首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alimentary canal of the spittlebug Lepyronia coleopterata (L.) differentiates into esophagus, filter chamber, midgut (conical segment, tubular midgut), and hindgut (ileum, rectum). The filter chamber is composed of the anterior extremity of the midgut, posterior extremity of the midgut, proximal Malpighian tubules, and proximal ileum; it is externally enveloped by a thin cellular sheath and thick muscle layers. The sac-like anterior extremity of the midgut is coiled around by the posterior extremity of the midgut and proximal Malpighian tubules. The tubular midgut is subdivided into an anterior tubular midgut, mid-midgut, posterior tubular midgut, and distal tubular midgut. Four Malpighian tubules run alongside the ileum, and each terminates in a rod closely attached to the rectum. Ultrastructurally, the esophagus is lined with a cuticle and enveloped by circular muscles; its cytoplasm contains virus-like fine granules of high electron-density. The anterior extremity of the midgut consists of two cellular types: (1) thin epithelia with well-developed and regularly arranged microvilli, and (2) large cuboidal cells with short and sparse microvilli. Cells of the posterior extremity of the midgut have regularly arranged microvilli and shallow basal infoldings devoid of mitochondria. Cells of the proximal Malpighian tubule possess concentric granules of different electron-density. The internal proximal ileum lined with a cuticle facing the lumen and contains secretory vesicles in its cytoplasm. Dense and long microvilli at the apical border of the conical segment cells are coated with abundant electron-dense fine granules. Cells of the anterior tubular midgut contain spherical secretory granules, oval secretory vesicles of different size, and autophagic vacuoles. Ferritin-like granules exist in the mid-midgut cells. The posterior tubular midgut consists of two cellular types: 1) cells with shallow and bulb-shaped basal infoldings containing numerous mitochondria, homocentric secretory granules, and fine electron-dense granules, and 2) cells with well-developed basal infoldings and regularly-arranged apical microvilli containing vesicles filled with fine granular materials. Cells of the distal tubular midgut are similar to those of the conical segment, but lack electron-dense fine granules coating the microvilli apex. Filamentous materials coat the microvilli of the conical segment, anterior and posterior extremities of the midgut, which are possibly the perimicrovillar membrane closely related to the nutrient absorption. The lumen of the hindgut is lined with a cuticle, beneath which are cells with poorly-developed infoldings possessing numerous mitochondria. Single-membraned or double-membraned microorganisms exist in the anterior and posterior extremities of the midgut, proximal Malpighian tubule and ileum; these are probably symbiotic.  相似文献   

2.
J. E. Bron    C. Sommerville    G. H. Rae 《Journal of Zoology》1993,230(2):207-220
The functional morphology of the alimentary canal of copepodite and chalimus stages of Lepeophtheirus salmonis (Krøyer, 1837) is described and compared with that found in other copepods studied to date.
The buccal cavity passes into a gut comprising three major regions: foregut (oesophagus), midgut and hindgut. The foregut and hindgut both posscss a cuticular lining whereas the midgut is lined with specialized epithelial cells. The midgut is divided into three recognizable zones, namely anterior midgut caecum, anterior midgut and posterior midgut. Three main types of epithelial cell are recognizable in the midgut: vesicular cells, microvillous cells and basal cells which correspond to the cell types normally described in other parasitic and free-living copepod species.
Digestion is thought to occur in the midgut and be mediated by the epithelial cells that line it. Although several glands appear to discharge into the area of the buccal cavity, none was seen to interface to any other area of the gut. There was no evidence for the involvement of commensal gut bacteria in food digestion.  相似文献   

