost in large-flowered populations. Using multivariate multiple regression, we demonstrate that variation in floral morphology among populations predicts this geographic variation in morph frequencies. Our theoretical analysis illustrates that patterns of pollen transfer governed by imperfect sex-organ reciprocity can select for unequal equilibrium morph ratios like those observed for N. triandrus. We interpret the L-biased morph ratios and the unusual morphology of N. triandrus as a consequence of its atypical intramorph compatibility system.  相似文献   

19.
郑燕  王康  李玉婷  乔宪凤  陈茂华 《昆虫学报》2014,57(11):1335-1342
【目的】筛选适合我国梨小食心虫Grapholita molesta种群遗传学研究的微卫星位点,并依据所筛选的微卫星位点进行梨小食心虫地理种群的遗传多样性分析。【方法】利用欧洲梨小食心虫和苹果蠹蛾Cydia pomonella种群中已报道的11个微卫星位点, 分析各位点在我国12个种群257头梨小食心虫样本中的扩增稳定性,再进行其多态性分析,筛选适合的位点,然后进行种群遗传多态性分析。【结果】在分析的11个微卫星位点中, 位点Gm01, Gm03, Gm04和Cyd15无法稳定扩增; 位点Gm05扩增成功率较低, 位点Gm07遗传多态性较低; 而位点Gm02, Gm06, Gm08, Gm09和Gm10等扩增效果稳定且遗传多态性丰富。这5个稳定扩增的微卫星位点平均等位基因数量(NA)为7.417~12.500, 平均观察杂合度(Ho)为0.366~0.655, 平均期望杂合度(He)为0.642~0.846, 多态信息含量(PIC)为0.800~0.935。【结论】本研究成功筛选出位点Gm02, Gm06, Gm08, Gm09和Gm10等5个微卫星位点。基于这5个微卫星位点标记的结果显示, 山东和陕西不同梨小食心虫地理种群均具有丰富的遗传多样性。 这5个位点可以适用于我国梨小食心虫种群的进一步遗传分析研究。  相似文献   

20.
G1m (z, a, x, f) and G3m (g, b0, b1, b3, b5, s, t) allotypes were tested in 1079 Chukchi inhabitants of interior Chukotka and adjacent Kamchatka. Genetic variation at this particular locus is provided by the presence of three haplotypes, namely, za;g, zax;g and za;bO35st, revealed with mean frequencies of 0.748, 0.089 and 0.154, respectively. Traces of Caucasian Gm (f;bO135) haplotype were observed in 9 of 10 populations studied. Judging from its frequency in the whole group (0.009), European admixture in Reindeer Chukchi did not exceed 1.3%. Analysis of covariance and variance matrices containing gene frequencies for 11 polymorphic loci revealed the aspects of genetic structure. Simultaneously, the action of systematic versus nonsystematic pressure was also evaluated and interpreted in the light of historical and ecological events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号