首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary We have measured the effects of the carboxylic Ca++ ionophore A23187 on muscle tension, resting potential and 3-O-methylglucose efflux. The ionophore produces an increase in tension that is dependent on external Ca++ concentration since (a) the contracture was blocked by removing external Ca++ and (b) its size was increased by raising outside Ca++. Neither resting potential nor resting and insulin-stimulated sugar efflux were modified by the ionophore. These data imply that the action of insulin is not mediated by increasing cytoplasmic [Ca++]. Additional support for this conclusion was obtained by testing the effects of caffeine on sugar efflux. This agent, which releases Ca++ from the reticulum, did not increase resting sugar efflux and inhibited the insulin-stimulated efflux. Incubation in solutions containing butyrated derivatives of cyclic AMP or cyclic GMP plus theophylline did not modify the effects of insulin on sugar efflux. Evidence suggesting that our experimental conditions increased the cytoplasmic cyclic AMP activity was obtained.  相似文献   

3.
Explants of fetal mouse spinal cord and cerebral cortex generate organotypic slow-wave and repetitive-spike discharges in vitro which can be abolished by agents which reduce the concentration of Ca++ available to the tissue. Synaptically mediated discharges are rapidly blocked in Ca++-free balanced salt solution (BSS), or in regular BSS after addition of 10?3 M EGTA, 5–10 × 10?3 M Mg++, or 10?4 M xylocaine, but simple spike potentials can still propagate. When low concentrations of cyclic AMP or dibutyryl cyclic AMP (2 × 10?6 M) are added to the Ca ++-free BSS or Ca++-antagonist-BSS, a temporary (1–20 min) restoration of characteristic complex bioelectric activities occurs (or the onset of depression is delayed if cyclic AMP is initially added). Phosphodiesterase inhibitors, e.g. 10?3 M caffeine, are also effective in restoring these blockades, whereas 5′AMP and ATP are not. Application of 10?6 M cyclic AMP or 10?3 M caffeine in regular BSS greatly enhances excitability of some CNS explants, resembling convulsive effects observed in CNS in situ. The data suggest that cyclic AMP can mobilize Ca++ from membranebound Ca pools within neurons in CNS explants so as to permit Ca++-dependent release of neurotransmitter during Ca++ deficits. Thus, it may also be that under normal conditions, cyclic AMP can regulate the availability of Ca++ for synaptic transmission in the central nervous system, thereby modulating the efficacy of synaptic functions.  相似文献   

4.
The corticotropin-induced increase of total intracellular and receptor-bound cyclic AMP in isolated rat adrenocortical cells was strictly dependent on extracellular Ca2+. A rise in bound cyclic AMP with rising Ca2+ concentrations was accompanied by a decrease in free cyclic AMP-receptor sites. A Ca2+-transport inhibitor abolished the rise in bound cyclic AMP induced by corticotropin. These data suggested that during stimulation by corticotropin some Ca2+ has to be taken up in order to promote the rise of the relevant cyclic AMP pool. In agreement with this view, adenylate cyclase activity from isolated cells proved also to be dependent on a sub-millimolar Ca2+ concentration in the presence of corticotropin and GTP. When cells were treated under specific conditions, corticosterone production could be activated by Ca2+ in the absence of corticotropin (cells primed for Ca2+). Ca2+-induced steroidogenesis of these cells, in the absence of corticotropin, was also accompanied by an increase in total intracellular and receptor-bound cyclic AMP, as was found previously with corticotropin-induced steroidogenesis in non-primed cells. Calcium ionophores increasing the cell uptake of Ca2+ were not able, however, to increase the cyclic AMP pools in non-primed cells, unlike corticotropin in nonprimed cells or Ca2+ in cells primed for Ca2+. It was concluded that during stimulation by either corticotropin or Ca2+ a possible cellular uptake of Ca2+ must be very limited and directed to a specific site which may affect the coupling of the hormone-receptor–adenylate cyclase complex.  相似文献   

