首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary N-(Benzyloxycarbonyl)-l-phenylalanyl-l-phenylalanine methyl ester was synthesized from N-(benzyloxycarbonyl)-l-phenylalanine and l-phenylalanine methyl ester in an aqueous solution (aqueous phasic reaction), in an aqueous/organic biphasic system (biphasic reaction), and in an organic solvent (organic phasic reaction) with immobilized thermolysin. In the aqueous phasic reaction with thermolysin immobilized on Amberlite XAD-7, the whole product was trapped inside the support; extraction with ethyl acetate was needed to recover the product, and the equilibrium yield was low (about 65%). With the biphasic and organic phasic reactions with ethyl acetate as an organic solvent, the yield was around 95%. Because of the high yield and feasibility of operation, repeated batch and continuous reactions were done in the biphasic and organic phasic systems, respectively. The half-lives of the activity for the immobilized enzyme used in the biphasic system at 40°C by repeated batch operation and in a plug flow reactor fed with substrate dissolved in ethyl acetate at 40°C and 30°C were estimated to be about 200 h (67 batches), 420 h, and 1100 h, respectively.  相似文献   

2.
N-(Benzyloxycarbonyl)-L-glycyl-L-phenylalanine methyl ester was continuously synthesized, enzymatically, utilizing an extractive reaction in an aqueous/organic biphasic system. The extremely high yield, ca. 100%, was obtained continuously in a water/butyl acetate biphasic medium.  相似文献   

3.
A new approach to preparative organic synthesis in aqueous–organic systems is suggested. It is based on the idea that the enzymatic process is carried out in a biphasic system “water–water-immiscible organic solvent.” Thereby the enzyme is localized in the aqueous phase—this eliminates the traditional problem of stabilizing the enzyme against inactivation by a nonaqueous solvent. Hence, in contrast to the commonly used combinations “water–water-miscible organic solvent,” in the suggested system the content of water may be infinitely low. This allows one to dramatically shift the equilibrium of the reactions forming water as a reaction product (synthesis of esters and amides, polymerization of amino acids, sugars and nucleotides, dehydration reactions, etc.) toward the products. The fact that the system consists of two phases provides another very important source for an equilibrium shift, i.e., free energies of the transfer of a reagent from one phase to the other. Equations are derived describing the dependence of the equilibrium constant in a biphasic system on the ratio of the volumes of the aqueous and nonaqueous phases and the partition coefficients of the reagents between the phases. The approach has been experimentally verified with the synthesis of N-acetyl-L -tryptophan ethyl ester from the respective alcohol and acid. Porous glass was impregnated with aqueous buffer solution of chymotrypsin and suspended in chloroform containing N-acetyl-L -tryptophan and ethanol. In water (no organic phase) the yield of the ester is about 0.01%, whereas in this biphasic system it is practically 100%. The idea is applicable to a great number of preparative enzymatic reactions.  相似文献   

4.
Summary Pseudomonas elastase was found to be efficient in catalysing the reaction betweenN-benzyloxycarbonyl-L-aspartic acid and L-phenylalanine methyl ester producing the aspartame precursor in aqueous and aqueous methanolic solutions. 25% (v/v) methanol was most favourable for the synthesis where about 100% increase in yield was obtained compared to that in aqueous solution.Abbreviations N-cbz-L-Asp N-benzyloxycarbonyl-L-Aspartic acid - L-Phe-OMe L-phenyl alanine methyl ester - HPLC high performance liquid chromatography. All the % of methanol is a volume % in water unless otherwise specified  相似文献   

5.
Summary The synthesis of the dipeptideN-benzyloxycarbonyl-L- aspartyl-phenylalanine methyl ester, aspartame precursor, catalysed by thermolysin in aqueous and aqueous methanolic solutions was studied. Thermolysin with concentration as low as 10 M in 25% methanol can catalyse the synthetic reaction. The optimum methanol compositions at 4°C and 37°C were 50% and 25% respectively where an increase in peptide yield of 85% was obtained for both conditions as compared to that in water.Abbreviations N-cbz-L-Asp N-benzyloxycarbonyl-L-aspartic acid - L-Phe-OMe L-phenylalanine methyl ester - N-cbz-L-Asp-Phe-OMe N-benzyloxycarbonyl-L-aspartyl-phenylalanine methyl ester All the % of methanol is a volume % in water unless otherwise specified.  相似文献   

