首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth and reduce plant uptake of heavy metals. Phosphorus (P) fertilization can affect this relationship. We investigated maize (Zea mays L.) uptake of heavy metals after soil AMF inoculation and P fertilization. Maize biomass, glomaline and chlorophyll contents and uptake of Fe, Mn, Zn, Cu, Cd and Pb have been determined in a soil inoculated with AMF (Glomus aggregatum, or Glomus intraradices) and treated with 30 or 60 µg P-K2HPO4 g?1 soil. Consistent variations were found between the two mycorrhizal species with respect to the colonization and glomalin content. Shoot dry weight and chlorophyll content were higher with G. intraradices than with G. aggregatum inoculation. The biomass was highest with 30 µg P g?1 soil. Shoot concentrations of Cd, Pb and Zn decreased with G. aggregatum inoculation, but that of Cd and Pb increased with G. intraradices inoculation. Addition of P fertilizers decreased Cd and Zn concentrations in the shoot. AMF with P fertilization greatly reduced maize content of heavy metals. The results provide that native AMF with a moderate application rate of P fertilizers can be exploited in polluted soils to minimize the heavy metals uptake and to increase maize growth.  相似文献   

2.
Summary The effects of Zn, P, N and CaCO3 on tryptophan concentration in rice grain were studied in greenhouse at Haryana Agricultural University. Zinc application upto 20 ppm increased tryptophan concentration in rice grain. Zn-EDTA gave highest increase followed by ZnSO4 and then ZnO. Liming at the rate of 4 and 8 per cent decreased tryptophan concentration significantly. Phosphorus application upto 100 ppm also decreased tryptophan significantly but Zn in combination with P increased tryptophan and overcame negative effect of P. Nitrogen application upto 120 ppm increased tryptophan concentration. There was positive interaction between Zn and N. Ammonium sulphate gave highest tryptophan followed by ammonium nitrate and then urea. The tryptophan concentration ranged between 766 ppm and 2011 ppm in paddy grain. The lowest tryptophan concentration was in the plants treated with 8 per cent lime in absence of added Zn and highest with 10 ppm Zn through Zn-EDTA. Department of Soils.  相似文献   

3.
Anthropogenic activities like agriculture have resulted in increased concentrations of some trace elements of toxicological and environmental concern in soils. Application of fertilizers has been one of the major inputs of these contaminants to agricultural soils in developing countries. Twenty-two fertilizers, including straight nitrogen (N), phosphorus (P), potassium (K), and NK fertilizers and micronutrient sources, were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn). As expected, the trace element content of fertilizers was highly variable and related to the origin of the material. Phosphorus fertilizers, especially triple superphosphate, presented the highest As, Cd, Cu, Cr, Ni, V, and Zn concentrations. In some of these fertilizers, the Cr, V, and Zn contents reached values greater than 3475 mg kg?1 of P, and the Cd content (up to 288 mg kg?1 of P) was several times higher than the regulatory limits of different countries. Some micronutrient sources presented the highest concentrations of Mn and Pb. In the cases of N, K, and NK fertilizers, the trace element concentration was very low, sometimes below the detection limits. In some agricultural systems the input of trace elements such as As and Cd to the soil through P fertilizers application may be higher than the outputs through plant uptake and leaching; therefore the long-term use of these fertilizers may cause the trace element concentration to increase in the plow layer of agricultural soils.  相似文献   

4.
The effects of CaCO3, Zn sources and levels on the yield of submerged paddy and uptake of Zn, P and N to paddy were studied in green-house at Haryana Agricultural University, Hissar. Powdered CaCO3 was mixed at 0,4 and 8 per cent and Zn was added at 0,5 and 10 ppm through ZnSO4.7H2O, ZnO and Zn EDTA separately. Dry weight at tillering and heading and grain and straw at maturity decreased significantly with 4 and 8 per cent CaCO3 in comparison to the control. Increasing Zn application increased the dry weight and grain yield. Zn EDTA gave highest yield of paddy followed by ZnSO4.7H2O and ZnO.Increasing the application of CaCO3 from 0–8 per cent decreased the concentration and uptake of Zn and increasing Zn application from 0–10 ppm increased concentration and uptake of Zn in paddy at tillering, heading and maturity. Zn EDTA gave the highest concentration and uptake of Zn followed by ZnSO4.7H2O and ZnO. There was interaction between Zn sources and CaCO3.The concentration and uptake of N and P in paddy dry matter at tillering and heading and straw and grain at maturity decreased as compared to control with increasing CaCO3 addition. The concentration and uptake of N increased and that of P decreased in paddy dry matter straw and grain with increasing Zn application. The highest concentration of N was observed with ZnO, followed by ZnSO4.7H2O and Zn EDTA. But highest uptake of N was observed with Zn EDTA followed by ZnSO4.7H2O and ZnO. As regards concentration and uptake of P, it was highest with ZnO followed by ZnSO4.7H2O and Zn EDTA.  相似文献   