3.
钟海英  张雅林  魏琮 《昆虫学报》2020,63(4):421-432
【目的】本研究通过合哑蝉Karenia caelatata成虫消化道的形态学、组织学和超微结构研究,进一步了解蝉科(Cicadidae)代表种类的消化道形态和功能分化。【方法】利用光学显微镜和透射电子显微镜技术,对合哑蝉雄成虫消化道的整体形态以及食道、滤室(中肠前端及后端、马氏管基部、后肠基部)、滤室外中肠(锥形体、中肠环)、后肠(回肠、直肠)的一般形态和超微结构进行了详细观察,同时对滤室的组织结构进行了研究。【结果】结果表明,合哑蝉消化道由食道、滤室、滤室外中肠及后肠组成。食道狭长,被有上表皮和内表皮。中肠前端、中肠后端、马氏管基部以及后肠基部被一肌肉鞘包围形成滤室构造。组成中肠前端和后端的细胞基膜高度内褶,顶端的微绒毛发达。中肠后端分布许多线粒体和高电子密度的分泌颗粒。滤室外的中肠包括膨大的锥形体、中肠环。其中,锥形体由两种细胞组成;中肠环分为前、中、后3个不同的区段。前中肠细胞包含大量的分泌颗粒、线粒体、粗面内质网和溶酶体;中中肠细胞含有分泌颗粒;后中肠细胞包括许多低电子密度的分泌颗粒和滑面内质网。类铁蛋白颗粒零星分布于中肠环的前、中区段。组成锥形体和中肠环前端的细胞顶端微绒毛被丝状物质覆盖。后肠被有一层表皮。食道、中肠环中段、直肠细胞中含有微生物。【结论】本研究获得的合哑蝉消化道形态、组织结构和超微结构方面的信息为其功能分化研究提供了重要信息。同时,相关微生物的发现为进一步探讨共生菌与蝉总科昆虫的协同进化提供了信息。  相似文献   

4.
The alimentary canal of Daphnia pulex consists of a tube-shaped foregut, a midgut (mesenteron) with an anterior pair of small diverticula, and a short hindgut. The foregut and hindgut are structurally similar. Each is formed by a low cuboidal epithelium 5 mum tall and lined with a chitinous intima. The midgut wall consists of a simple epithelium resting on a thick beaded basal lamina which is surrounded by a spiraling muscularis. Anteriorly the midgut cells are columnar in shape being 30 mum in height each having a basal nucleus, anteriorly concentrated mitochondria and in apical border of long thin microvilli. Posteriorly the midgut cells become progressively shorter so that in the posteriormost region of the midgut the cells are 5 mum tall and cuboidal in shape. The microvilli concomitantly become shorter and thicker. All mesenteron cells contain the usual cytoplasmic organelles. The paired digestive diverticula are simple evaginations of the midgut. The wall of each consists of a simple epithelium of cuboidal cells 25 mum in height, each with a brushed border of long thin microvilli. Enzyme secretion appears to be holocrine in mode and not confined to any one region of the mesenteron though definitely polarized anteriorly. The thin gut muscularis encircles the entire length of the midgut and caeca. Thick and thin filaments appear to be in a 6:1 ratio.  相似文献   

5.
On the Antarctica continent the wingless midge, Belgica antarctica (Diptera, Chironomidae) occurs further south than any other insect. The digestive tract of the larval stage of Belgica that inhabits this extreme environment and feeds in detritus of penguin rookeries has been described for the first time. Ingested food passes through a foregut lumen and into a stomodeal valve representing an intussusception of the foregut into the midgut. A sharp discontinuity in microvillar length occurs at an interface separating relatively long microvilli of the stomodeal midgut region, the site where peritrophic membrane originates, from the midgut epithelium lying posterior to this stomodeal region. Although shapes of cells along the length of this non-stomodeal midgut epithelium are similar, the lengths of their microvilli increase over two orders of magnitude from anterior midgut to posterior midgut. Infoldings of the basal membranes also account for a greatly expanded interface between midgut cells and the hemocoel. The epithelial cells of the hindgut seem to be specialized for exchange of water with their environment, with the anterior two-thirds of the hindgut showing highly convoluted luminal membranes and the posterior third having a highly convoluted basal surface. The lumen of the middle third of the hindgut has a dense population of resident bacteria. Regenerative cells are scattered throughout the larval midgut epithelium. These presumably represent stem cells for the adult midgut, while a ring of cells, marked by a discontinuity in nuclear size at the midgut-hindgut interface, presumably represents stem cells for the adult hindgut.  相似文献   

6.
The fine structure of the alimentary canal, especially the midgut and hindgut of Lepidocampa weberi (Diplura: Campodeidae) is described. The general organization of the canal is similar to that of Campodea. The midgut epithelium is composed of columnar apical microvillated cells. Each nucleus contains a single intranuclear crystal. Close to the pyloric region, the posterior midgut cells are devoid of microvilli and intranuclear crystals. There is no special pyloric chamber as in Protura or pyloric cuticular ring as in Collembola but a morphological transformation from midgut to hindgut cells. Eight globular Malpighian papillae, consisting of distal microvillated cells and flat proximal cells, open into the gut lumen via ducts formed by hindgut cells. The structure of the hindgut is complicated and can be divided into three segments. The anterior hindgut cells have an irregular shape and compact cytoplasm. A striking interdigitation between the large bottle-shaped epithelial cells and longitudinal muscle cells occurs in the middle segment of the hindgut. The thick cuticle gives rise to long spikes projecting into the gut lumen. The posterior hindgut cells possess the morphological features for water reabsorption. Some hypotheses are advanced about the function of the different regions of the gut.  相似文献   