5.
Calcium requirement for ACTH and Dibutyryl cyclic AMP (DBCAMP) stimulation of steroidogenesis was compared in rat adrenal cell suspensions. In the absence of added calcium ACTH at low concentrations (< 1 mU/ml) was ineffective; however, the calcium requirement decreased when higher concentrations of ACTH were used. This was not the case with DBCAMP. At all levels of the nucleotide tested, the Ca++ requirement was about the same. When the cells were preincubated with EGTA, the Ca++ requirement became more pronounced for ACTH than for DBCAMP. The results indicate that the events before the formation of cyclic AMP show a greater dependence on Ca++ than the events following its formation.  相似文献   

6.
In pancreatic islets prelabelled with (3H) adenine, Ba++ augmented (3H) cyclic AMP in 1–10 min incubations. 3-isobutyl-l-methylxanthine markedly enhanced and prolonged the Ba++-induced nucleotide as well as the insulin response. In the presence of the methyl xanthine 1.6 mM Ba++ was a maximally and 0.4 mM a submaximally effective concentration both for the stimulation of (3H) cyclic AMP and insulin. A 5-fold excess of Ca++ partly inhibited the Ba++-induced nucleotide and — more profoundly — the insulin response. Increasing Mg++ from 2 to 10 mM was also inhibitory. Stimulation by Ba++ was observed in the absence as well as in the presence of D-glucose. It is concluded that the insulinotropic action of Ba++ is at least partly mediated by cyclic AMP.  相似文献   

7.
Cyclic AMP levels have been measured in cultures derived from 12-day-old chick embryonic muscle. A rise in concentration was found after the onset of myoblast fusion. Cells cultured at a medium Ca2+ concentration of 0.1 μM did not fuse and exhibited only a small rise in cyclic AMP concentration during culture. Addition of 1.4 mM Ca2+ to these cells after 50 h in culture caused rapid, synchronous fusion with a concomitant rise in cyclic AMP levels. Indomethacin, an inhibitor of prostaglandin synthesis, did not inhibit fusion, but inhibited the rise in cyclic AMP concentration. Indomethacin-treated cultures exhibited lower creatine kinase levels, though no change in the ratio of the three isoenzymes was observed. Addition of prostaglandins E1 and E2 to indomethacin-treated cultures overcame this inhibition. We propose that prostaglandin synthesis is a consequence of the stimulation of myoblast fusion and that via cyclic AMP it stimulates protein synthesis.  相似文献   

8.
Primary cultures of bone cells and skin fibroblasts were examined for their Ca++ content, intracellular distribution and Ca++ fluxes. Kinetic analysis of 45Ca++ efflux curves indicated the presence of three exchangeable Ca++ compartments which turned over at different rates: a “very fast turnover” (S1), a “fast turnover” (S2), and a “slow turnover” Ca++ pool (S3). S1 was taken to represent extracellular membrane-bound Ca++, S2 represented cytosolic Ca++, and S3 was taken to represent Ca++ sequestered in some intracellular organelles, probably the mitochondria. Bone cells contained about twice the amount of Ca++ as compared with cultured fibroblasts. Most of this extra Ca++ was localized in the “slow turnover” intracellular Ca++ pool (S3). Serum activation caused the following changes in the amount, distribution, and fluxes of Ca++: (1) In both types of cells serum caused an increase in the amount of Ca++ in the “very fast turnover” Ca++ pool, and an increase in the rate constant of 45Ca++ efflux from this pool, indicating a decrease in the strength of Ca++ binding to ligands on cell membranes. (2) In fibroblasts, serum activation also caused a marked decrease in the content of Ca++ in the “slow turnover” Ca++ pool (S3), an increase in the rates of Ca++ efflux from the cells to the medium, and from S3 to S2, as well as a decrease in the rate of influx into S3. (3) In bone cells the amount of Ca++ in S3 remained high in “serum activated” cells, the rate of efflux from S3 to S2 increased, and the rate of influx into S3 also increased. The rate of efflux from the cells to the medium did not change. The results suggest specific properties of bone cells with regard to cell Ca++ presumably connected with their differentiation. Following serum activation we investigated the time course of changes in the amount of exchangeable Ca++ in bone cells and fibroblasts, in parallel with measurements of 3H-thymidine incorporation and cell numbers. Serum activation caused a rapid decrease in the content of cell Ca++ which was followed by a biphasic increase lasting until cell division.  相似文献   