6.
The study concerned the pH profile of the apparent equilibrium constant for synthesis of N-benzoyl-L -phenylalanine ethyl ester from the respective acid and ethanol in the biphasic system chloroform + 5% (v/v) water. The substitution of water (as a reaction medium) for the biphasic aqueous–organic system shifted the pH profile toward neutral pH values. As a result the pH range thermodynamically conducive to synthesis of the final product in the biphasic system coincided with the pH optimum of the catalytic activity of the enzyme used (α-chymotrypsin). This approach should, in principle, be considered as general: first, per se it is independent of a catalyst (enzyme) nature; second, the biphasic method helps the shift ionic equilibria involving not only organic acids, but also bases. A physical mechanism of the ionic equilibrium shift is the same is both cases, namely, a preferable extraction from water into an organic phase of one generally nonionic (more hydrophobic) form of the reagent.  相似文献   

7.
Synthesis of (R)-2-trimethylsilyl-2-hydroxyl-propionitrile via asymmetric transcyanation of acetyltrimethylsilane with acetone cyanohydrin in an aqueous/organic biphasic system catalyzed by (R)-hydroxynitrile lyase from Prunus japonica seed meal was successfully carried out for the first time. The optimal volume ratio of aqueous to organic phase, buffer pH value and reaction temperature were 15% (v/v), 5.0 and 30°C, respectively, under which both substrate conversion and product enantiomeric excess (ee) were 99%. Silicon atom in the substrate showed great effect on the reaction. Acetyltrimethylsilane was a much better substrate for (R)-hydroxynitrile lyase from Prunus japonica than its carbon analogue.  相似文献   

8.
N-(benzyloxycarbonyl)-L-aspartic acid (Z-L-Asp) has generally been used as a carboxyl substrate for the enzymatic synthesis of a precursor of aspartame (synthetic sweetener); however, alternative inexpensive protection groups have been in demand for lowering the total cost of its industrial-scale production. A formyl group (F-) was found to be a more desirable protecting group for the N-terminus of amino acid derivatives due to its low cost of preparation, introduction, and removal. The yield of F-AspPheOMe (N-formyl-L-aspartyl-L-phe- nylalanine methylester), however, was found to be <10% in a conventional aqueous medium. We found that F-L-Asp and L-PheOMe were partitioned mainly to the aqueous phase in an aqueous/organic biphasic medium, whereas F-AspPheOMe partitioned to the organic phase, especially when some extracting agents were added. In this study, simultaneous operation of an enzymatic reaction and a product separation by liquid-liquid extraction was thus applied to the F-AspPheOMe synthesis. We succeeded in synthesizing F-AspPheOMe continuously in an aqueous/tributylphosphate (TBP) biphasic medium with >95% yield, which was about tenfold higher than that in an aqueous monophasic medium.  相似文献   

9.
Summary The respective roles of organic solvent and of water in butyl butyrate synthesis from n-butanol and n-butyric acid in n-hexane by Mucor miehei lipase have been investigated by analysis of the kinetics and the reaction balances. Esterificaton was found to take place in both low water systems containing solid enzyme in hexane and in biphasic aqueous enzyme solution/hexane systems. In the solid enzyme system, the enzyme adsorbed the water produced, thus delaying the appearance of a discrete aqueous phase. As expected, the presence of some water was indispensable for this system, as its removal or exclusion by various means (adsorption, distillation) affected enzyme activity. However, water removal had little effect on the final yield of esterification. Reaction velocities were quite similar for the solid enzyme/hexane system and for the biphasic aqueous enzyme solution/hexane system. In the latter case, the butyl butyrate formed was almost exclusively found in the organic phase. Ethyl butyrate, a more polar compound, was synthesized with a lower yield. These results allow the conclusion that the reaction took place in a phase consisting of either solid hydrated enzyme with no discrete aqueous phase or of an aqueous enzyme solution by basically similar mechanisms according to the amount of water available to the system, the esterification being driven to completion by transfer of the ester into the organic phase because of a favourable partition coefficient. Offprint requests to: F. Monot  相似文献   