7.
The alimentary canal of cicada Platypleura kaempferi is described. It comprises the oesophagus, filter chamber, external midgut section and hindgut. The elongate oesophagus expands posteriorly, with its posterior end constricting to become a bulb. The filter chamber consists of two parts: a very thin sheath and a filter organ. The filter organ is composed of the anterior and posterior ends of the midgut (internal midgut section), and the internal proximal ends of the Malpighian tubules. The external midgut section differentiates into a collapsed sac and a midgut loop. The latter is divided into three distinct segments. The hindgut contains a dilated rectum and a long narrow ileum. The distal portions of the four Malpighian tubules are enclosed in a peritoneal sheath together with the distal ileum before reaching to the rectum. Ultrastructurally, the oesophagus and the hindgut are lined with a cuticle. The filter chamber sheath consists of cells with large irregular nuclei. Filamentous substances coat the microvilli of the cells of the internal midgut section. The posterior end of the midgut comprises two types of cells, with the first type of cells containing many vesicles and scattered elements of rough endoplasmic reticulum. The anterior and posterior segments of the midgut loop cells have ferritin‐like granules. The ileum cells have well‐developed apical leaflets associated with mitochondria. Accumulations of virus‐like particles enclosed in the membrane are observed in the esophagus, conical segment, mid‐ and posterior segments of the midgut loop.  相似文献   

8.
Bumblebees are widely distributed across the world and have great economic and ecological importance as pollinators in the forest as well as in agriculture. The insect midgut consists of three cell types, which play various important roles in digestion, absorption, and hormone production. The present study characterized the anterior and posterior midgut regions of the bumblebee, Bombus morio. The digestive, regenerative and endocrine cells in the midgut showed regional differences in their number, nuclear size, as well as the size of the striated border. Ultrastructurally, the digestive cells contained many mitochondria and long microvilli; however, in the anterior midgut region, these cells showed dilated basal labyrinths with a few openings for the hemocoel, whereas the labyrinths of the basal posterior region remained inverse characteristics. Thus, the characterization of the midgut of B. morio supported an ecto-endoperitrophic circulation, contributing to a better understanding of the digestive process in this bee.  相似文献   

9.
Summary Columnar cells of the larval midgut of the cassava hornworm, Erinnyis ello, display microvilli with vesicles pinching off from their tips (anterior and middle midgut) or with a large number of double membrane spheres budding along their length (posterior midgut). Basal infoldings in columnar cells occur in a parallel array with many openings to the underlying space (posterior midgut) or are less organized with few openings (anterior and middle midgut). Goblet cells have a cavity, which is formed by invagination of the apical membrane and which occupies most of the cell (anterior and middle midgut) or only its upper part (posterior midgut). The infolded apical membrane shows modified microvilli, which sometimes (posterior midgut) or always (anterior and middle midgut) contain mitochondria. The cytoplasmic side of the membrane of the microvilli that contain mitochondria are studded with small particles. The results suggest that the anterior and middle region of the midgut absorbs water, whereas the posterior region secretes it. This results in a countercurrent flux of fluid, which is responsible for the enzyme recovery from undigested food before it is expelled. Intermediary and final digestion of food probably occur in the columnar cells under the action of plasma membrane-bound and glycocalix-associated enzymes.  相似文献   

10.
The midgut of cicadoid and cercopoid insects is differentiated at the anatomical, ultrastructural and cytochemical levels into a conical segment, anterior, mid, and posterior midgut. The cells of the conical segment and anterior midgut are cytochemically very similar. They differ in ultrastructure, the anterior midgut cells having a submicrovillar row of mitochondria and a very marked mucoprotein coat investing the microvilli. The mid-midgut contains mineral spherites, which are formed in cisternae in the endoplasmic reticulum, and ferritin. The posterior midgut differs cytochemically from the anterior midgut and the cells are characterized by deep narrow basal invaginations and the absence of a mucoprotein coat investing the microvilli. It is suggested that nutrient absorption occurs in the conical segment and anterior midgut. Ion absorption may also occur in the anterior midgut. Storage excretion of calcium, magnesium and phosphate occurs in the mid-midgut. Ferritin is also stored here but may be found in other regions of the midgut, particularly in the cicada. The posterior midgut may be involved in ion secretion which could be related to filter chamber function.  相似文献   