9.
Abstract: Neuroblastoma × glioma hybrid cells increase their intracellular concentration of cyclic AMP in response to prostaglandin E1 (PGE1). This effect is inhibited by opioids. The response to PGE1 is positively correlated with the concentration of Ca2+ in the incubation medium. The Ca2+ antagonists Co2+ and La3+, the Ca2+ chelator EGTA and a blocker of Ca2+ influx into cells, Segontin, inhibit the response to PGE1. At low external concentrations of Ca2+ the response to PGE1 is enhanced by the Ca2+ ionophore A23187. The effects of A23187 and Segontin point to a cytosolic site of Ca2+ action. Lack of Ca2+ reduces the level of cyclic AMP even in the absence of PGE1 and the presence of an inhibitor of cyclic AMP phosphodiesterase. Ca2+ is required even for an increase in the level of cyclic AMP in cells pretreated with cholera toxin. The increases in level of cyclic AMP evoked by PGE, in a neuroblastoma and by PGE1 or noradrenaline in a glioma cell line do not depend on Ca2+. The response of the hybrid cells to the opioid leucine-enkephalin appears not to rely on the presence of Ca2+. Even changing the intracellular concentration of Ca2+ by the ionophore A23187 does not alter the effect of the opioid. The analogy between opioids and lack of Ca2+ in the short-term (minutes) experiments mentioned holds also for long-term (hours) experiments. Cells chronically exposed to opioids or to low concentrations of Ca2+ display an enhanced maximal response to PGE1.  相似文献   

10.
Cyclic AMP-Elevating Agents Prevent Oligodendroglial Excitotoxicity   总被引:1,自引:0,他引:1  
Abstract: Previously, we have demonstrated that cells of the oligodendroglial lineage express non-NMDA glutamate receptor genes and are damaged by kainate-induced Ca2+ influx via non-NMDA glutamate receptor channels, representing oligodendroglial excitotoxicity. We find in the present study that agents that elevate intracellular cyclic AMP prevent oligodendroglial excitotoxicity. After oligodendrocyte-like cells, differentiated from the CG-4 cell line established from rat oligodendrocyte type-2 astrocyte progenitor cells, were exposed to 2 mM kainate for 24 h, cell death was evaluated by measuring activity of lactate dehydrogenase released into the culture medium. Released lactate dehydrogenase increased about threefold when exposed to 2 mM kainate. Kainate-induced cell death was prevented by one of the following agents: adenylate cyclase activator (forskolin), cyclic AMP analogues (dibutyryl cyclic AMP and 8-bromo-cyclic AMP), and cyclic AMP phosphodiesterase inhibitors (3-isobutyl-1-methylxanthine, pentoxifylline, propentofylline, and ibudilast). Simultaneous addition of both forskolin and phosphodiesterase inhibitors prevented the kainate-induced cell death in an additive manner. A remarkable increase in Ca2+ influx (~5.5-fold) also was induced by kainate. The cyclic AMP-elevating agents caused a partial suppression of the kainate-induced increase in Ca2+ influx, leading to a less prominent response of intracellular Ca2+ concentration to kainate. The suppressing effect of forskolin on the kainate-induced Ca2+ influx was partially reversed by H-89, an inhibitor of cyclic AMP-dependent protein kinase. In contrast to this, okadaic acid, an inhibitor of protein phosphatases 1 and 2A, brought about a decrease in the kainate-induced Ca2+ influx. We therefore concluded that cyclic AMP-elevating agents prevented oligodendroglial excitotoxicity by cyclic AMP-dependent protein kinase-dependent protein phosphorylation, resulting in decreased kainate-induced Ca2+ influx.  相似文献   

