首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major histocompatibility complex (MHC) class II antigens consist of alpha and beta chains that associate intracellularly with the invariant (I) chain. The HLA-DR alpha beta I complex assembles in the endoplasmic reticulum (ER) into a nonameric structure via progressive addition of three alpha beta dimers to a core invariant chain trimer. We have examined intracellular association of alpha beta I complexes with the resident ER protein calnexin. Calnexin associates rapidly (within 3 min) with newly synthesized alpha, beta and I chains, and remains associated with the assembling alpha beta I complex until the final alpha beta dimer is added, forming the complete nonamer. Dissociation of calnexin parallels egress of alpha beta I from the ER. These results suggest that calnexin retains and stabilizes both free class II subunits and partially assembled class II-I chain complexes until assembly of the nonamer is complete.  相似文献   

2.
Newly synthesized class II molecules of the major histocompatibility complex must be transported to endosomal compartments where antigens are processed for presentation to class II-restricted T cells. The invariant chain (Ii), which assembles with newly synthesized class II alpha- and beta-chains in the endoplasmic reticulum, carries one or more targeting signals for transport to endosomal compartments where Ii dissociates from alpha beta Ii complexes. Here we show that the transport route of alpha beta Ii complexes is regulated selectively by two forms of Ii (p33 and p35) that are generated by the use of alternative translation initiation sites. Using a novel quantitative surface arrival assay based on labeling with [6-3H]-D-galactose combined with biochemical modification at the cell surface with neuraminidase, we demonstrate that newly synthesized alpha beta Ii molecules containing the Ii-p33 isoform can be detected on the cell surface shortly after passage through the Golgi apparatus/trans-Golgi network. A substantial amount of these alpha beta Ii complexes are targeted to early endosomes either directly from the trans-Golgi network or after internalization from the cell surface before their delivery to antigen processing compartments. The fraction of alpha beta Ii complexes containing the p35 isoform of Ii with a longer cytosolic domain was not detected at the cell surface as determined by iodination of intact cells and the lack of susceptibility to neuraminidase trimming on ice. However, treatment with neuraminidase at 37 degrees C did reveal that some of the alpha beta Ii-p35 complexes traversed early endosomes. These results demonstrate that a fraction of newly synthesized class II molecules arrive at the cell surface as alpha beta Ii complexes before delivery to antigen processing compartments and that class II alpha beta Ii complexes associated with the two isoforms of Ii are sorted to these compartments by different transport routes.  相似文献   

3.
Unlike class I histocompatibility (MHC) antigens, most newly synthesized MHC class II molecules fail to be loaded with peptides in the endoplasmic reticulum (ER), binding instead to the invariant chain glycoprotein (Ii). Ii blocks the class II peptide binding groove until the class II:Ii complexes are transported to endosomes where Ii is removed by proteolysis, thus permitting loading with endosomal short peptides (approximately 12-25 amino acids). Ligands from which the groove is protected by Ii have not yet been identified; theoretically they could be short peptides or longer polypeptides (or both), because the class II groove is open at both ends. Here we show that in Ii- deficient cells, but not in cells expressing large amounts of Ii, a substantial fraction of class II alpha beta dimers forms specific, SDS-resistant 1:1 complexes with a variety of polypeptides. Different sets of polypeptides bound to H-2Ak, Ek, Ed and HLA-DR1 class II molecules; for Ak, a major species of Mr 50 kDa (p50) and further distinct 20 and 130 kDa polypeptides were detectable. Class II binding of p50 was characterized in detail. Point mutations within the Ak antigen binding groove destabilized the p50:class II complexes; a mutation outside the groove had no effect. A short segment of p50 was sufficient for association with Ak. The p50 polypeptide was synthesized endogenously, bound to Ak in a pre-Golgi compartment, and was transported to the cell surface in association with Ak. Thus, Ii protects the class II groove from binding endogenous, possibly misfolded polypeptides in the ER. The possibility is discussed that polypeptide binding is an ancestral function of the MHC antigen binding domain.  相似文献   

