首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein kinase superfamily is an important group of enzymes controlling cellular signaling cascades. The increasing amount of available experimental data provides a foundation for deeper understanding of details of signaling systems and the underlying cellular processes. Here, we describe the Protein Kinase Resource, an integrated online service that provides access to information relevant to cell signaling and enables kinase researchers to visualize and analyze the data directly in an online environment. The data set is synchronized with Uniprot and Protein Data Bank (PDB) databases and is regularly updated and verified. Additional annotation includes interactive display of domain composition, cross-references between orthologs and functional mapping to OMIM records. The Protein Kinase Resource provides an integrated view of the protein kinase superfamily by linking data with their visual representation. Thus, human kinases can be mapped onto the human kinome tree via an interactive display. Sequence and structure data can be easily displayed using applications developed for the PKR and integrated with the website and the underlying database. Advanced search mechanisms, such as multiparameter lookup, sequence pattern, and blast search, enable fast access to the desired information, while statistics tools provide the ability to analyze the relationships among the kinases under study. The integration of data presentation and visualization implemented in the Protein Kinase Resource can be adapted by other online providers of scientific data and should become an effective way to access available experimental information.  相似文献   

2.
We have cloned a novel gene, Ehm2, that is expressed in high-metastatic but not in low-metastatic K-1735 murine melanoma cells. The Ehm2 gene encodes a protein of 527 amino acid residues, showing up to 41% amino acid identity with the FERM domain of NF2/ERM/4.1 superfamily proteins, which have the function of connecting cell surface transmembrane proteins to cytoskeletal molecules. The Ehm2 gene was mapped to chromosome 4 and was expressed in the liver, lung, kidney, and testis and in 7- to 17-day embryos. The highest level of homology was observed with NBL4, which is a new subfamily protein of the NF2/ERM/4.1 superfamily. A human homologue of the mouse Ehm2 gene, showing significant homology (83% identity), was identified in the genomic DNA and EST databases. Furthermore, seven rat EST clones and one pig EST clone in the GenBank EST database were identified as having 83-92% sequence homology with the cDNA sequence of the mouse Ehm2 gene. Thus, Ehm2 is a highly conserved gene that encodes a novel member of the NF2/ERM/4.1 superfamily proteins.  相似文献   

3.
Analysis of the human expressed sequence tag (EST) database identified four clones that contain sequences of previously uncharacterized genes, members of the ATP-binding cassette (ABC) superfamily. Two new ABC genes (EST20237, 31252) are located at Chromosome (Chr) 1q42 and 1q25 respectively in humans, as determined by FISH; at locations distinct from previously mapped genes of this superfamily. Two additional clones, EST 600 and EST 1596, were found to represent different ATP-binding domains of the same gene, ABC2. This gene was localized to 9q34 in humans by FISH and to the proximal region of Chr 2 in mice by linkage analysis. All genes display extensive diversity in sequence and expression pattern. We present several approaches to characterizing EST clones and demonstrate that the analysis of EST clones from different tissues is a powerful approach to identify new members of important gene families. Some drawbacks of using EST databases, including chimerism of cDNA clones, are discussed.  相似文献   

4.
对蛋白质质谱数据进行数据库比对和鉴定是蛋白质组学研究技术中的一个重要步骤。由于公共数据库蛋白质数据信息不全,有些蛋白质质谱数据无法得到有效的鉴定。而利用相关物种的EST序列构建专门的质谱数据库则可以增加鉴定未知蛋白的几率。本文介绍了利用EST序列构建Mascot本地数据库的具体方法和步骤,扩展了Mascot检索引擎对蛋白质质谱数据的鉴定范围,从数据库层面提高了对未知蛋白的鉴别几率,为蛋白质组学研究提供了一种较为实用的生物信息学分析技术。  相似文献   