11.
Summary Thyrotropin releasing hormone (TRH) acutely stimulates release of thyrotropin (TSH) and prolactin from anterior pituitary cells. A considerable number of studies have been performed with neoplastic and nonneoplastic pituitary cells in culture to elucidate the sequence of intracellular events involved in this action. Although cyclic AMP was suggested as an intracellular messenger, it has been demonstrated that TRH stimulation of hormone release can be dissociated from changes in cyclic AMP concentration, thereby supporting the contention that cyclic AMP is not a required mediator. In contrast, stimulation of hormone release by TRH requires Ca2+ and it seems likely that Ca2+ is the intracellular coupling factor between TRH stimulation and hormone secretion. TRH has been shown to stimulate 45Ca2+ efflux from preloaded pituitary cells. Enhanced 45Ca2+ efflux is thought to reflect an increase in the free intracellular Ca2+ concentration which leads to hormone release; however, the source of this Ca2– is uncertain. Results are reviewed from a series of experiments in pituitary cells which attempt to determine the pool (or pools) of Ca2+ that is affected by TRH. These include the following: the effects of decreasing the extracellular Ca2– concentration on hormone release stimulated by TRH; the effect of TRH on cellular Ca2+ as monitored by chlortetracycline; the effects of TRH on Ca2+ influx; the effects of the organic Ca2+ channel blocking agents, verapamil and methoxyverapamil, on TRH-stimulated hormone release; and the effects of TRH on plasma membrane potential difference and on Ca2+-dependent action potentials. Based on these data, separate hypotheses of the early events in TRH stimulation of hormone release in mammotropes and thyrotropes are proposed. In mammotropes, TRH is thought to stimulate prolactin release optimally by elevating the free intracellular Cat+ concentration by mobilizing cellular Ca2– only. In contrast, in thyrotropes under normal physiological conditions, TRH is thought to stimulate TSH release by mobilizing Ca2 from a cellular pool (or pools) and to augment this effect by also inducing influx of extracellular Ca2+ through voltage-dependent channels in the plasma membrane.  相似文献   

12.
The possible role of calcium ions in the induction of ornithine decarboxylase (ODC) in rat hepatoma cells in culture (HTC) has been investigated by manipulating cellular calcium levels as follows: a) use of the calcium chelating agent EGTA to inhibit induction of ODC by dibutyryl cyclic AMP (cAMP), b) addition of Ca++ to reverse the inhibition of cAMP induction of ODC by EGTA, c) use of a calcium ionophore in the presence of Ca++ to induce ODC. In each case there was positive evidence for the participation of Ca++ in the induction of ODC.  相似文献   

13.
Summary Exposure of isolated pancreatic islets (mouse or rat) to low temperature (2° C) evoked a threefold increase in insulin release irrespective of the glucose concentration in the incubation medium. Cold-induced release was transient and rewarming to 37° C restored the sensitivity of B-cells to glucose stimulation. In islets cooled to 2° C, exocytotic profiles could easily be detected both by thin-section and freeze-fracture electron microscopy. As revealed by the freeze-fracture technique, the number of exocytotic profiles per membrane area was increased three-to fourfold as compared to islet cells incubated at 20° C. This was paralleled by intracellular fusion of secretory vesicles. Cold-induced insulin release was not affected by theophylline, cytochalasin B, omission of extracellular Ca++ or D600. Replacement of extracellular Na+ with choline or sucrose suppressed the increase in insulin release and in frequency of exocytotic profiles recorded after exposure to 2° C. It is suggested that a redistribution of Ca++ from intracellular stores, possibly mediated by an increase in intracellular Na+, triggers exocytosis of insulin granules upon exposure to cold.  相似文献   