11.
The digestive tract of a harpacticoid copepod, Tigriopus californicus (Baker), was studied by using techniques of light and electron microscopy. Four cell types could be distinguished: type 1, an embryonic cell which will replace cells worn away or lost during secretion; type 2, a cell which synthesizes and secretes proteins and also plays a role in lipid absorption; and types 3 and 4, two cell types which absorb lipids. From the abundance of each cell type, the length of microvilli, the development of basal plasma membrane (PM), and luminal projections, the following conclusions were made. (1) The midgut caecum absorbs digested nutrients. (2) The anterior midgut absorbs nutrients and more importantly functions in merocrine and exocrine secretion. The presence of concretions in cell types 2 and 3 in the anterior midgut suggests that these tissues contribute in excretion, and in water and/or ion regulation. (3) The posterior midgut absorbs nutrients and contributes some holocrine secretion.  相似文献   

12.
The midgut of Rhynchosciara americana larvae consists of a cylindrical ventriculus from which protrudes two gastric caeca formed by polyhedral cells with microvilli covering their apical faces. The basal plasma membrane of these cells is infolded and displays associated mitochondria which are, nevertheless, more conspicuous in the apical cytoplasm. The anterior ventricular cells possess elaborate mitochondria-associated basal plasma membrane infoldings extending almost to the tips of the cells, and small microvilli disposed in the cell apexes. Distal posterior ventricular cells with long apical microvilli are grouped into major epithelial foldings forming multicellular crypts. In these cells the majority of the mitochondria are dispersed in the apical cytoplasm, minor amounts being associated with moderately-developed basal plasma membrane infoldings. The proximal posterior ventriculus represents a transition region between the anterior ventriculus and the distal posterior ventriculus. The resemblance between the gastric caeca and distal posterior ventricular cells is stressed by the finding that their microvilli preparations display similar alkaline phosphatase-specific activities. The results lend support to the proposal, based mainly on previous data on enzyme excretion rates, that the endo-ectoperitrophic circulation of digestive enzymes is a consequence of fluid fluxes caused by the transport of water into the first two thirds of midgut lumen, and its transference back to the haemolymph in the gastric caeca and in the distal posterior ventriculus.  相似文献   

13.
Donald L. Mykles   《Tissue & cell》1977,9(4):681-691
The effects of salinity adaptation and of composition and tonicity of fixatives upon the ultrastructure of the posterior midgut caecum (PMC) of Pachygrapsus crassipes have been studied. The PMC epithelium consists of a single layer of columnar cells with a microvillous border. The apical cytoplasm contains numerous mitochondria, lysosomes, and much smooth endoplasmic reticulum. Rough endoplasmic reticulum and Golgi apparatus are situated in the perinuclear cytoplasm. This epithelium resembles other transporting epithelia in that the basal cytoplasm has an extensive system of branched tubules formed from invaginations of the lateral and basal plasma membrane. Numerous mitochondria are associated with the basal tubular system. To determine the possible contribution of the PMC to the osmoregulatory ability of Pachygrapsus, the ultrastructure of the PMC from animals adapted to 40, 50, 100 and 150% sea water was investigated. Enlargement of basal tubules and intercellular spaces at low salinity, suggestive of fluid-transport activity, was found to be an artifact of fixation. The most consistent response when animals were acclimated to dilute salinities was that some basal mitochondria assume a more complex shape, usually appearing as rings in cross sections of the caecum. A hypothesis concerning the functional significance of these mitochondria is proposed.  相似文献   

