首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The initial stability of 6 different hemispherical press-fit titanium acetabular cups was investigated by lever-out tests using a foam model. Each cup was implanted in a standardised manner into machined PVC-foam blocks with an underreaming of 1/2/3 mm, and levered out 5 times. A computer recorded the load-displacement curves. Both insertion forces and lever-out forces increased with increasing press-fit from 1 to 2 mm. With underreaming of 2 mm, insertion forces varied between 9 and 34 Nm, and lever-out torques between 13 and 23 Nm. The cup made up of multi-layer irregular titanium wire mesh had the highest initial stability of all the cups tested. 3 mm underreaming was associated with insertion difficulties, so that lever-out is difficult to compare with that with 1 and 2 mm. The amount of contact on the equatorial rim, where we saw the most attrition after lever-out, is the most important factor for determining the lever-out torque. The quality of the PVC foam blocks, the accuracy of reaming, and the definition of cup insertion are very important parameters for test reproduction. Since the trials were conducted under laboratory conditions, translation of the results to the intraoperative situation should be undertaken only with certain reservations.  相似文献   

2.
INTRODUCTION: Long-term stability of cementless acetabular cups depends on osseointegration, which requires primary stability of the implant. The aim of this study was to determine the influence of different surface treatments on the primary stability of press-fit acetabular cups. Mechanical lever-out tests were performed to quantify the stability in vitro. MATERIALS AND METHODS: A hemispherical press-fit cup design with a flattened pole was used and different surface modifications were applied: smooth, corundum-blasted, titanium plasma spray, rough titan plasma spray, and titanium plasma spray with a rim. The outer diameter of all cups was kept constant. Polyurethane foam was selected as the test material and cup insertion was performed with a maximal force of 6000 N. The excess length between the cup and the surface of the foam blocks was measured. The maximum lever-out force was measured and the lever-out torque was calculated. RESULTS: The excess length of cups with a smooth surface was significantly less (p<0.001) than for the other cups, with no significant differences among the other surface modifications. The lever-out torque for cups with a smooth surface was significantly less (p<0.001) than for the other cups, with no significant differences among the other surface modifications. CONCLUSION: Only the cup with a smooth surface showed significant differences for excess length and lever-out torque. The other surface modifications exhibited the same stability. As long as a rough surface is chosen, cup design seems to have a greater influence on stability than surface modification. Although the study did not mimic real in vivo conditions and the lever-out-torques cannot be transferred to clinical situations, initial stability before bony ingrowth occurred could be clearly analysed.  相似文献   

3.
AIM OF THE STUDY: Mechanical lever-out tests were performed in vitro to investigate the initial stability of press fit acetabular cups. METHOD: Five different uncemented, hemispherical press-fit cups were implanted in a standardized manner into Sawbones, Polyurethane foam blocks. Each cup was levered-out by using a 250 mm stainless steel rod, which was connected to the acetabular cup. Loads were then applied to the rod causing the cup to be diplaced. Lever-out forces were recorded by a computer. RESULTS: The results of the lever-out forces ranged between 39,2 and 50,8 Nm. The highest initial stability was achieved by two Titanium cups with a Titanium plasmaspray coating, a flattened pole and a sharp equatorial edge. According to our trials the equatorial rim of the polyurethane cavity is the crucial area for the implant's initial stabilty. There the highest amount of attrition was observed. CONCLUSION: To guarantee a high reproducibilty of the tests it is essential to pay particular attention to the quality of the polyurethane foam blocks, to the exactness of the reaming procedure and to a defined cup insertion. However as our trials were carried out under optimized labaratory conditions one must be careful not to over-interpret its results. Intraoperatively primary stability is also influenced by the quality of the bone.  相似文献   

4.
A hip joint simulator was developed to analyse the mechanism of loosening of cementless artificial hip cups. The machine induces vibrating motions and asymmetrical tilt shock loadings of the artificial cup. On measuring the primary stability of threaded cups, the simulation tests performed on pelvis substitute models, and animal and human acetabula failed to show any loosening of threaded cups fixed in place with a screw-in torque of more than 10 Nm. Instable cups became loose all the sooner, the lower the preload between the cup and femoral head. This demonstrates the importance of both the screw-in torque of the cup and the training status of the periarticular muscles.  相似文献   