10.
Synthesis of a peptide bond is suggested to be enzymatically catalysed in a biphasic system “water–water-immiscible organic solvent”. The pH dependence of the apparent equilibrium constant is studied for synthesis of N-acetyl-L -tryptophanyl-L -leucine amide from N-Acet-Trp andL -Leu-NH2. The reaction was performed in the biphasic system ethyl acetate plus water [from 2 to 2% (v/v)] in the presence of α-chymotrypsin. The suggested approach is preparative value: with the stoichiometric ratio of the reagents, [N-Acet-L -Trp] = [L -Leu-NH2] = 2 × 10?3M, the yield is practically 100% (in water, with other conditions being the same, the yield is not over 01.%).  相似文献   

11.
A new process for the simultaneous enzymic synthesis and purification of N-(benzyloxycarbonyl)- -aspartyl- -phenylalanine methyl ester (ZAPM), a precursor of aspartame, has been developed. The enzymic reaction between N-(benzyloxycarbonyl)- -aspartic acid (ZA) and -phenylalanine methyl ester (PM) was carried out in a biphasic hollow-fibre rector with an aqueous phase an a butyl acetate phase. The reaction took place in the aqueous phase and by maintaining the pH at 5, the product (ZAPM) was extracted into the organic phase. Product purity was greater than 90% and reasonable productivity could be achieved with this system.  相似文献   

12.
The activity of xenobiotic-degrading microorganisms is generally high in a biphasic aqueous/organic system. Therefore, the influence of interfacial area variation on kinetic parameters of Candida sp. growing on ethyl butyrate was evaluated. Interfacial areas of both aseptic and cultured biphasic systems were utilized. Substrate transport measurements in aseptic system (where the interface varied with the organic-phase fraction and agitator speed) showed that the substrate concentration in the aqueous phase was constant at different agitation speeds and decreased as the organic phase increased. Kinetic measurements of the cultured system showed that kinetic parameters vary as functions of their respective aseptic interfacial areas. Higher µmax and K i and lower K s values were obtained with larger interfacial areas. Measurements of the cultured system showed that the interfacial area increased as the biomass increased, and that about 50% of the biomass was attached to the interface as an interfacial biofilm at the end of the culture. Results suggest that the growth and selection of xenobiotic-degrading microorganisms in a biphasic aqueous/organic system should be evaluated mainly on the basis of the activity of adhering biomass (forming a biofilm) at the interfacial area rather than on substrate transport to the aqueous phase  相似文献   

13.

Biotransformation is a green and useful tool for sustainable and selective chemical synthesis. However, it often suffers from the toxicity and inhibition from organic substrates or products. Here, we established a hollow fiber membrane bioreactor (HFMB)-based aqueous/organic biphasic system, for the first time, to enhance the productivity of a cascade biotransformation with strong substrate toxicity and inhibition. The enantioselective trans-dihydroxylation of styrene to (S)-1-phenyl-1,2-ethanediol, catalyzed by Escherichia coli (SSP1) coexpressing styrene monooxygenase and an epoxide hydrolase, was performed in HFMB with organic solvent in the shell side and aqueous cell suspension in the lumen side. Various organic solvents were investigated, and n-hexadecane was found as the best for the HFMB-based biphasic system. Comparing to other reported biphasic systems assisted by HFMB, our system not only shield much of the substrate toxicity but also deflate the product recovery burden in downstream processing as the majority of styrene stayed in organic phase while the diol product mostly remained in the aqueous phase. The established HFMB-based biphasic system enhanced the production titer to 143 mM, being 16-fold higher than the aqueous system and 1.6-fold higher than the traditional dispersive partitioning biphase system. Furthermore, the combination of biphasic system with HFMB prevents the foaming and emulsification, thus reducing the burden in downstream purification. HFMB-based biphasic system could serve as a suitable platform for enhancing the productivity of single-step or cascade biotransformation with toxic substrates to produce useful and valuable chemicals.

