首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 337 毫秒
1.
A series of statistical and graphical techniques incorporating a “weight of evidence” approach were used to interpret results from an integrated Triad case study designed to determine potential environmental impacts to aquatic biota in the Delaware River that may be linked to PAHs found in Motiva's oil refinery effluent. Sediment concentrations of various metals, PCBs and LMW PAHs exceeding both ERL and ERM sediment quality guidelines (SQGs) were reported in the study area. However, most chemical contaminants did not exceed their respective SQGs. Results from a long-term sediment coring study indicated that there was no evidence of significant historical PAH contamination of sediments related to Motiva's exceedences. PAHs comprising the Motiva “fingerprint” were found in the surficial sediments at four near-field sites but non-Motiva PAH concentrations (background) were shown to be significantly higher at other far-field sites (non-Motiva influence). Chronic sediment toxicity appears to have significant relationships to the patterns of most PAH isomers, certain PCB isomers, and certain metals. However, sediment toxicity does not appear to be related to the PAH isomers that are characteristic of Motiva's effluent nor to the near-field sites. Impacted benthic communities were reported in the study area, primarily at one near-field and two far-field sites. However, there were no apparent relationships between benthic community health and sediment contaminants. The status of benthic communities does not appear to be related to PAHs derived from the Motiva effluent. The “weight of evidence” analysis developed from a systematic and comprehensive series of statistical and graphical assessments indicates that, although the study area displayed some degree of sediment contamination, chronic sediment toxicity, and benthic health impacts, these environmental effects generally could not be related to Motiva's exceedences.  相似文献   

2.
This is the first in a series of article presenting results from a case study designed to assess the impacts of an oil refinery effluent [primarily polynuclear aromatic hydrocarbons (PAHs)] on aquatic biota in the Delaware River. During the course of the study, the oil refinery was owned by Motiva Enterprises LLC. This article provides background information on the study area, the study approach and objectives. The specific objectives of this multiyear study were to: (1) measure water column concentrations of PAHs and other contaminants (i.e., metals) in Motiva's effluent and intake canal and selected Delaware River sites; (2) assess fate and transport issues associated with the Refinery effluent; (3) characterize sediment PAHs, total organic carbon (TOC), and grain size distributions in the discharge canal, near-field, mid-field and far-field areas of the Refinery to aid in the selection of Triad sample sites (including reference areas); (4) conduct Triad studies (chemical characterizations, sediment toxicity assessments, and benthic community characterizations) at selected study sites during the spring and summer of 2001 and 2002; (5) perform fingerprinting of PAHs in Motiva's effluent to differentiate Motiva-related PAHs in sediment and biota from other sources; (6) assess bioavailability of PAHs, PCBs, and metals by using resident bivalve studies; (7) conduct long-term coring to determine potential impact of past non-complying discharges; and (8) integrate and analyze all study components to address the research goals. The results from objectives 1, 2, and 3 are briefly summarized in this series of articles whereas the other five objectives are the subject of the various papers presented in this volume.  相似文献   

3.
Triad studies consisting of chemical characterizations in sediment, sediment toxicity testing, and benthic community assessments were used to determine the impacts of Motiva Enterprises oil refinery effluent [primarily polynuclear aromatic hydorcarbons (PAHs)] on aquatic biota in the Delaware River. Triad studies were conducted at 15 near-field, mid-field, and far-field sites near the Refinery in the Delaware River during the spring and summer of 2001 and 2002. Fingerprinting analysis showed that Motiva-related PAHs may be present at four near-field sites. A summary of all Triad data by site for 2001 shows a strong case for contaminant-induced degradation at one near-field site in the discharge canal of the Refinery and two far-field sites as all three lines of evidence suggest impairment. Stressful conditions for benthic communities at the near-field site include elevated temperature conditions and various pesticides (Dieldrin, 4,4′-DDD and 4,4′-DDT). Toxicity at the near-field site may also be related to the presence of pesticides exceeding sediment quality guidelines. Due to exceedances of individual Effects Range Low (ERL) guidelines for two individual PAHs, the Motiva effluent cannot be eliminated as a potential stressor at the near-field site during the summer of 2001. A summary of Triad data for the 15 Delaware River sites sampled in 2002 shows only one mid-field site where all three lines of evidence suggest impairment. Toxicity and benthic community impairment at this mid-field site may be related to PCBs and low molecular weight PAHs. Three individual PAH ERL values were exceeded at three near-field sites in 2002. The source of these PAHs is a combination of both background signature and the Motiva effluent. Multivariate analysis, using a weight of evidence approach, is used to address ecological effects of the Motiva effluent in more detail in Alden et al. (2005) Alden, R W III, Hall, L W JrDauer, D M. 2005. An integrated case study for evaluating the impacts of an oil refinery effluent on aquatic biota in the Delaware River: Integration and analysis of study components. Hum Ecol Risk Assess, 11: 879936.  [Google Scholar].  相似文献   