5.
Summary The growth of foxtail millet and clover in soils of varying degrees of salinity (0.5 to 13 mmhos/cm), treated with nitrogen and phosphorus, was studied. Salinity levels were achieved by addition of sodium chloride. Nitrogen (10 to 60 ppm N) and phosphorus (6.4 to 44.8 ppm P) were added as NH4NO3 and H3PO4, respectively. The growth of millet decreased sharply with increase in soil salinity, when N-P treatments were not applied. The development of this plant altered under saline conditions, however, when nitrogen and phosphorus were added; various N-P combinations affected plant growth in saline soil differently. Phosphorus, when applied at relatively high rates, significantly improved plant growth. Increased rates of nitrogen in the N-P treatments generally had no significant effect on growth; it was reduced when the N/P ration was highest. Clover ceased to grow when the salinity of the soil exceeded 7 mmhos/cm and no N-P was added. Phosphorus enhanced the growth of clover, and at high rates of its application in the N-P combinations, clover grew even at the highest salinity level tested (13 mmhos/cm). Nitrogen increase had no marked effect on plant development. Comparing enhancement of growth at high salinity levels, clover was somewhat less affected by the N-P treatment than millet. The top/root ratio of clover generally increased with increase of phosphorus in the N-P combinations. This research (Parts I and II) was supported in part by a grant from the U.S. Department of Agriculture under P. L. 480.  相似文献   

6.
Rice seedlings were grown in hydroponic culture to determine the effects of external Zn and P supply on plant uptake of Cd in the presence or absence of iron plaque on the root surfaces. Iron plaque was induced by supplying 50 mg l−1 Fe2+ in the nutrient solution for 2 day. Then 43-day-old seedlings were exposed to 10 μmol l−1 Cd together with 10 μmol l−1 Zn or without Zn (Zn–Cd experiment), or to 10 μmol l−1 Cd with 1.0 mmol l−1 P or without P (P–Cd experiment) for another 2 day. The seedlings were then harvested and the concentrations of Fe, Zn, P and Cd in dithionite–citrate–bicarbonate (DCB) extracts and in roots and shoots were determined. The dry weights of roots and shoots of seedlings treated with 50 mg l−1 Fe were significantly lower than when no Fe was supplied. Adsorption of Cd, Zn and P on the iron plaque increased when Fe was supplied but Cd concentrations in DCB extracts were unaffected by external Zn or P supply levels. Cd concentrations in shoots and roots were lower when Fe was supplied. Zn additions decreased Cd concentrations in roots but increased Cd concentrations in shoots, whereas P additions significantly increased shoot and root Cd concentrations and this effect diminished when Fe was supplied. The percentage of Cd in DCB extracts was significantly lower than in roots or shoots, accounting for up to 1.8–3.8% of the plant total Cd, while root and shoot Cd were within the ranges 57–76% and 21–40% respectively in the two experiments. Thus, the main barrier to Cd uptake seemed to be the root tissue and the contribution of iron plaque on root surfaces to plant Cd uptake was minor. The changes in plant Cd uptake were not due to Zn or P additions altering Cd adsorption on iron plaque, but more likely because Zn or P interfered with Cd uptake by the roots and translocation to the shoots.  相似文献   

7.