5.
Summary In recent times, new members of the insulin/relaxin peptide superfamily have been identified by both differential cloning strategies as well as bioinformatic searching of the EST databases. We have used the public and Celera Genomics databases to search for novel members of this peptide family. No new members of the insulin/relaxin family were identified although the human (H3) and mouse (M3) relaxin 3 genes that we recently discovered in the Celera Genomics database were identified in the public database. We were able to confirm that there are no mouse equivalents of human INSL-4 or human gene 1 relaxin. Hence, as the two human relaxin genes (H1 and H2) are localized together with INSL6 and INSL4 on chromosome 9 it is probable that INSL4 and H1 relaxin are the result of a gene duplication which did not occur in non-primates. The discovery of a full relaxin 3 sequences in a new Zebrafish brain EST library, which retains a high homology in both A and B chain peptide sequence with the H3 peptide, indicate that this novel peptide has important conserved functions.  相似文献   

6.
In order to study gene expression in a reproductive organ, we constructed a cDNA library of mature flower buds in Lotus japonicus, and characterized expressed sequence tags (ESTs) of 842 clones randomly selected. The EST sequences were clustered into 718 non-redundant groups. From BLAST and FASTA search analyses of both protein and DNA databases, 58.5% of the EST groups showed significant sequence similarities to known genes. Several genes encoding these EST clones were identified as pollen-specific genes, such as pectin methylesterase, ascorbate oxidase, and polygalacturonase, and as homologous genes involved in pollen-pistil interaction. Comparison of these EST sequences with those derived from the whole plant of L. japonicus, revealed that 64.8% of EST sequences from the flower buds were not found in EST sequences of the whole plant. Taken together, the EST data from flower buds generated in this study is useful in dissecting gene expression in floral organ of L. japonicus.  相似文献   

7.
8.
The Arabidopsis genome sequencing in 2000 gave to science the first blueprint of a vascular plant. Its successful completion also prompted the US National Science Foundation to launch the Arabidopsis 2010 initiative, the goal of which is to identify the function of each gene by 2010. In this study, an exhaustive analysis of The Institute for Genomic Research (TIGR) and The Arabidopsis Information Resource (TAIR) databases, together with all currently compiled EST sequence data, was carried out in order to determine to what extent the various metabolic networks from phenylalanine ammonia lyase (PAL) to the monolignols were organized and/or could be predicted. In these databases, there are some 65 genes which have been annotated as encoding putative enzymatic steps in monolignol biosynthesis, although many of them have only very low homology to monolignol pathway genes of known function in other plant systems. Our detailed analysis revealed that presently only 13 genes (two PALs, a cinnamate-4-hydroxylase, a p-coumarate-3-hydroxylase, a ferulate-5-hydroxylase, three 4-coumarate-CoA ligases, a cinnamic acid O-methyl transferase, two cinnamoyl-CoA reductases) and two cinnamyl alcohol dehydrogenases can be classified as having a bona fide (definitive) function; the remaining 52 genes currently have undetermined physiological roles. The EST database entries for this particular set of genes also provided little new insight into how the monolignol pathway was organized in the different tissues and organs, this being perhaps a consequence of both limitations in how tissue samples were collected and in the incomplete nature of the EST collections. This analysis thus underscores the fact that even with genomic sequencing, presumed to provide the entire suite of putative genes in the monolignol-forming pathway, a very large effort needs to be conducted to establish actual catalytic roles (including enzyme versatility), as well as the physiological function(s) for each member of the (multi)gene families present and the metabolic networks that are operative. Additionally, one key to identifying physiological functions for many of these (and other) unknown genes, and their corresponding metabolic networks, awaits the development of technologies to comprehensively study molecular processes at the single cell level in particular tissues and organs, in order to establish the actual metabolic context.  相似文献   

9.
10.
11.
To establish a proteomic reference map for soybean leaves, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 260 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS. Fifty-three of these protein spots were identified by searching NCBInr and SwissProt databases using the Mascot search engine. Sixty-seven spots that were not identified by MALDI-TOF-MS analysis were analyzed with liquid chromatography tandem mass spectrometry (LC-MS/MS), and 66 of these spots were identified by searching against the NCBInr, SwissProt and expressed sequence tag (EST) databases. We have identified a total of 71 unique proteins. The majority of the identified leaf proteins are involved in energy metabolism. The results indicate that 2D-PAGE, combined with MALDI-TOF-MS and LC-MS/MS, is a sensitive and powerful technique for separation and identification of soybean leaf proteins. A summary of the identified proteins and their putative functions is discussed.  相似文献   