14.
A. Becker  W. Peters 《Zoomorphology》1985,105(5):326-332
Summary The ultrastructure of the midgut epithelium of Phalangium opilio was examined. In the anterior part of the midgut the epithelium consists of three different types of cells, called resorption, digestion, and excretion cells according to their presumed functions. Excretion cells may represent old digestion cells. The relation between resorption and digestion cells needs further investigation. The epithelium of the posterior part of the midgut consists of two types, transport and secretion cells, which seem to serve mainly for the resorption of water and the secretion of peritrophic membranes, respectively.Peritrophic membranes are secreted by the anterior midgut epithelium mainly in a period between 2 and 4 h after feeding. Chitin or chitin precursors could be localized in vesicles and in the brush border of midgut cells, and in the peritrophic membranes, using colloidal gold labelled with wheat germ agglutinin. Two different textures of chitin-containing microfibrils were found in the peritrophic membranes, either a random or a hexagonal texture. The latter results if the microfibrils polymerize between the basal parts of the microvilli. Irregularities of the hexagonal texture can be correlated with an irregular pattern of the microvilli. In the posterior midgut peritrophic membranes with a random texture, chitin-containing microfibrils are continuously secreted in the form of patches.  相似文献   

15.
Fine structure of the intestine development in cultured sea bream larvae   总被引:5,自引:0,他引:5  
At hatching, the gut cells of Sparus aurata are quite undifferentiated; however, slight ultrastructural differences can already be distinguished between the presumptive intestinal regions. The hindgut cells are more differentiated than midgut cells and the rectal cells show rather particular ultrastructural features. During days 1 (D1) and 2 (D2) after hatching, major changes occur that lead to full differentiation of the epithelial cells. Shortly before the onset of exogenous feeding (D3), the anterior intestine enterocytes can synthesize lipoprotein particles (LP) from endogenous lipids. The posterior intestine enterocytes show morphological features indicating a role in absorption and intracellular digestion of nutrients, whereas the rectal cells do not. Transient ciliated cells occur at hatching (D0) in the presumptive intestine, except in the caudal rectum, and disappear at the start of the late endotrophic phase about 3 days after hatching (D3). At hatching, very scarce enteroendocrine and leucocyte-like cells are found at the base of the gut epithelium. Their number increases throughout development. At D3 (late endotrophic phase), LP synthesized mainly in the periblast invade the circulatory system, interstitial spaces of the subepithelial tissue and intercellular spaces of the gut epithelium. When the endo-exotrophic phase begins (D4), the enterocytes can absorb exogenous food. Acid phosphatase activity was detected in microvilli, pical vacuoles and Golgi complex in both anterior and posterior enterocytes, as well as in supranuclear vacuoles (SNV) of posterior enterocytes, but not in the apical tubulovesicular system (TVS). During the exotrophic phase, large lipid droplets (LD) are found in anterior enterocytes, and the SNV occupy a large cell volume in posterior enterocytes. LP accumulate first in extracellular spaces and then are transferred to the circulatory system. Mucous and rodlet cells appear in the intestinal epithelium during the exotrophic phase, from D15.  相似文献   

16.
Abstract Unique morphological structures occur near the midgut–hindgut juncture in decapod crustaceans, and neither their fine structure nor function are well understood. In the ghost shrimp Lepidophthalmus louisianensis. structures associated with this juncture include an elongate posterior midgut caecum (PMGC) extending into the abdominal hemocoel, a massive swelling of acinar glands encasing the juncture, and a dorso-lateral valve complex involving cuticularized lumenal surfaces of the anterior hindgut. Vivisection, histological studies (LM, TEM) and paraffin-carving (SEM) have been applied to reconstruct morphology of these components and characterize constituent tissues. The lumen of the PMGC is lined by very elongate columnar cells underlain by a thin layer of circular muscle. The hemocoelic surface of the PMGC is covered by cells richly endowed with unique lamellar bodies. The acinar glands are composed of multiple rosettes of secretory cells, from which products appear to empty into the anterior extreme of the hindgut. The dorso-lateral valve complex of the hindgut consists of anterior and posterior components, differing in strength of lumenal ridging and microdentition of the cuticular lining. Unique features of these structures may relate to behavioral, feeding and metabolic adaptations in this obligate fossorial crustacean.  相似文献   

17.
The midgut of C. (G.) truncata accounts for half of the postgastric intestinal tract. The paired anterior midgut caeca arise just behind the pyloric stomach, on either side of the midgut. The unpaired posterior midgut caecum arises dorsally at the rear end of the midgut, where this joins the hindgut. The midgut and its caeca help in the digestive absorption of food. The hindgut is of ectodermal origin and is lined with chitin of a collagenous nature. The connective tissue of the anterior part of the hindgut is packed with tegumental glands whose secretion contains both sulphated and weakly acidic mucosubstances, which facilitate the passage of faecal matter and help to bind food particles. The digestive gland - the hepatopancreas - opens into the anterior part of the midgut, below the anterior midgut caeca. Histologically, its tubules contain three different types of cells - "F", "R" and "B" cells.  相似文献   