14.
In cultured rat pituitary tumour cells (GH3 cells) the absence of extracellular Ca++ or addition of NaEGTA reduced spontaneous prolactin (PRL) release and abolished the stimulatory effect of thyroliberin (TRH). Readdition of CaCl2, but not of equimolar concentrations of MgCl2 increased spontaneous hormone release, and restored the effect of TRH. The calcium ionophore, A-23187, induced PRL release during normal calcium conditions, but not when an excess NaEGTA was present. TRH increased cyclic AMP accumulation in the presence and the absence of extracellular calcium. The effect of TRH on PRL release and cyclic AMP formation occured concomitantly with an increased efflux of 45Ca2+. Intracellular electrophysiological recordings from the same single cells before and after TRH activation showed increased frequency and duration of the Ca2+ dependent action potentials. We conclude that TRH elevates the Ca2+ influx which depends on the depolarizing action current, and this effect is probably linked to formation of cyclic AMP and PRL release.  相似文献   

15.
The tumor promoter phorbol 12-myristate 13-acetate rapidly induces alterations in both Ca++ content and transport in cultured differentiated chick myoblasts. At 4 ng/ml (6nM), the promoter caused a 25 ± 12% decrease in total intracellular Ca++ within 5 h after its addition. Measurement of 45Ca++ transport at this time revealed a 15 ± 6% decrease in the rate constants for both efflux and influx. Values of t12 for the cytosolic Ca++ pool in control and treated cells were 9.1 and 10.7 min, respectively, for efflux and 8.6 and 10.4 min, respectively, for influx. Ca++ influx was decreased maximally within 90 sec after promoter addition. No effect was observed on 86Rb+ uptake or intracellular concentration at equilibrium. The Ca++ response is among the most rapid yet reported and may play a primary role in altering cellular metabolism.  相似文献   

16.
Summary Light-induced degradation of photoreceptor membrane in the crayfish was studied by quantitative light and electron microscopy. The production of lysosomal organelles within the photoreceptor cells was enhanced by presenting the light stimulus intermittently (i.e., flicker) or by doubling its intensity. The enhancement was seen primarily as an increase in the number and size of multivesicular bodies. As these stimulus conditions are likely to facilitate intracellular Ca++ fluxes, the results are compatibl with recent speculations that Ca++ ions may regulate membrane degradation. To test the possibility that Ca++ acts as a signal coupling receptor stimulation with membrane loss, retinas were incubated in the dark with the ionophore A23187 in the presence or absence of external Ca++. The results demonstrate that A23187 produces a Ca++-dependent increase in lysosomal organelles, predominantly multivesicular bodies. These data are consistent with a role for intracellular Ca++ in the degradative process; however, the exact locus of the effect is unclear.Supported by a grant (BNS 8004587) from the National Science Foundation to G.S.H. The authors gratefully acknowledge the helpful discussions and expert technical assistance of Thomas R. Tokarski  相似文献   

17.
The induction of aggregative phase functions and the acceleration of the onset of aggregation competence by nanomolar pulses of cyclic AMP can be mimicked by exposing developing cells to a high extracellular concentration of either cyclic AMP or cyclic GMP (5 × 10?4M) during the first 1–2 hr of development. Pulses of cyclic AMP have previously been shown to result in oscillations of intracellular cyclic AMP concentration; we show that high extracellular concentrations of cyclic AMP and cyclic GMP cause intracellular cyclic AMP levels to increase. We describe a mutant, HM11, which has elevated levels of intracellular cyclic AMP from the beginning of development and which begins to accumulate cell-associated phosphodiesterase, an aggregative phase enzyme, within an hour of starvation. Our data suggest that the expression of aggregative phase functions is controlled by an elevation of intracellular cyclic AMP which may be either continuous or periodic.  相似文献   