4.
The objectives of this study were to (1) determine if historical exceedences of oil and grease concentrations above the limits allowed in the National Pollution Elimination Discharge System permit for the wastewater treatment facility of Motiva Enterprises LLC Refinery, Delaware City, Delaware, could be determined from the sedimentary records of the Delaware River and, if so, (2) were the concentrations of contaminants high enough to be toxic to aquatic biota. Eighty-four surficial sediment samples, both within and outside the influence of the Refinery's discharge plume, were initially evaluated for their appropriateness for coring. Seven stations were ultimately selected for the historical core studies. Based on sediment type, radionuclide (Pb-210, Cs-137 and Be-7) geochronologies, and proximity of the cores to the Refinery, two cores were selected for more detailed polycyclic aromatic hydrocarbon (PAH) analyses. The rapid accumulation area of one core (located in the near-field of the discharge plume) had maximum total PAH (TPAH) concentration peaks at depths of 4 cm (1997; 3100 ng/g dw) and at 8.5–9 cm (1993; 3200 ng/g dw); the second core (located on the far-field periphery of the plume) had a maximum TPAH peak at 6.5 cm (1997; 3200 ng/g dw). In all cases, the maximum TPAH concentrations were below NOAA's Effects Range-Low concentration of 4022 ng/g dw for sediment biota toxicity. A chemical fingerprinting analysis of the PAHs in the two cores showed, however, that the PAHs present in the cores were predominantly pyrogenic PAHs consistent with Delaware River background PAHs. The core results are consistent with historic sediment PAH inputs in an industrial river system. PAH from the Refinery, if present, exist as a non-detectable increment to a high PAH baseline from many sources.  相似文献   

5.
The objectives of this study were to (1) determine the bioavailability of polycyclic aromatic hydrocarbons (PAHs) and other non-polar organics in resident brackish water clams (Rangia cuneata) at selected sites near an oil refinery; (2) determine if the tissue burdens were causing adverse effects to the clams, and (3) evaluate potential seasonal variations from reproduction in clams taken from the same beds in the spring and fall. Clams were evaluated from three beds located in the refinery discharge plume (near-field stations), three beds located up river outside of the Refinery effluent plume (north far-field), and three beds down river (south far-field) of the Refinery plume. Total PAH concentrations in the tissues of the near-field clams were significantly higher than in the clams located at the far-field stations in both the spring and fall. Total PAH concentrations of the near-field clams were significantly higher in the spring than the fall. No difference was found in total PAHs in the spring or fall in the far-field clams. Total pesticide and total PCB concentrations were significantly higher in the spring than the fall at all stations. The highest concentrations of both pesticides and PCBs were found at the north far-field stations. A tissue residue concentration analysis and three theoretical approaches for estimating detrimental effects to clams in both the near- and far-field suggested that no adverse effects should occur from total PAHs, total pesticides, or total PCBs. Some uncertainty, however, was associated with the theoretical approaches. An estimate of clam density in each clam bed showed that Rangia were growing and reproducing at all stations.  相似文献   