5.
In vitro spine flexibility testing has been performed using a variety of laboratory-specific loading apparatuses and conditions, making test results across laboratories difficult to compare. The application of pure moments has been well established for spine flexibility testing, but to our knowledge there have been no attempts to quantify differences in range of motion (ROM) resulting from laboratory-specific loading apparatuses. Seven fresh-frozen lumbar cadaveric motion segments were tested intact at four independent laboratories. Unconstrained pure moments of 7.5 Nm were applied in each anatomic plane without an axial preload. At laboratories A and B, pure moments were applied using hydraulically actuated spinal loading fixtures with either a passive (A) or controlled (B) XY table. At laboratories C and D, pure moments were applied using a sliding (C) or fixed ring (D) cable–pulley system with a servohydraulic test frame. Three sinusoidal load-unload cycles were applied at laboratories A and B while a single quasistatic cycle was applied in 1.5 Nm increments at laboratories C and D. Non-contact motion measurement systems were used to quantify ROM. In all test directions, the ROM variability among donors was greater than single-donor ROM variability among laboratories. The maximum difference in average ROM between any two laboratories was 1.5° in flexion-extension, 1.3° in lateral bending and 1.1° in axial torsion. This was the first study to quantify ROM in a single group of spinal motion segments at four independent laboratories with varying pure moment systems. These data support our hypothesis that given a well-described test method, independent laboratories can produce similar biomechanical outcomes.  相似文献   

6.
Unloader braces are one non-invasive treatment of knee osteoarthritis, which primarily function by applying an external abduction moment to the joint to reduce loads in the medial compartment of the knee. We developed a novel method using brace deflection to estimate the mechanical effect of valgus braces and validated this model using strain gauge instrumentation.Three subjects performed static and walking trials, in which the moment applied by an instrumented brace was calculated using the deflection and strain methods. The deflection method predicted average brace moments of 8.7 Nm across static trials; mean error between the deflection model predictions and the gold-standard strain gauge measurements was 0.32 Nm. Mean brace moment predictions throughout gait ranged from 7.1 to 8.7 Nm using the deflection model. Maximum differences (MAE) over the gait cycle in mean and peak brace moments between methods were 1.50 Nm (0.96) and 0.60 Nm (0.42).Our proposed method enables quantification of brace abduction moments without the use of custom instrumentation. While the deflection-based method is similar to that implemented by Schmalz et al. (2010), the proposed method isolates abduction deflection from the 3 DOF angular changes that occur within the brace. Though the model should be viewed with more caution during swing (MAE = 1.16 Nm), it was shown that the accuracy is influenced by the uncertainty in angle measurement due to cluster spacing. In conclusion, the results demonstrate that the deflection-based method developed can predict comparable brace moments to those of the previously established strain method.  相似文献   

7.
A deterministic model was developed and validated to calculate instantaneous ankle and knee moments during walking using processed EMG from representative muscles, instantaneous joint angle as a correlate of muscle length and angular velocity as a correlate of muscle velocity, and having available total instantaneous joint moments for derivation of certain model parameters. A linear regression of the moment on specifically processed EMG, recorded while each subject performed cycled isometric calibration contractions, yielded the constants for a basic moment-EMG relationship. Using the resultant moment for optimization, the predicted moment was proportionally augmented for longer muscle lengths and reduced for shorter lengths. Similarly, the predicted moment was reduced for shortening velocities and increased if the muscle was lengthening. The plots of moments predicted using the full model and those calculated from link segment mechanics followed each other quite closely. The range of root mean square errors were: 3.2-9.5 Nm for the ankle and 4.7-13.0 Nm for the knee.  相似文献   