18.
SYNOPSIS. Locomotor behavior in the ciliate protozoa is controlled by the cell membrane through electrophysiological principles already familiar in receptor, nerve, and effector cells of the metazoa. This is illustrated by the avoiding reaction (15). When the membrane of the anterior part of the ciliate receives a mechanical stimulus, as during collision, it permits a local influx of Ca++. This constitutes a receptor current which depolarizes the remaining cell membrane by electrotonic spread. Depolarization causes a secondary transient increase in the calcium conductance of the entire cell membrane, and a general influx of Ca++ occurs. The resulting increase in concentration of intracellular Ca++ activates a reorientation (“reversal”) of the ciliary power stroke, causing the organism to swim backward. Forward locomotion is restored as the resting concentration of intracellular Ca++ in the cell cortex is restored by diffusion, active extrusion, or intracellular sequestering. The control and coordination of locomotion in ciliates depend on several factors in addition to the excitable properties of the membrane. These include the sensitivities of the ciliary apparatus to intracellular concentrations of calcium and other regulating substances, the anatomical distribution of sensory receptor properties of the cell membrane, and the cable properties of the cell which permit electrotonic spread of graded potential signals without need of all-or-none conducted signals.  相似文献   

19.
Summary The histo- and cytochemical localization of Ca++-ATPase activity in the adenohypophysis of the guinea pig was studied utilizing a newly developed method (Ando et al. 1981). An intense reaction was observed in the wall of the blood vessels and between non-secretory cells (stellate cells) and endocrine cells of the pars distalis. Under the electron microscope the Ca++-ATPase reaction product was located extracellularly in relation to the plasmalemma of the stellate cells. This reaction was dependent on Ca++ and the substrate, ATP, and reduced by the addition of 0,1 mM quercetin to the standard incubation medium. Preheating of the sections before incubation completely inhibited the enzyme activity. When Mg++ in different concentrations were substituted for Ca++ in the incubation medium the reaction was always reduced. Both Ca++ and Mg++ in the incubation medium also reduced the reaction. The plasmalemma of the endocrine cells contains no demonstrable amount of Ca++-ATPase activity. The function of the Ca++-ATPase activity is discussed in relation to the regulation of the extracellular Ca++ concentration which seems to be important with respect not only to the secretory process of the endocrine cells but also to the metabolism of the adenohypophysis.  相似文献   

20.
Summary Secretagogues of pancreatic enzyme secretion, the hormones pancreozymin, carbamylcholine, gastrin I, the octapeptide of pancreozymin, and caerulein as well as the Ca++-ionophore A 23187 stimulate45Ca efflux from isolated pancreatic cells. The nonsecretagogic hormones adrenaline, isoproterenol, secretin, as well as dibutyryl cyclic adenosine 3,5-monophosphate and dibutyryl cyclic guanosine 3,5-monophosphate have no effect on45Ca efflux. Atropine blocks the stimulatory effect of carbamylcholine on45Ca efflux completely, but not that of pancreozymin. A graphical analysis of the Ca++ efflux curves reveals at least three phases: a first phase, probably derived from Ca++ bound to the plasma membrane; a second phase, possibly representing Ca++ efflux from cytosol of the cells; and a third phase, probably from mitochondria or other cellular particles. The Ca++ efflux of all phases is stimulated by pancreozymin and carbamylcholine. Ca++ efflux is not significantly effected by the presence or absence of Ca++ in the incubation medium. Metabolic inhibitors of ATP production, Antimycin A and dinitrophenol, which inhibit Ca++ uptake into mitochondria, stimulate Ca++ efflux from the isolated cells remarkably, but inhibit the slow phase of Ca++ influx, indicating the role of mitochondria as an intracellular Ca++ compartment. Measurements of the45Ca++ influx at different Ca++ concentrations in the medium reveal saturation type kinetics, which are compatible with a carrier or channel model. The hormones mentioned above stimulate the rate of Ca++ translocation.The data suggest that secretagogues of pancreatic enzyme secretion act by increasing the rate of Ca++ transport most likely at the level of the cell membrane and that Ca++ exchange diffusion does not contribute to the45Ca++ fluxes.With the technical assistance of C. Hornung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号