6.
Diffuse pollution with polycyclic aromatic hydrocarbons (PAHs) of topsoil in urban regions has caused increasing concerns in recent years. We simulated diffuse pollution of soil in microcosms by spiking sandy topsoil (A-horizon) and coarse, mineral subsoil (C-horizon) with street dust (PM63) isolated from municipal street sweepings from central Copenhagen. The microbial communities adapted to PAH degradation in microcosms spiked with street dust in both A-horizon and C-horizon soils, in spite of low PAH-concentrations. The increased potential for PAH degradation was demonstrated on several levels: by slowly diminishing PAH-concentrations, increased mineralization of 14C-PAHs, increasing numbers of PAH degraders and increased prevalence of nah and pdo1 PAH degradation genes, i.e. the microbial communities quickly adapted to PAH degradation. Three- and 4-ring PAHs from the street dust were biodegraded to some extent (10-20%), but 5- and 6-ring PAHs were not biodegraded in spite of frequent soil mixing and high PAH degradation potentials. In addition to biodegradation, leaching of 2-, 3- and 4-ring PAHs from the A-horizon to the C-horizon seems to reduce PAH-levels in surface soil. Over time, levels of 2-, 3- and 4-ring PAHs in surface soil may reach equilibrium between input and the combination of biodegradation and leaching. However, levels of the environmentally critical 5- and 6-ring PAHs will probably continue to rise. We presume that sorption to black carbon particles is responsible for the persistence and low bioaccessibility of 5- and 6-ring PAHs in diffusely polluted soil.  相似文献   

7.
The effects of nutrient addition on the in situ biodegradation of polycyclic aromatic hydrocarbons in creosote contaminated soil were studied in soil columns taken from various soil strata at a wood preserving plant in Norway. Three samples were used: one from the topsoil (0–0.5 m), one from an organic rich layer (2–2.5 m) and one from the sandy aquifer (4.5–5 m). The addition of inorganic nitrogen and phosphorous stimulated the degradation of polycyclic aromatic hydrocarbons (PAHs) in the top soil and the aquifer sand. These two soils, which differed strongly in contamination levels, responded similarly to nutrient addition with the corresponding degradation of 4-ring PAHs. The ratio between available nitrogen (N) and phosphorous (P) might explain the degree of degradation observed for the 4-ring PAHs. However, the degree of degradation of 3-ring PAHs did not significantly increase after nutrient addition. An increase in the respiration rate, after nutrient addition, could only be observed in the topsoil. In the aquifer sand, 4-ring PAH degradation was not accompanied by an increase in the respiration rate or the number of heterotrophic micro-organisms. PAH degradation in the organic layer did not respond to nutrient addition. This was probably due to the low availability of the contaminants for micro-organisms, as a result of sorption to the soil organic matter. Our data illustrate the need for a better understanding of the role of nutrients in the degradation of high molecular weight hydrocarbons for the successful application of bioremediation at PAH contaminated sites.  相似文献   

8.
Although reservoirs in China are of great significance, very few studies on risk assessment have been reported for reservoirs. This study investigated distribution characteristics, cancer and ecological risks, and source diagnosis of 16 priority polycyclic aromatic hydrocarbons (PAHs) in sediments from Shitou Koumen Reservoir in Jilin Province, China. A total of 12 sediment samples were collected from the reservoir in August (wet season) 2014. Total PAH concentrations in sediment samples ranged from 1294.51 ng/g to 2755.35 ng/g with a mean concentration of 1757.54 ng/g. For individual PAHs, average concentration of Nap was the highest, 800.56 ng/g, while Acy, Fla, BkF, and DahA were undetected in sediment samples. Light PAHs (2–3 rings) accounting for 74.21% was a dominant PAH compositional pattern. Pearson correlation analysis was carried out; results showed that total PAHs was strongly correlated with the highly enriched sedimentary PAHs, and pH was a major factor in controlling PAH distribution. Lifetime cancer risk was employed to assess cancer risk; results indicated that the fish-culturing area was exposed to cancer risk. The molecular diagnostic ratios of isomeric PAHs were applied to identify possible PAH sources; primary PAH sources were identified as oil-related activities, burning agricultural wastes, vehicular emissions, and industrial discharges.  相似文献   