12.
Human bone marrow stromal cells (HBMSC) are pluripotent cells with the potential to differentiate into osteoblasts, chondrocytes, myelosupportive stroma, and marrow adipocytes. We used high-throughput DNA sequencing analysis to generate 4258 single-pass sequencing reactions (known as expressed sequence tags, or ESTs) obtained from the 5' (97) and 3' (4161) ends of human cDNA clones from a HBMSC cDNA library. Our goal was to obtain tag sequences from the maximum number of possible genes and to deposit them in the publicly accessible database for ESTs (dbEST of the National Center for Biotechnology Information). Comparisons of our EST sequencing data with nonredundant human mRNA and protein databases showed that the ESTs represent 1860 gene clusters. The EST sequencing data analysis showed 60 novel genes found only in this cDNA library after BLAST analysis against 3.0 million ESTs in NCBI's dbEST database. The BLAST search also showed the identified ESTs that have close homology to known genes, which suggests that these may be newly recognized members of known gene families. The gene expression profile of this cell type is revealed by analyzing both the frequency with which a message is encountered and the functional categorization of expressed sequences. Comparing an EST sequence with the human genomic sequence database enables assignment of an EST to a specific chromosomal region (a process called digital gene localization) and often enables immediate partial determination of intron/exon boundaries within the genomic structure. It is expected that high-throughput EST sequencing and data mining analysis will greatly promote our understanding of gene expression in these cells and of growth and development of the skeleton.  相似文献   

13.
A total of 17 Pl and TAC clones each representing an assigned region of chromosome 5 were isolated from P1 and TAC genomic libraries of Arabidopsis thaliana Columbia, and their nucleotide sequences were determined. The length of the clones sequenced in this study summed up to 1,081,958 bp. As we have previously reported the sequence of 9,072,622 bp by analysis of 125 P1 and TAC clones, the total length of the sequences of chromosome 5 determined so far is now 10,154,580 bp. The sequences were subjected to similarity search against protein and EST databases and analysis with computer programs for gene modeling. As a consequence, a total of 253 potential protein-coding genes with known or predicted functions were identified. The positions of exons which do not show apparent similarity to known genes were also assigned using computer programs for exon prediction. The average density of the genes identified in this study was 1 gene per 4277 bp. Introns were observed in 74% of the potential protein genes, and the average number per gene and the average length of the introns were 4.3 and 168 bp, respectively. The sequence data and gene information are available on the World Wide Web database KAOS (Kazusa Arabidopsis data Opening Site) at http://www.kazusa.or.jp/arabi/.  相似文献   

14.
15.
Intracellular symbiotic relationships are prevalent between cnidarians, such as corals and sea anemones, and the photosynthetic dinoflagellate symbionts. However, there is little understanding about how the genes express when the symbiotic relationship is set up. To characterize genes involved in this association, the endosymbiosis between sea anemone, Aiptasia pulchella, and dinoflagellate zooxanthellae, Symbiodinium spp., was employed as a model. Two complementary DNA (cDNA) libraries were constructed from RNA isolated from symbiotic and aposymbiotic A. pulchella. Using single-pass sequencing of cDNA clones, a total of 870 expressed sequence tags (ESTs) clones were generated from the two libraries: 474 from symbiotic animal and 396 from aposymbiotic animal. The initial ESTs consisted of 143 clusters and 231 singletons. A BLASTX search revealed that 147 unique genes had similarities with protein sequences available from databases; 120 of these clones were categorized according to their putative function. However, many ESTs could not assign functionally. The putative roles of some of the identified genes relative to endosymbiosis were discussed. This is the first report of the use of EST analysis to examine the gene expression in symbiotic and aposymbiotic states of the cnidarians. The systematic analysis of EST from this study provides a useful database for future investigations of the molecular mechanisms involved in algal-cnidarian symbiosis.  相似文献   