8.
Static and dynamic bending responses of the human cervical spine.   总被引:1,自引:0,他引:1  
The quasi-static and dynamic bending responses of the human mid-lower cervical spine were determined using cadaver intervertebral joints fixed at the base to a six-axis load cell. Flexion bending moment was applied to the superior end of the specimen using an electrohydraulic piston. Each specimen was tested under three cycles of quasi-static load-unload and one high-speed dynamic load. A total of five specimens were included in this study. The maximum intervertebral rotation ranged from 11.0 to 15.4 deg for quasi-static tests and from 22.9 to 34.4 deg for dynamic tests. The resulting peak moments at the center of the intervertebral joint ranged from 3.8 to 6.9 Nm for quasi-static tests and from 14.0 to 31.8 Nm for dynamic tests. The quasi-static stiffness ranged from 0.80 to 1.35 Nm/deg with a mean of 1.03 Nm/deg (+/- 0.11 Nm/deg). The dynamic stiffness ranged from 1.08 to 2.00 Nm/deg with a mean of 1.50 Nm/deg (+/- 0.17 Nm/deg). The differences between the two stiffnesses were statistically significant (p < 0.01). Exponential functions were derived to describe the quasi-static and dynamic moment-rotation responses. These results provide input data for lumped-parameter models and validation data for finite element models to better investigate the biomechanics of the human cervical spine.  相似文献   

9.
Although the contributions of passive structures to stability of the elbow have been well documented, the role of active muscular resistance of varus and valgus loads at the elbow remains unclear. We hypothesized that muscles: (1) can produce substantial varus and valgus moments about the elbow, and (2) are activated in response to sustained varus and valgus loading of the elbow. To test the first hypothesis, we developed a detailed musculoskeletal model to estimate the varus and valgus moment-generating capacity of the muscles about the elbow. To test the second hypothesis, we measured EMGs from 11 muscles in four subjects during a series of isometric tasks that included flexion, extension, varus, and valgus moments about the elbow. The EMG recordings were used as inputs to the elbow model to estimate the contributions of individual muscles to flexion-extension and varus-valgus moments. Analysis of the model revealed that nearly all of the muscles that cross the elbow are capable of producing varus or valgus moments; the capacity of the muscles to produce varus moment (34 Nm) and valgus moment (35 Nm) is roughly half of the maximum flexion moment (70 Nm). Analysis of the measured EMGs showed that the anconeus was the most significant contributor to valgus moments and the pronator teres was the largest contributor to varus moments. Although our results show that muscles were activated in response to static varus and valgus loads, their activations were modest and were not sufficient to balance the applied load.  相似文献   

10.
Analyses of joint moments are important in the study of human motion, and are crucial for our understanding of e.g. how and why ACL injuries occur. Such analyses may be affected by artifacts due to inconsistencies in the equations of motion when force and movement data are filtered with different cut-off frequencies. The purpose of this study was to quantify the effect of these artifacts, and compare joint moments calculated with the same or different cut-off frequency for the filtering of force and movement data. 123 elite handball players performed sidestep cutting while the movement was recorded by eight 240 Hz cameras and the ground reaction forces were recorded by a 960 Hz force plate. Knee and hip joint moments were calculated through inverse dynamics, with four different combinations of cut-off frequencies for signal filtering: movement 10 Hz, force 10 Hz, (10-10); movement 15 Hz, force 15 Hz; movement 10 Hz, force 50 Hz (10-50); movement 15 Hz, force 50 Hz. The results revealed significant differences, especially between conditions with different filtering of force and movement. Mean (SD) peak knee abduction moment for the 10-10 and 10-50 condition were 1.27 (0.53) and 1.64 (0.68) Nm/kg, respectively. Ranking of players based on knee abduction moments were affected by filtering condition. Out of 20 players with peak knee abduction moment higher than mean+1S D with the 10-50 condition, only 11 were still above mean+1 SD when the 10-10 condition was applied. Hip moments were very sensitive to filtering cut-off. Mean (SD) peak hip flexion moment was 3.64 (0.75) and 5.92 (1.80) under the 10-10 and 10-50 conditions, respectively. Based on these findings, force and movement data should be processed with the same filter. Conclusions from previous inverse dynamics studies, where this was not the case, should be treated with caution.  相似文献   