Aims

The aim of this study was to compare the residual effects in soil and the influence on a flax crop (Linum usitatissimum L.) of applying Zn from different commercial synthetic chelates. The chelates used were: Zn-EDDHSA (Zn-ethylenediamine-N,N'-bis(2-hydroxyphenylacetate), Zn-EDTA (Zn-ethylenediaminetetraacetate), Zn-HEDTA (Zn-N-2-hydroxyethyl-ethylenediaminetriacetate), Zn-EDTA-HEDTA and Zn-DTPA-HEDTA-EDTA (Zn-DTPA, Zn-diethylenetriaminepentaacetate).

Methods

The experiment was conducted in a greenhouse using two different soils (Soilacid: a weakly acidic soil and Soilcalc: a calcareous soil). Each treatment was administered, in a single application, to a previous flax crop at different Zn application rates. The yield and some of the flax crop quality parameters were determined in the present flax crop. Soil Zn behavior was then evaluated by single and sequential extraction.

Results

In Soilacid, the Zn-HEDTA and Zn-EDDHSA fertilizers produced the highest plant parameters values (total Zn concentration, total uptake Zn), percentages of Zn utilization and values of the transfer factor, TF. In contrast, in Soilcalc these fertilizers produced the lowest in-plant values, with this soil producing the highest yield, quality, percentage of utilization and TF associated with the application of Zn-DTPA-HEDTA-EDTA and Zn-EDTA fertilizers. However, the Zn-EDTA in Soilacid and Zn-DTPA-HEDTA-EDTA in Soilcalc, were associated with the greatest amounts of bioavailable Zn in soil and also with the highest Zn concentrations associated with the sum of the most labile fractions (water soluble plus exchangeable fractions).

Conclusions

The residual Zn produced by the different fertilizer treatments estimated using the DTPA, Mehlich-3- and LMWOAs methods- was available in sufficient quantities that it not be necessary to add any further Zn (which could have resulted in over-fertilization) for the subsequent crop to either of the soils.  相似文献   

8.
A greenhouse study compared the effect of soil P-fixing capacity on the relative argonomic effectiveness (RAE) of partially acidulated phosphate rock (PAPR) and water-soluble P. Such information is lacking in the literature. Six soils varying widely in P-fixing capacity (5.6%–56.1%) were used. A phosphate rock (Huila PR) from Colombia was acidulated with H2SO4 at 50% of the level necessary to achieve full conversion to single superphosphate (SSP). Rates of P applied from PAPR or SSP were 0,05, 100, and 300 mg P kg−1. The P fertilizers were mixed with the soils, and maize was grown for 6 weeks before harvest. The results show that the effectiveness of PAPR in increasing dry-matter yield and P uptake over yield and uptake obtained with SSP linearly increased as the soil P-fixing capacity increased. PAPR and SSP were equally effective in increasing dry-matter yield or P uptake at P-fixing capacities of 28% or 36%, respectively. PAPR was found to be more effective than SSP in soils (treated with Fe-gel) with P-fixing capacity higher than these values. The internal efficiency, which is defined as the ratio between dry-matter yield and P uptake, was the same for both PAPR and SSP in all the soils.  相似文献   

9.
Summary Humic acid affected nutrient uptake differently in sand culture. It generally increased Cu uptake, slightly, though insignificantly, increased Fe uptake and practically had no effect on Zn uptake. Such results agree fairly well with the relative stability of humic acid with these metals.When humic acid was added to sand culture at increasing concentration of the metal, it considerably increased dry weight, Cu uptake and Cu concentration through decreasing its toxicity to plant. With Fe, however, humic acid and Na2EDDHA slightly increased Fe uptake at lower Fe concentration (30 ppm) but significantly reduced both Fe uptake and Fe concentration in plant at higher concentration of Fe compared to the control treatment. Humic acid reduced Zn uptake and Zn concentration in plant at concentrations of 0.5–1.5 ppm Zn, and guarded against Zn toxicity which developed at higher concentration of Zn when no humic acid was added.  相似文献   

10.
Ding  Na  Guo  Haichao  Kupper  Joseph V.  McNear  David H. 《Plant and Soil》2016,398(1-2):291-300
Aims

An experiment was performed to test how different fungal endophyte strains influenced tall fescue’s ability to access P from four P sources varying in solubility.