  相似文献   

14.
N-(Benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester (Z-AspPheOMe), a precursor of the aspartame, and N-(benzyloxycarbonyl)-L-phenylalanyl-Lphenylalanine methyl ester (Z-PhePheOMe) were synthesized from the respective amino acid derivatives with an immobilized thermolysin (EC 3.4.24.4) in ethyl acetate. Various factors affecting the synthesis of these dipeptide precursors were clarified. The initial synthetic rate was the highest at the water content of 3.5% for both reactions. The substrate concentration dependencies of the initial synthetic rate of Z-AspkPheOMe and Z-PhePheOMe with the immobilized enzyme in ethyl acetate were different from those in an aqueous buffer solution saturated with ethyl acetate but similar to those in the aqueous/organic biphasic system using the free enzyme. Particularly, the initial synthetic rate of Z-AspPhOMe increased in order higher than first order with respect to the concentration of L-phenylalanine methyl ester (PheOMe), whereas it decreased sharply with the concentration of N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp). Such kinetic behavior could be explained by regarding the inside of the immobilized enzyme as being a biphasic mode composed from the organic phase and aqueous phase where the enzymatic reaction takes place. The reaction in the aqueous/organic biphasic system using the free enzyme could be simulated by taking into consideration the partition of the substrate and the initial rate of synthesis in the aqueous buffer saturated with ethyl acetate. Based on this analysis, the rate of reaction with the immobilized enzyme in ethyl acetate could also be predicted. Z-AsPheOMe and Z-PhePheOMe were synthesized by the fed-batch method where the acid component of the substrate was intermittently added during the course of reaction and by the batch method. In the synthesis of Z-AspPheOMe, the synthetic rate and maximum yield of reaction as well as the stability of the immobilized enzyme were higher in the fed-batch reaction than those in the batch reaction. In the synthesis of Z-PhePheOMe, the results obtained by both methods were similar. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
In this study, an efficient enzymatic process for the synthesis of 4-hydroxyphenylacetaldehyde (4-HPAA) from tyramine was developed using whole cells of recombinant Escherichia coli co-expressing primary amine oxidase (PrAO) from E. coli and catalase (CAT) from Bacillus pumilus. The reaction conditions for the synthesis of 4-HPAA were systematically optimized starting from a monophasic aqueous buffer. The optimum reaction temperature, pH, and biocatalyst loading were 33 °C, 7.5, and 20 g/L wet cells, respectively. Substrate feeding strategies were employed to alleviate substrate inhibition, providing a 14.8 % increase in yield. A biphasic catalytic system was explored to avoid product inhibition and thus further improve the 4-HPAA yield. Ethyl acetate was found to be the best organic solvent, and the optimum volume ratio of the organic phase to the aqueous phase was 40 % (v/v). Under the optimized conditions on a 1 L scale, a yield of 76.5 % was obtained with a substrate concentration of 120 mM. Thus, the bioconversion was more efficient in the ethyl acetate/buffer biphasic system than in the monophasic aqueous system, and the yield of 4-HPAA was improved 1.89-fold.  相似文献   

16.
Organic mono-phase and organic–aqueous two-phase systems were applied for 17-carbonyl reduction of androst-4-en-3,17-dione to testosterone by whole cells of the microalga Nostoc muscorum (Nostocaceae). To investigate the correlation between solvent hydrophobicity and biotransformation yield in mono- and biphasic systems, a range of 16 organic solvents with log Poctanol values (logarithm of the solvent partition coefficient in the n-octanol/water system) between ? 1.1 and 8.8 were examined. Organic solvents with log Poctanol values greater than 7, such as hexadecane and tetradecane, provided the best biocompatibility with the bioconversion by algal cells. The data also indicated that the highest yields were obtained using organic–aqueous (1:1, v/v) biphasic systems. The optimum volumetric phase ratio, reaction temperature and substrate concentration were 1:1, 30°C and 0.5 mg mL?1, respectively. Under the mentioned conditions a fourfold increase in biotransformation yield (from 7.8±2.3 to 33.4±1.8%) was observed.  相似文献   