16.
Wool is composed primarily of proteins belonging to the keratin family. These include the keratins and keratin‐associated proteins (KAPs) that are responsible for the structural and mechanical properties of wool fibre. Although all human keratin and KAP genes have been annotated, many of their ovine counterparts remain unknown and even less is known about their genomic organisation. The aim of this study was to use a combinatory approach including comprehensive cDNA and de novo genomic sequencing to identify ovine keratin and KAP genes and their genomic organisation and to validate the keratins and KAPs involved in wool production using ovine expressed sequence tag (EST) libraries and proteomics. The number of genes and their genomic organisation are generally conserved between sheep, cattle and human, despite some unique features in the sheep. Validation by protein mass spectrometry identified multiple keratins (types I and II), epithelial keratins and KAPs. However, 15 EST‐derived genes, including one type II keratin and 14 KAPs, were identified in the sheep genome that were not present in the NCBI gene set, providing a significant increase in the number of keratin genes mapped on the sheep genome.  相似文献   

17.
Identification and characterization of new plant microRNAs using EST analysis   总被引:50,自引:0,他引:50  
Seventy-five previously known plant microRNAs (miRNAs) were classified into 14 families according to their gene sequence identity. A total of 18,694 plant expressed sequence tags (EST) were found in the GenBank EST databases by comparing all previously known Arabidopsis miRNAs to GenBank‘s plant EST databases with BLAST algorithms. After removing the EST sequences with high numbers (more than 2) of mismatched nucleotides, a total of 812 EST contigs were identified. After predicting and scoring the RNA secondary structure of the 812 EST sequences using mFold software, 338 new potential miRNAs were identified in 60 plant species, miRNAs are widespread. Some microRNAsmay highly conserve in the plant kingdom, and they may have the same ancestor in very early evolution. There is no nucleotide substitution in most miRNAs among many plant species. Some of the new identified potential miRNAs may be induced and regulated by environmental biotic and abiotic stresses. Some may be preferentially expressed in specific tissues, and are regulated by developmental switching. These findings suggest that EST analysis is a good alternative strategy for identifying new miRNA candidates, their targets, and other genes. A large number of miRNAs exist in different plant species and play important roles in plant developmental switching and plant responses to environmental abiotic and biotic stresses as well as signal transduction. Environmental stresses and developmental switching may be the signals for synthesis and regulation of miRNAs in plants. A model for miRNA induction and expression, and gene regulation by miRNA is hypothesized.  相似文献   

18.
Polymorphisms of G-protein coupled receptor (GPCR) genes are associated with disease risk and modification, and the response to receptor-directed therapy. Genomic sequencing ( approximately 1700 automated runs) from as many as 120 chromosomes from 60 multiethnic individuals was performed to confirm non-synonymous coding polymorphisms reported in the dbSNP database from 25 randomly selected GPCR genes. These polymorphisms were in regions of the receptors responsible for structural integrity, ligand binding, G-protein coupling and phosphoregulation. However, most of these putative polymorphisms could not be confirmed (false positive rate of 68%). Based on these results, we suggest that the variability of the superfamily is not well defined, and we caution against exclusive reliance on databases for selection of candidate GPCR polymorphisms for disease association and pharmacogenetic studies.  相似文献   

19.
20.
Expressed sequence tags (ESTs) are randomly sequenced cDNA clones. Currently, nearly 3 million human and 2 million mouse ESTs provide valuable resources that enable researchers to investigate the products of gene expression. The EST databases have proven to be useful tools for detecting homologous genes, for exon mapping, revealing differential splicing, etc. With the increasing availability of large amounts of poorly characterised eukaryotic (notably human) genomic sequence, ESTs have now become a vital tool for gene identification, sometimes yielding the only unambiguous evidence for the existence of a gene expression product. However, BLAST-based Web servers available to the general user have not kept pace with these developments and do not provide appropriate tools for querying EST databases with large highly spliced genes, often spanning 50 000-100 000 bases or more. Here we describe Gene2EST (http://woody.embl-heidelberg.de/gene2est/), a server that brings together a set of tools enabling efficient retrieval of ESTs matching large DNA queries and their subsequent analysis. RepeatMasker is used to mask dispersed repetitive sequences (such as Alu elements) in the query, BLAST2 for searching EST databases and Artemis for graphical display of the findings. Gene2EST combines these components into a Web resource targeted at the researcher who wishes to study one or a few genes to a high level of detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号