Methods

Novel endophyte infected (AR542E+ or AR584E+), common toxic endophyte infected (CTE+), or endophyte-free (E-) tall fescues were grown for 90 days in acidic soils amended with 30 mg kg?1 P of potassium dihydrogen phosphate (KH2PO4), iron phosphate (FePO4), aluminum phosphate (AlPO4), or tricalcium phosphate ((Ca3(PO4)2), respectively.

Results

Phosphorus form strongly influenced plant biomass, P acquisition, agronomic P use efficiency, microbial communities, P fractions. P uptake and vegetative biomass were similar for plants grown with AlPO4, Ca3(PO4)2, and KH2PO4 but greater than in control and FePO4 soils. Infection with AR542E+ resulted in significantly less shoot biomass than CTE+ and E- varieties; there was no influence of endophyte on root biomass. The biomarker for arbuscular mycorrhizal fungi (AM fungi, 16:1ω5c) was selected as an effective predictor of variations in P uptake and tall fescue biomass. Potential acid phosphatase activity was strongly influenced by endophyte x P form interaction.

Conclusions

Endophyte infection in tall fescue significantly affected the NaOH-extractable inorganic P fraction, but had little detectable influence on soil microbial community structure, root biomass, or P uptake.

  相似文献   

11.
The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays.  相似文献   

12.
Summary The effect of lime and P application on yield (top and root weigh), nodulation, intervally collected acetylene reduction (N2-fixation), and N and Al uptake of young alfalfa (46 days growth) were investigated in greenhouse pots containing acid Bladen or Bradson topsoils. The effect on seed germination and seedling persistence under these greenhouse conditions was also recorded.Alfalfa yield and acetylene reduction increased with lime and P additions in both soils, but, predominately, with P. There was no advantage of increasing these two parameters with liming past pH 6.0 provided P was adequate. Positive relationships (R2) existed between yield and acetylene reduction, and with both factors and root weight, nodule weight, and N uptake. Increased uptake of Al by alfalfa seedlings depressed yield, but data indicate P may block Al uptake at high soil pH. There were no treatment effects on seed germination, but P application increased plant persistence in the Bladen soil.  相似文献   

13.
Summary Alfalfa (Medicago sativa L.), cv. Iroquois, was grown in the greenhouse in soils amended with additions of either lead, cadmium, or nickel. Metals, at rates varying from 0–250 ppm, were not uniformly mixed but were placed close to the soil surface so as to simulate surface deposition. In one series of experiments the sulphate salt of each metal and two soils were used. In a second series of experiments the nitrate salts and one soil were used. Neither salt of lead significantly depressed alfalfa yields. Both salts of either cadmium or nickel significantly depressed yields. Additions of all metals to the soil resulted in both increased metal uptake and concentrations in alfalfa tissue, particularly for cadmium and nickel. The highest tissue concentrations of cadmium and nickel were associated with plant stunting and necrosis. However, at rates of 125 ppm and less, substantial increases in cadmium and nickel concentrations were obtained frequently without serious yield reductions. Generally, metal concentrations were greatest in the first harvest following metal application. Concentration and uptake of lead and cadmium were greater when the metal was applied to the soil as nitrate than when applied as the sulphate salt.  相似文献   

14.
Laboratory pot experiments were run to study the effects of added zinc (Zn) with and without farmyard manure (FYM) and phosphorus (P) on Zn transformations in two Alfisols, together with Zn uptake by wheat plants grown up to 60 days. In the first experiment the treatments included four levels of Zn (0, 3.75, 7.5 and 15 mgkg(-1) soil) and two levels of FYM (0 and 10 tha(-1)), and in the second experiment five levels of P (0, 20, 40, 80 and 160 mgkg(-1) soil) and one level of Zn (7.5 mgkg(-1) soil). The soils were sequentially fractionated into water-soluble plus exchangeable (CA-Zn), inorganically bound (AAC-Zn), organically bound (PYR-Zn), oxide bound (OX-Zn) and residual (RES-Zn) forms. The effect of added FYM was more evident on the OX-Zn fraction and the percentage utilization of Zn by wheat was the greatest with the addition of FYM alone at the rate of 10 tha(-1) (1.95-2.38%) in comparison to other treatment combinations. Among the levels, application of 7.5 mg Zn kg(-1) soil showed the maximum increase in different fractions of soil Zn and significantly increased the Zn utilization by wheat (0.87-1.17%) as compared to other Zn levels (0.58-0.88%). On an average, about 85% of the added Zn was recovered in different fractions in Zn treated pots. However, the recovery per cent of the added Zn was significantly higher at Zn level 7.5 (95%) mgkg(-1) soil than at 3.75 (87%) and 15 (73%) mg Zn kg(-1) soil levels. Phosphorus additions up to 40 mgkg(-1) soil increased the plant-available Zn in soils whereas at higher P levels plant-available forms decreased with a concominant increase in the inert forms. At 160 mg P kg(-1) soil, the P effect was more pronounced in the shoot than in the root, suggesting that a higher P level inhibits Zn translocation from root to upper plant parts. Path analysis showed that the organically (PYR-Zn) and inorganically bound (AAC-Zn) Zn fractions were the predominant fractions that influenced the Zn availability to plants.  相似文献   