18.
The epidermis and associated structures of adult and embryonic Paravortex cardii and Paravortex karlingi, internal parasites of Cerastoderma edule, have been examined using scanning and transmission electron microscopy. The cellular epidermis of adult Paravortex bears cilia and microvilli which differ in number and distribution between P. karlingi and P. cardii. Cellular organelles include mitochondria, lipid bodies, Golgi bodies, and ultrarhabdites. Epidermal nuclei are located in the proximal portion of the cells. The development of the tegument of embryo Paravortex has been described and a possible origin for the embryo capsule is suggested. These findings are discussed in relation to the phylogenetic status of the Turbellaria in relation to other Platyhelminthes and in the functional adaptation of the epidermis for a parasitic mode of life.Abbreviations bb- basal bodies - bl- basal lamella - c- cilia - cp- capsule - dc- dark cells - e- embryos - ep- epidermis - g- Golgi bodies - int- interdigitation (of cells) - l- lipid - lf- lamellar fold - mc- migrating cell - mf- membranous folds - mt- mitochondria - mv- microvilli - n- nucleus - nb- neoblasts - p- projections of epidermis - par- parenchyma of mother - pr- primary rootlet - rc- rhabditogen cells - sr- secondary rootlet - ur- ultrarhabdites - vt- vitelline material  相似文献   

19.
The Drosophila gut is composed of three major parts, the foregut, midgut and hindgut, which arise from anterior and posterior invaginations of the early blastoderm. We review the process of the specification of the gut primordia, subsequent subdivision and region-specific cell differentiation in terms of developmental genetics. Graded activities of maternal signals at anterior and posterior terminal domains of the blastoderm, being mediated by activities of two zygotic gap genes, tailless and huckebein, lead to the activation of key genes that determine the gut primordia: serpent (GATA factor gene) for the endodermal midgut; brachyenteron (Brachyury homolog) for the ectodermal hindgut. fork head (HNF-3 homolog) and caudal (Cdx homolog) are also essential for the development of all gut primordia or hindgut primordium, respectively. Subdivision of the midgut epithelium is regulated by inductive signals emanating from the visceral mesoderm, which is under the control of HOM-C genes. In contrast, pattern formation of the ectodermal foregut and hindgut is regulated by secreted signaling molecules, such as Wingless (Wnt homolog), Hedgehog and Decapentaplegic (Bmp-4 homolog), as in the case of segmented structures and imaginal discs. Finally, the gut is subdivided into at least 36 compartments that are recognized asminimum tissue units of regional differentiation. A few genes that are responsible for determining and maintaining the state of overt-differentiation of the compartments have also been reported. A marked feature of the genetic mechanism of the gut development is the unexpectedly wide spectrum of the similarities of relevant genes and regulatory pathways of gene expression between Drosophila and vertebrates, which may imply a prototypic style of body plan common to protostomes and deuterostomes.  相似文献   

20.
The ultrastructure of the Malpighian tubules of the adult desert locust, Schistocerca gregaria, is described. Male and female adults possess about 233 tubules, which empty proximally into the midgut-ileal region of the alimentary canal by way of 12 ampullae. The tubules vary from 10 mm to 23 mm in length. About one third of them are directed anteriorly, attaching distally at the caeca, while the remainder are directed posteriorly, attaching to other tubules, the rectum or large tracheal trunks adjacent to the hindgut. The Malpighian tubules from all locations examined consist of three ultrastructurally distinct regions: proximal, middle, and distal, referring to their position relative to the midgut. All cell types possess ultrastructural features characteristic of ion transporting tissue, i.e., elaboration of the basal and apical membranes and a close association of these membranes with mitochondria. The distal and proximal segments are short (1.5-1.7 mm) and heavily tracheated, and each is composed of a single, distinct cell type. The middle region is the longest segment of the Malpighian tubule and is composed of two distinct cell types, primary and secondary. Both cell types are binucleate. The more numerous primary cells have large nuclei, contain laminate concretions in membrane-bound vacuoles, and possess large microvilli that contain mitochondria. The secondary cells are smaller and possess smaller nuclei. The microvilli are reduced and lack mitochondria. Secondary cells do not contain laminate concretions. The possible compartmentalization of ion and fluid transport function based on segmentation in the Malpighian tubules is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号