9.
The removal efficiencies of 15 PAHs and some COD components (inert, readily degradable, slowly degradable and metabolic products) from a wastewater taken from a petrochemical industry treatment plant (İzmir, Turkey) have been determined using an aerobic completely stirred tank reactor (CSTR). Addition of rhamnolipid surfactant (15 mg l−1) increased the removal efficiencies of PAHs and soluble COD from 72% and 90% to 80% and 99%, respectively. The rhamnolipid treatment caused a significant increase of 5- and 6-ring PAH degradation. The soluble COD removal efficiency was 93%, in CSTR reactors with rhamnolipid added. The inert COD removal efficiency was 60% in a CSTR reactor containing rhamnolipid. Batch tests showed that removal arising from the adsorption of the PAHs was low (between 1.88% and 4.84%) while the removal of PAHs from the petrochemical industry wastewater via volatilization varied between 0.69% and 5.92%. Low sorption capacity (Kp) values for refinery activated sludge (approximately 2.98 l g−1) confirmed that bio-sorption was not an important mechanism controlling the fate of PAHs in aerobic CSTR reactors. Models proposed to simulate the PAH removal indicated that 94% of the PAHs were removed via biodegradation.  相似文献   

10.
This study was done to determine the concentration of PAHs in urban soil of Delhi (India). Surface top soil (up to 10 cm depth) samples were collected from four different sampling sites including industrial, roadside, residential, and agricultural areas of Delhi and 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) were evaluated. Total PAH concentrations at industrial, roadside, residential, and agricultural sites were 11.46 ± 8.39, 6.96 ± 4.82, 2.12 ± 1.12, and 1.55 ± 1.07 mg/kg (dry weight), respectively, with 3–7 times greater concentrations in industrial and roadside soils than that in residential and agricultural soils. The PAH pattern was dominated by 4- and 5-ring PAHs (contributing >50% to the total PAHs) at industrial and roadside sites with greater concentration of fluoranthene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]anthracene, benzo[ghi]perylene, and pyrene, whereas, residential and agricultural sites showed a predominance of low molecular weight 2- and 3-ring PAHs (fluoranthene, acenaphthene, naphthalene, chrysene, and anthracene). Isomeric pair ratios suggested biomass combustion and fossil fuel emissions as the main sources of PAHs. The toxic equivalency factors (TEFs) showed that carcinogenic potency (benzo[a]pyrene-equivalent concentration (B[a]Peq) of PAH load in industrial and roadside soils was ~10 and ~6 times greater than the agricultural soil.  相似文献   

11.
The purpose of this study was to develop a fungal bioremediation method that could be used for soils heavily contaminated with persistent organic compounds, such as polyaromatic hydrocarbons (PAHs). Sawmill soil, contaminated with PAHs, was mixed with composted green waste (1:1) and incubated with or without fungal inoculum. The treatments were performed at the laboratory and field scales. In the laboratory scale treatment (starting concentration 3500 mg kg−1, sum of 16 PAH) the high molecular weight PAHs were degraded significantly more in the fungal-inoculated microcosms than in the uninoculated ones. In the microcosms inoculated with Phanerochaete velutina, 96% of 4-ring PAHs and 39% of 5- and 6-ring PAHs were removed in three months. In the uninoculated microcosms, 55% of 4-ring PAHs and only 7% of 5- and 6-ring PAHs were degraded. However, during the field scale (2 t) experiment at lower starting concentration (1400 mg kg−1, sum of 16 PAH) the % degradation was similar in both the P. velutina-inoculated and the uninoculated treatments: 94% of the 16 PAHs were degraded in three months. In the field scale experiment the copy number of gram-positive bacteria PAH-ring hydroxylating dioxygenase genes was found to increase 1000 fold, indicating that bacterial PAH degradation also played an important role.  相似文献   