15.
Soil chemical extractions are widely used to predict the nutritional status of soils. However, the correlation between extracted elements and plant uptake is often poor, especially if compared over a range of soil types. The aim of this study was to examine a new method called Diffusive Gradients in Thin films (DGT), which measures the diffusive supply of elements, thereby mimicking a plant root. The ability of DGT to assess plant-available P, Zn and Cu was tested in a wide range of typical Scandinavian agricultural soils along with conventional methods (EDTA and DTPA for Cu and Zn; NaHCO3 for P and soil solution concentrations). Extracted soil concentrations were compared to that of the element in the youngest fully developed leaf of barley (Hordeum vulgare L.) grown in pots. For Zn and P, only DGT could predict plant uptake while conventional extraction methods and soil solution analyses performed poorly. All soil tests could predict Cu concentration in leaves, but the DGT technique proved to be most accurate followed by the soil solution concentration of Cu. We conclude that DGT is much more accurate at predicting plant-available P, Zn and Cu than commonly used methods for analysing plant-available nutrients in soil.  相似文献   

16.
Summary On several alkaline calcareous soils, Zn and Cu deficiency occurred mainly in lowland rice (Oryza sativa L.) and was rarely found in wheat (Triticum aestivum L.). Zinc and Cu requirement of plants was not responsible as the critical Zn and Cu contents in tops of the two plant species were almost similar i.e. 17.4, 6.5 and 14.5, 5.6 ppm respectively. Neither did rice absorb Zn and Cu less efficiently. On the contrary, their rates of absorption in rice were double than in wheat. They were 22.2, 6.3 and 10.2, 3.3 ng atoms/g fresh root/h respectively in the two plant species. Flooded soil conditions appeared to be responsible for Zn and Cu deficiency in rice as their deficiency was found mainly in plant samples collected from continuously flooded fields. The mechanism is not known.Both Zn and Cu inhibited uptake of each other in wheat on most of the soils. In rice, only applied Zn depressed Cu uptake but Cu had generally little effect on Zn uptake. Little Cu inhibition of Zn uptake in lowland rice seems to be related to flooded soil conditions. The mechanism is yet to be known. The antagonising element accentuated the deficiency of the other element both in wheat and rice and severely reduced their yields on soils marginal to deficient in Zn or Cu supplies. It is recommended that their soil availability status should be thoroughly considered before their fertilizers are applied. re]19750515  相似文献   

17.
A study was performed to establish whether colonisation with arbuscular mycorrhizal (AM) fungi is beneficial to wild thyme [Thymus polytrichus A. Kerner ex Borbás ssp. britannicus (Ronn.) Kerguelen (Lamiaceae)] growing in the heavy-metal-contaminated soils along the River South Tyne, United Kingdom. T. polytrichus plants of the same genotype were grown under controlled conditions with and without Zn contamination, and differences between AM-colonised and -uncolonised plants in mean shoot and root growth (dry weight) and Zn concentration were assessed. When grown in the heavy-metal-contaminated, low-P soil from one of the South Tyne sites, AM-colonised plants grew significantly larger than uncolonised plants; however, there was no significant difference in growth between AM and non-AM plants grown in an artificial substrate with a larger available P concentration, with or without Zn contamination. Mycorrhizal colonisation increased tissue Zn concentrations during the experiments. It is concluded that AM fungi are beneficial, if not essential, to T. polytrichus growing in the low-nutrient soils along the River South Tyne, because of their role in enhancing plant uptake of P (and possibly other nutrients). There was no evidence from this study that the fungi reduce plant uptake of heavy metals at these sites, but rather increase Zn uptake. However, the resulting tissue metal concentrations do not appear to be large enough to be detrimental to plant growth.  相似文献   