17.
A variety of N-carbobenzoxy, N′-formyl gem-diaminoalkyl derivatives have been obtained through Goldsmith-Wick reaction of Z-α-amino acid/peptide acid derived isocyanates with 96% HCOOH in presence of 4-dimethylaminopyridine (DMAP) as catalyst. The reaction proceeds to completion within 2–4 h and results in good yields of the products isolated as stable solids.  相似文献   

18.
 Reconstituted whole-cell preparations of lyophilized Methylosinus trichosporium OB3b were used to demonstrate soluble methane monooxygenase activity in a two-phase (biphasic) matrix consisting of a buffered aqueous phase and 2,2,4-trimethylpentane (isooctane). The rate of conversion of gaseous propylene to propylene oxide, a non-metabolized liquid, was used as the primary measure of enzyme activity. Appreciable soluble methane monooxygenase activity was detected when the volume of the aqueous phase represented at least 1% of the total volume, although the initial rate of product formation did increase as the volume of the aqueous phase increased. In comparison to the aqueous system, the specific rate and yields in the biphasic system were much less sensitive to increases in the concentrations of formate and protein (the methane monooxygenase). However, there was some evidence that the enzyme system was more stable in the biphasic matrix, since the rate of propylene oxide formation remained linear for an extended period of time. V (app.) in the biphasic system decreased by a factor of 0.6 relative to the same parameter in the aqueous system. Conversely, K m(app.) for propylene was 1.6 times greater in the biphasic system. Hence, the apparent catalytic efficiency in the aqueous system was four times that in the biphasic system, as indicated by a decrease in the corresponding ratios of V (app.) to K m(app.). Received: 21 July 1995/Received last revision: 1 February 1996/Accepted: 5 December 1996  相似文献   

19.
A stereoselective protease produced by Bacillus amyloliquefaciens KCCM 12091 was isolated. The enzyme catalyzed the synthesis of N-CBZ- -Asp-PheOMe from N-CBZ- -Asp and -PheOMe, but not N-CBZ- -Asp- -PheOMe from N-CBZ- -Asp and -PheOMe. More than 50% of added -PheOMe was consumed when eutectic mixtures of N-CBZ- -Asp, racemic - and -PheOMe were used for synthesis of an aspartame precursor of N-CBZ- -Asp- -PheOMe. -PheOMe was not involved in the reaction and did not affect synthesis of N-CBZ- -Asp- -PheOMe.  相似文献   

20.
(S)-Hydroxynitrile lyase from Manihot esculenta (MeHNL) was shown for the first time to be able to catalyze the enantioselective transcyanation of acetyltrimethylsilane (ATMS) with acetone cyanohydrin to form (S)-2-trimethylsilyl-2-hydroxyl-propionitrile in an aqueous/organic biphasic system. To better understand the reaction, various influential variables were examined. The most suitable organic phase, optimal buffer pH, aqueous phase content, shaking rate, temperature, concentration of ATMS, acetone cyanohydrin and crude enzyme were diisopropyl ether (DIPE), 5.4, 13% (v/v), 190 rpm, 40°C, 10 mM, 20 mM, and 35 U/ml, respectively, under which the initial reaction rate, substrate conversion and product enantiomeric excess (e.e.) were 19.5 mM/h, 99.0% and 93.5%, respectively. A comparative study demonstrated that silicon atoms in the substrate had a great effect on the reaction, and that ATMS was a much better substrate for MeHNL than its carbon analogue 3,3-dimethyl-2-butanone (DMBO) with respect to the initial reaction rate, substrate conversion and product e.e. MeHNL has greater affinity towards ATMS than its carbon analogue as indicated by the much lower Km. The activation energy of MeHNL-catalyzed transcyanation of ATMS was also markedly lower than that of DMBO. The silicon effect on the reaction was rationalized on the basis of the special characteristics of silicon atoms and the catalytic mechanism of MeHNL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号