12.
This study was conducted to investigate the occurrence, distribution, and source of 16 polycyclic aromatic hydrocarbons (PAHs) in the Hanjiang River Basin and the Danjiangkou (DJK) Reservoir. The concentrations of total PAHs in surface water, sediments, and bank soils ranged from 9.42 to 137.94 ng/l, 86.23 to 2514.93 ng/g, and 133.17 to 671.93 ng/g dry weight, respectively. The composition pattern of PAHs showed that 3-ring PAHs were dominated in all of the samples, while the proportion of high molecular weight PAHs (5- to 6-ring PAHs) in sediments and bank soil samples was almost three times higher than water. The source apportionment analysis showed that most of the PAHs in water were derived from sources of petroleum and combustion, while combustion was the predominant source of PAHs in sediments and bank soils. The methods based on toxic equivalency factors, risk quotient, and incremental lifetime cancer risk were used to assess the ecosystem risk and potential health risk of PAHs. The risk assessments showed that PAHs in the DJK Reservoir were out of potential health risk, but the ecological risk for majority of 16 PAHs was in the moderate level.  相似文献   

13.
Polycyclic aromatic hydrocarbons (PAH) are byproducts of combustion and are ubiquitous in the urban environment They are also present in industrial chemical wastes, such as coal tar, petroleum refinery sludges, waste oils and fuels, and wood‐treating residues. Thus, PAHs are chemicals of concern at many waste sites. Risk assessment methods will yield risk‐based cleanup levels for PAHs that range from 0.1 to 0.7 mg/kg. Given their universal presence in the urban environment, it is important to compare risk‐based cleanup levels with typical urban background levels before utilizing unrealistically low cleanup targets. However, little data exist on PAH levels in urban, nonindustrial soils. In this study, 60 samples of surficial soils from urban locations in three New England cities were analyzed for PAH compounds. In addition, all samples were analyzed for total petroleum hydrocarbons (TPH) and seven metals. The upper 95% confidence interval on the mean was 3 mg/kg for benzo(a)pyrene toxic equivalents, 12 mg/kg for total potentially carcinogenic PAH, and 25 mg/kg for total PAH. The upper 95% confidence interval was 373 mg/kg for TPH, which exceeds the target level of 100 mg/kg used by many state regulatory agencies. Metal concentrations were similar to published background levels for all metals except lead. The upper 95% confidence interval for lead was 737 mg/kg in Boston, 463 mg/kg in Providence, and 378 mg/kg in Springfield.  相似文献   

14.
Sediment contaminated with polycyclic aromatic hydrocarbons (PAHs) is widely distributed in aquatic ecosystems. The microbial community structure of riverbank PAH-contaminated sediments was investigated using phospholipid-derived fatty acid (PLFA) analysis. Surface and subsurface riverbank sediment was collected from a highly contaminated site and from an uncontaminated site along the Mahoning River, OH. PAH concentrations, physical sediment characteristics, and other microbial community parameters (biomass as phospholipid phosphate (PLP) and activity) were also measured. PAHs were detected in all samples but were only quantifiable in the contaminated (250?μg/g?g(-1)) subsurface sediment. Subsurface samples from both locations showed very similar PLP values and distribution of PLFAs, with 27-37?% of the microbial community structure being composed of sulfate reducing and other anaerobic bacteria. Principal components analysis indicated no correlation between PAH contamination and PLFA diversity. Although PLP and phospholipid fatty acid measurements of bacterial communities did not reflect the environmental differences among sites, the highly PAH-contaminated sediment showed the highest measured microbial activity (reduction of 1,200?nmol?INT?g(-1)?h(-1)), likely from a population adapted to environmental pollutants, rates that are much higher than measured in many uncontaminated soil and sediment systems. These data warrant further investigation into community structure at the genetic level and indicate potential for bioremediation by indigenous microbes.  相似文献   