11.
Predicting failure following the implantation of acetabular cups used in hip replacements is important in ensuring robust component designs. This study has developed 3D explicit dynamics finite element (FE) models to investigate the deformation of press-fit metal cups following insertion in the acetabular cavity. The cup deformation following insertion is clearly influenced by the forces encountered during insertion, the initial position of the cup in the cavity, the support provided by the underlying bone and the geometry of the cup itself. Experimentally validated explicit dynamics FE models were used to allow a physiologically relevant simulation of the impaction of cups, which is encountered in clinical practice, in comparison to previous studies that have used unrealistically high static forces to simulate a static press-fit insertion. Diametrical cup deformations were twice as large when the cup was tilted at 5° with respect to the cavity compared to when the poles of the cup and the cavity were aligned. The introduction of a non-uniform support to the cup increased deformations further by a factor of approximately 2.5. The greatest deformations established in the model were between 80 and 150 μm similar to typical cup–femoral head clearances. Increasing the thickness at the pole of the cup and reducing the cup diameter resulted in significantly smaller deformations being generated. These results suggest that small cup misalignments, which may not be noticeable in a clinical situation, may produce significant deformations after insertion especially when coupled with the non-uniform support found in the pelvis.  相似文献   

12.
Muscle strength and volume vary greatly among individuals. Maximum isometric joint moment, a standard measurement of strength, has typically been assessed in young, healthy subjects, whereas muscle volumes have generally been measured in cadavers. This has made it difficult to characterize the relationship between isometric strength and muscle size in humans. We measured maximum isometric moments about the shoulder, elbow, and wrist in 10 young, healthy subjects, ranging in size from a 20th percentile female to a 97th percentile male. The volumes of 32 upper limb muscles were determined from magnetic resonance images of these same subjects, and grouped according to their primary function. The maximum moments produced using the shoulder adductors (67.9+/-28.4 Nm) were largest, and were approximately 6.5(+/-1.2) times greater than those produced using the wrist extensors (10.2+/-4.6 Nm), which were smallest. While there were substantial differences in moment-generating capacity among these 10 subjects, moment significantly covaried with muscle volume of the appropriate functional group, explaining between 95% (p<0.0001; shoulder adductors) and 68% (p=0.004; wrist flexors) of the variation in the maximum isometric joint moments among subjects. While other factors, such as muscle moment arms or neural activation and coordination, can contribute to variation in strength among subjects, they either were relatively constant across these subjects compared to large differences in muscle volumes or they covaried with muscle volume. We conclude that differences in strength among healthy young adults are primarily a consequence of variation in muscle volume, as opposed to other factors.  相似文献   

13.
The relationships between applied pure moments at the occiput (C0) and the resulting rotations at the atlanto-occipital (C0-C1) and atlanto-axial (C1-C2) joints are quantified. In axial twist, with a moment of 0.3 Nm, a mean rotation of about 2.5 degrees and 23.3 degrees was observed at C0-C1 and C1-C2 units respectively. Both the atlas and axis contributed to produce lateral bending motion. The ratio between extension and flexion rotations at C0-C1 was 2.5:1. Lateral bending and axial rotations were strongly coupled to each other. The occipito-atlanto-axial complex exhibited a large 'neutral zone' compared to lower cervical spine segments. The likely clinical significance of these findings are discussed.  相似文献   

14.
In the presence of a tumor defect, completed humeral shaft fractures continue to be a major surgical challenge since there is no "gold standard" treatment. This is due, in part, to the fact that only one prior biomechanical study exists on the matter, but which only compared 2 repair methods. The current authors measured the humeral torsional performance of 5 fixation constructs for completed pathological fractures. In 40 artificial humeri, a 2-cm hemi-cylindrical cortical defect with a transverse fracture was created in the lateral cortex. Specimens were divided into 5 different constructs and tested in torsion. Construct A was a broad 10-hole 4.5-mm dynamic compression plate (DCP). Construct B was the same as A except that the screw holes and the tumor defect were filled with bone cement and the screws were inserted into soft cement. Construct C was the same as A except that the canal and tumor defect were filled with bone cement and the screws were inserted into dry cement. Construct D was a locked intramedullary nail inserted in the antegrade direction. Construct E was the same as D except that bone cement filled the defect. For torsional stiffness, construct C (4.45 ± 0.20 Nm/deg) was not different than B or E (p > 0.16), but was higher than A and D (p < 0.001). For failure torque, construct C achieved a higher failure torque (69.65 ± 5.35 Nm) than other groups (p < 0.001). For the failure angle, there were no differences between plating constructs A to C (p ≥ 0.11), except for B versus C (p < 0.05), or between nailing groups D versus E (p = 0.97), however, all plating groups had smaller failure angles than both nailing groups (p < 0.05). For failure energy, construct C (17.97 ± 3.59 J) had a higher value than other groups (p < 0.005), except for A (p = 0.057). Torsional failure always occurred in the bone in the classic "spiral" pattern. Construct C provided the highest torsional stability for a completed pathological humeral shaft fracture.  相似文献   