18.
It is important to use proper agronomic management to reduce cadmium (Cd) accumulation in plants, ensuring food safety. To find the most effective agronomic approach, the effect of foliar spraying and seed soaking of zinc (Zn) fertilizers on Cd accumulation in cucumbers (Cucumis sativus L.) grown in two soil Cd levels (2 and 5 mg kg?1 Cd) with and without an immobilizing amendment (red mud, RM) was investigated in the present study. The results showed that the treatment of foliar Zn or seed Zn significantly decreased the Cd concentration in cucumber shoots by about 12–36% in Cd-contaminated soils without amendment. Combined with RM treatment, the foliar Zn treatment further decreased the Cd concentration in cucumber shoots by up to 48–66% in Cd-contaminated soils. There were significant negative correlations between Cd and Zn concentrations in shoots of cucumbers grown in soils treated with RM and foliar Zn. The results revealed that the cucumber seedlings treated with RM and foliar Zn had a higher capacity for limiting the transfer of Cd to aboveground tissues. The results also suggested that increasing seed Zn concentrations sufficiently might act as an efficient, economic, and practical method for decreasing Cd uptake in crops grown in mildly Cd-contaminated and Zn-deficient soils.  相似文献   

19.
Potential importance of the subsoil for the P and Mg nutrition of wheat   总被引:2,自引:0,他引:2  
A method is described which allowed the quantification of the potential uptake of P and Mg from the subsoil (>30cm) by spring wheat. Wheat was grown on an artificial topsoil (sand with no plant available P or Mg) which was superimposed on loess subsoils in N. Germany. The supply of P and Mg in the topsoil was varied by application of different quantities of P and Mg fertilizer. Uptake of P and Mg from the subsoil was calculated as the difference between total plant uptake (determined by plant analysis) and the quantities of P and Mg removed from the topsoil (determined by soil analysis). P uptake from the subsoil increased from 37% to 85% of total P uptake, with decreasing P supply in the topsoil. Calculations of potential supply by diffusion showed that, with a CAL-extractable P2O5 content in the subsoil of 9 mg 100g-1, supply from the subsoil was only possible if the influence of root hairs was considered. The method also showed that the total demand for Mg by spring wheat could be satisfield from the supply of Mg from the subsoil of typical loess soils. Mg uptake from the subsoil decreased to 33% of total uptake with increasing Mg supply in the topsoil.  相似文献   

20.

Aim

Our aim was to improve the prediction of Zn bioavailability to wheat grown on low-Zn soils. The classical approach that directly relates Zn in a certain soil extract to Zn uptake has been shown to be inadequate in many cases. We tested a stepwise approach where the steps of the uptake process are characterized with, respectively, Zn solid-solution distribution, adsorption of Zn to root surface, Zn uptake into root and Zn translocation to shoot.

Methods

Two pot experiments were done with wheat grown on nine low-Zn soils varying widely in pH, clay and organic matter content. Soluble Zn concentrations in two soil extracts (DTPA and CaCl2) were measured. Free Zn ion concentrations in CaCl2 soil extracts were determined with the Donnan Membrane Technique. These Zn concentrations were then related to plant Zn uptake following both the direct and the stepwise approach.

Results

In the direct approach, Zn in the DTPA extract was a better predictor for shoot Zn uptake than Zn in the CaCl2 extract. In the stepwise approach, the relationship between Zn in CaCl2 extracts and the root surface adsorbed Zn was pH-dependent and nonlinear. Root surface adsorbed Zn was linearly related to root Zn uptake, and the latter was linearly related to the shoot Zn uptake. The stepwise approach improved the Zn uptake prediction compared to the direct approach and was also validated for different wheat cultivars.

Conclusions

The adsorption of Zn on the root surface is pH dependent and nonlinear with respect to the soil Zn concentration, and a useful proxy for bioavailable Zn over a wide range of soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号