15.
Semi-volatile organic compounds (SVOCs) in estuarine waters can adversely affect biota but watershed sources can be difficult to identify because these compounds are transient. Natural bacterial assemblages may respond to chronic, episodic exposure to SVOCs through selection of more organotolerant bacterial communities. We measured bacterial production, organotolerance and polycyclic aromatic hydrocarbon (PAH) mineralization in Charleston Harbor and compared surface sediment from stations near a known, permitted SVOC outfall (pulp mill effluent) to that from more pristine stations. Naphthalene additions inhibited an average of 77% of bacterial metabolism in sediments from the more pristine site (Wando River). Production in sediments nearest the outfall was only inhibited an average of 9% and in some cases, was actually stimulated. In general, the stations with the highest rates of bacterial production also were among those with the highest rates of PAH mineralization. This suggests that the capacity to mineralize PAH carbon is a common feature amongst the bacterial assemblage in these estuarine sediments and could account for an average of 5.6% of bacterial carbon demand (in terms of production) in the summer, 3.3% in the spring (April) and only 1.2% in winter (December).  相似文献   

16.
Concentration, source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) were investigated in 22 stations from surface sediments in the areas of anthropogenic pollution in the Klang Strait (Malaysia). The total PAH level in the Klang Strait sediment was 994.02±918.1 µg/kg dw. The highest concentration was observed in stations near the coastline and mouth of the Klang River. These locations were dominated by high molecular weight PAHs. The results showed both pyrogenic and petrogenic sources are main sources of PAHs. Further analyses indicated that PAHs primarily originated from pyrogenic sources (coal combustion and vehicular emissions), with significant contribution from petroleum inputs. Regarding ecological risk estimation, only station 13 was moderately polluted, the rest of the stations suffered rare or slight adverse biological effects with PAH exposure in surface sediment, suggesting that PAHs are not considered as contaminants of concern in the Klang Strait.  相似文献   

17.
Estuarine sediments are frequently polluted with hydrocarbons from fuel spills and industrial wastes. Polycyclic aromatic hydrocarbons (PAHs) are components of these contaminants that tend to accumulate in the sediment due to their low aqueous solubility, low volatility, and high affinity for particulate matter. The toxic, recalcitrant, mutagenic, and carcinogenic nature of these compounds may require aggressive treatment to remediate polluted sites effectively. In petroleum-contaminated sediments near a petrochemical industry in Gwangyang Bay, Korea, in situ PAH concentrations ranged from 10 to 2,900 microg/kg dry sediment. To enhance the biodegradation rate of PAHs under anaerobic conditions, sediment samples were amended with biostimulating agents alone or in combination: nitrogen and phosphorus in the form of slow-release fertilizer (SRF), lactate, yeast extract (YE), and Tween 80. When added to the sediment individually, all tested agents enhanced the degradation of PAHs, including naphthalene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[a]pyrene. Moreover, the combination of SRF, Tween 80, and lactate increased the PAH degradation rate 1.2-8.2 times above that of untreated sediment (0.01-10 microg PAH/kg dry sediment/day). Our results indicated that in situ contaminant PAHs in anoxic sediment, including high molecular weight PAHs, were degraded biologically and that the addition of stimulators increased the biodegradation potential of the intrinsic microbial populations. Our results will contribute to the development of new strategies for in situ treatment of PAH-contaminated anoxic sediments.  相似文献   