15.
The bending properties of cadaveric lumbar spines were measured and used to convert in vivo measurements of lumbar flexion into bending moments ('stresses'). Forty-two lumbar motion segments were subjected to complex physiological loading and graphs were obtained of bending moment vs flexion angle. Variability was reduced by expressing both variables as a percentage of their values at the elastic limit. Data were averaged for each lumbar level, and a composite bending curve was compiled for the lumbar spine, L1-S1. A linear relationship was established between lumbar flexion measured in vitro and in vivo. This enabled values of 'per cent lumbar flexion' measured in vivo to be converted into 'per cent maximum bending moment' with a maximum likely error of about +/- 8%, which is equivalent to about +/- 5 Nm at L5-S1 for an average person. The technique was applied to 28 subjects, using dynamic measurements of lumbar flexion obtained with the '3-Space Isotrack' system. The bending moment at L5-S1 was 12 Nm on average when picking a pen up off the floor. Highly significant increases in bending moment were observed when heavier and bulkier objects were lifted.  相似文献   

16.
AIM: Most methods used for the determination of volumetric wear of polyethylene cups are based on the assumption that the head of the prosthesis penetrates the cup in "cylindrical" fashion. The new accurate optical method is independent of this disputable assumption. METHOD: The articulating surface of the cup is scanned with light and a data set of 60,000 pixels obtained in this way is stored in a computer. Data obtained from used cups were compared with those obtained from unused cups. The volumetric wear was calculated directly by threefold integration. To assess the changes in surface shape, the data are fitted by an ellipsoid whose long axis defines the mean direction of load. A total of 18 retrieved and 3 unused cups of different types were studied. RESULTS: The unused acetabular cups deviated only slightly from ideal hemispheres. The surfaces showed rotational symmetry, and an undulation having an amplitude of 0.1 mm between dome and equator. For all explanted cups, the assumption of cylindrical penetration of the head into the polyethylene was shown not to represent the true situation. The cup expands in all directions, and the volumetric wear is underestimated by 50% with the traditional methods. The data suggest that long-term survival may be jeopardized when the main direction of loading is centered on the dome of the cup. Ceramic heads were associated with smaller rates of volumetric wear. CONCLUSION: The new optical method is characterised by short measuring times, precision and simple application. Analysis of the wear patterns of polyethylene components using this technique may contribute to a further understanding of the complex mechanisms of aseptic loosening.  相似文献   

17.
Heat resistance of Campylobacter and Yersinia strains by three methods   总被引:1,自引:0,他引:1  
Two methods of determining the heat resistance of bacteria, a glass cup and a test tube method, were compared with a method using capillary tubes. Three strains of Yersinia enterocolitica, one of Campylobacter jejuni and two of C. coli were tested in physiological saline. The differences between the results obtained by the glass cup method and the reference method were not statistically significant for five strains and were small also for the other, a Yersinia strain. D values obtained by the glass cup method at 58, 60 and 62 degrees C were 1.4-1.8, 0.40-0.51 and 0.15-0.19 min (zeta values 4.00-4.52 degrees C) for the Yersinia strains, and 0.42, 0.13 and 0.07 min (zeta value 5.07 degrees C) for one C. coli strain. For the other Campylobacter strains, D values of 0.71-0.78, 0.24-0.28 and 0.12-0.14 min (zeta values 4.94 and 5.60 degrees C) were recorded at 56, 58 and 60 degrees C. D values obtained at 60 degrees C by the test tube method were 2.7-5.0 min and were considered to be unrealistic.  相似文献   