18.
The 1999 NATO bombing of the oil refinery in Novi Sad (Yugoslavia) has heavily contaminated the Danube River and its sediments, as well as the surrounding soil and groundwater. The destruction of the factories released 73,569 tons of crude oil of which 90% was incinerated, 560 tons reached the Danube River, and the remainder was spilled onto the soil. The contents of oil and oil derivatives in the soil were in the range of 3 to 42,000?mg/kg. The first soil layer contained an average of 67,000?mg/kg of crude oil and oil derivatives. The layers beneath it, above the groundwater table, contained 56?ml/l of free oil derivatives in the drained water. The spreading of this pollution could imperil the groundwater quality in the water supply zone because the refinery is located in the hinterland of the zone. The quality of water and sediment samples was monitored from April 1999 to November 2000 by measuring concentrations of hydrocarbons and polyaromatic hydrocarbons (PAH). The hydrocarbon content in the Danube River water in October 2000 was about 20% of the value measured at the time of the accident. Immediately after the accident the concentration of mineral oil in the surface sediment was in the range of 0.11 to 0.29?g/kg. At the same time PAH concentrations in the river sediment were up to 160?mg/kg, depending on the sampling site location. The values showed a decrease in the course of further monitoring.  相似文献   

19.
Brown bullhead from the Black River, Ohio, have a high incidence of liver neoplasia which is associated with elevated concentrations of polynuclear aromatic hydrocarbons (PAHs) in the sediment. We evaluated the use of biliary concentrations of benzo(a)pyrene [B(a)P] equivalents as a means for determining PAH exposure. Bile was collected from 16 brown bullheads and 8 common carp taken from each of two Lake Erie tributaries in Ohio, the industrialized Black River and the non-industrialized Old Woman Creek. Hatchery bullhead (n = 8) were used to determine base levels of PAHs. A high performance liquid chromatography (HPLC) — fluorescence technique was used to determine the concentration of B(a)P equivalents in the bile samples. The area of all peaks fluorescing at 380/430 nm was summed to give a single value for B(a)P equivalents in each sample. Concentrations of B(a)P equivalents generally reflected concentrations of PAH in sediment where fish were collected. Bile taken from Black River carp contained the highest concentration of B(a)P equivalents and was significantly different from all other groups. The value obtained for Black River bullhead was also high and was found to be significantly different from hatchery bullhead. B(a)P equivalents varied between carp and bullhead from the same habitat possibly because of differing food habits or metabolic pathways. However, our results indicate that relative levels of B(a)P equivalents in the bile of fish correspond well to B(a)P levels in sediment and may offer a means of determining environmental exposure of fish to the parent compound.  相似文献   

20.
Petroleum products are one of the major sources of energy for industry and daily life. Growth of the petroleum industry and shipping of petroleum products has resulted in the pollution. Populations living in the vicinity of oil refinery waste sites may be at greater risk of potential exposure to polycyclic aromatic hydrocarbons (PAH) through inhalation, ingestion, and direct contact with contaminated media. PAH have often been found to coexist with environmental pollutants including heavy metals due to similar pollution sources. The levels and distribution patterns of Σ16 PAH (sum of the 16 PAH) and heavy metals (lead, copper, nickel, cobalt, and chromium) were determined in soil and sediment in the vicinity (5 km radius) of an oil refinery in India. Concentrations of Σ16 PAH in the soils and sediments were found to be 60.36 and 241.23 ppm, respectively. Higher amount of PAH in sediments as compared to soil is due to low water solubility of PAH, settled in the bottom of aquatic bodies. The levels of lead, copper, nickel, cobalt, and chromium (total) in soil were 12.52, 13.52, 18.78, 4.84, and 8.29 ppm, while the concentrations of these metals in sediments were 16.38, 47.88, 50.15, 7.07, and 13.25 ppm, respectively. Molecular diagnostics indices of PAH (Ratio of Phenanthrene/Anthracene, Fluranthene/Pyrene) calculated for soil and sediment samples indicate that the oil refinery environment is contaminated with PAH from petrogenic as well as pyrolytic origin and heavy vehicular traffic on the Agra- Delhi National highway. Sixteen PAH priority pollutants were detected in the United States in entire samples collected near oil refinery areas and concentrations of Σ16 PAH in soil was found to be 1.20 times higher than the threshold value for PAH in soil by ICRCL (Inter-Departmental Committee on the Redevelopment of Contaminated Land). This concentration could lead to disastrous consequences for the biotic and abiotic components of the ecosystem and may affect the soil quality, thus impairing plant growth and its bioaccumulation in food chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号