18.
During maximal efforts, antagonistic activity can significantly influence the joint moment. During maximal voluntary "isometric" contractions, certain joint rotation can not be avoided. This can influence the estimation of the antagonistic moment from the EMG activity. Our study aimed to quantify the influence on the calculated agonistic moment produced during maximal voluntary isometric plantarflexions (a) when estimating antagonistic moments at different ankle angles and (b) when placing the EMG electrodes at different portions over the m. tibialis anterior. Ten subjects performed maximal voluntary isometric plantarflexions at 90 degrees ankle angle. In order to estimate the antagonistic moment, submaximal isometric dorsiflexions were performed at various ankle angles. Moment and EMG signals from mm. triceps surae and tibialis anterior were measured. The RMS differences between plantarflexors moment calculated considering the antagonistic cocontraction estimated at the same ankle angle at which the maximal plantarflexion moment was achieved and at different ankle angles ranged from 0.10 to 2.94 Nm. The location of the electrodes led to greater RMS differences (2.35-5.18 Nm). In conclusion, an angle 10 degrees greater than the initial plantarflexion angle is enough to minimize the effect of the change in length of the m. tibialis anterior during the plantarflexion on the estimation of the plantarflexors moment. The localisation of the electrodes over the m. tibialis anterior can influence the estimation of its cocontraction during maximal plantarflexion efforts.  相似文献   

19.
An EMG-driven muscle model for determining muscle force-time histories during gait is presented. The model, based on Hill's equation (1938), incorporates morphological data and accounts for changes in musculotendon length, velocity, and the level of muscle excitation for both concentric and eccentric contractions. Musculotendon kinematics were calculated using three-dimensional cinematography with a model of the musculoskeletal system. Muscle force-length-EMG relations were established from slow isokinetic calibrations. Walking muscle force-time histories were determined for two subjects. Joint moments calculated from the predicted muscle forces were compared with moments calculated using a linked segment, inverse dynamics approach. Moment curve correlations ranged from r = 0.72 to R = 0.97 and the root mean square (RMS) differences were from 10 to 20 Nm. Expressed as a relative RMS, the moment differences ranged from a low of 23% at the ankle to a high of 72% at the hip. No single reason for the differences between the two moment curves could be identified. Possible explanations discussed include the linear EMG-to-force assumption and how well the EMG-to-force calibration represented excitation for the whole muscle during gait, assumptions incorporated in the muscle modeling procedure, and errors inherent in validating joint moments predicted from the model to moments calculated using linked segment, inverse dynamics. The closeness with which the joint moment curves matched in the present study supports using the modeling approach proposed to determine muscle forces in gait.  相似文献   

20.
Previous authors have questioned the practice of normalizing the external knee adduction moment during gait to body size when investigating dynamic joint loading in knee osteoarthritis (OA). The purpose of this study was to compare the abilities of non-normalized and normalized external knee adduction moments during gait in discriminating between patients with least and greatest severity of radiographic medial compartment knee OA. Subjects with mild (n=118) and severe (n=115) medial compartment knee OA underwent three-dimensional gait analysis. The peak external knee adduction moment was calculated and kept in its original units (Nm), normalized to body mass (Nm/kg) and normalized to body weight and height (%BW × Ht). Receiver Operating Characteristic (ROC) curve analysis indicated that non-normalized values better discriminated between patients with mild and severe knee OA. The area under the ROC curve for non-normalized peak knee adduction moments (0.63) was significantly (p<0.05) greater than when normalized to body mass (0.58), or to body weight times height (0.57). Post-hoc analysis of covariance indicated the mean difference in peak knee adduction moment between OA severity groups (7.23 Nm, p=0.003) was reduced by approximately 50% (3.60 Nm, p=0.09) when adjusted for mass. These findings are consistent with the suggestion that non-normalized values are more sensitive to radiographic disease progression. We suggest including knee adduction moment values that are not normalized to body size when investigating knee OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号