4.
MHC class II molecules usually bind peptides in the endocytic pathway, but can also present endogenous peptides from newly synthesized proteins in a chloroquine-insensitive manner, suggesting that peptide binding might occur in the endoplasmic reticulum (ER). We used in vitro translation of HLA-DR1 class II molecules in the presence of microsomes to study peptide binding in the ER. Formation of functional class II molecules in vitro depends on formation of disulfide bridges in alpha and beta chains. The class II alpha beta heterodimers made by in vitro translation resemble class II molecules synthesized in cells in (i) their reactivity with conformation-specific antibodies, (ii) their assembly with Ii chain homotrimers, (iii) the generation of SDS-stable dimers upon peptide binding and (iv) their specificity of peptide binding. The assembly of class II molecules occurs via an alpha beta intermediate and can occur post-translationally, but only in intact microsomes. Class II alpha beta heterodimers are able to bind peptides in ER-derived microsomes, a process that precludes subsequent association of class II molecules with Ii chain. This mechanism might explain presentation of endogenous peptides by class II molecules.  相似文献   

5.
At the surface of antigen-presenting cells MHC class I and class II molecules present peptides to respectively CD8+ and CD4+ T cells. MHC class I molecules acquire peptides right after synthesis in the endoplasmic reticulum. MHC class II molecules do not acquire peptides in the endoplasmic reticulum but instead associate with a third chain, the invariant chain which impedes peptide binding. Subsequently the invariant chain takes MHC class II molecules to the endosomal/lysosomal compartment thanks to a targeting signal retained in its cytoplasmic tail. It then dissociates from the MHC class II dimer to allow it to bind peptides.  相似文献   

6.
Presentation of antigenic peptides to CTLs at the cell surface first requires assembly of MHC class I with peptide and beta 2-microglobulin in the endoplasmic reticulum. This process involves an assembly complex of several proteins, including TAP, tapasin, and calreticulin, all of which associate specifically with the beta 2-microglobulin-assembled, open form of the class I heavy chain. To better comprehend at a molecular level the regulation of class I assembly, we have assessed the influence of multiple individual amino acid substitutions in the MHC class I alpha 2 domain on interaction with TAP, tapasin, and calreticulin. In this report, we present evidence indicating that many residues surrounding position 134 in H-2Ld influence interaction with assembly complex components. Most mutations decreased association, but one (LdK131D) strongly increased it. The Ld mutants, with the exception of LdK131D, exhibited characteristics suggesting suboptimal intracellular peptide loading, similar to the phenotype of Ld expressed in a tapasin-deficient cell line. Notably, K131D was less peptide inducible than wild-type Ld, which is consistent with its unusually strong association with the endoplasmic reticulum assembly complex.  相似文献   

7.
Class II molecules of the major histocompatibility complex (MHC) are composed of two polymorphic glycoprotein chains (alpha and beta), that associate in the ER with a third, non-polymorphic glycoprotein known as the invariant chain (Ii). We have examined the relationship between the intracellular transport and physico-chemical characteristics of various combinations of murine alpha, beta and Ii chains. Biochemical and morphological analyses of transfected fibroblasts expressing class II MHC chains show that both unassembled alpha and beta chains, as well as a large fraction of alpha+beta complexes synthesized in the absence of Ii chain, are retained in the ER in association with the immunoglobulin heavy chain binding protein, BiP. Analyses by sedimentation velocity on sucrose gradients show that most incompletely assembled class II MHC species exist as high molecular weight aggregates in both transfected fibroblasts and spleen cells from mice carrying a disruption of the Ii chain gene. This is in contrast to the sedimentation properties of alpha beta Ii complexes from normal mice, which migrate as discrete, stoichiometric complexes of M(r) approximately 200,000-300,000. These observations suggest that assembly with the Ii chain prevents accumulation of aggregated alpha and beta chains in the ER, which might relate to the known ability of the Ii chain to promote exit of class II MHC molecules from the ER.  相似文献   

8.
The major histocompatibility complex (MHC) class I molecule plays a crucial role in cytotoxic lymphocyte function. Functional class I MHC exists as a heterotrimer consisting of the MHC class I heavy chain, an antigenic peptide fragment, and beta2-microglobulin (beta2m). beta2m has been previously shown to play an important role in the folding of the MHC heavy chain without continued beta2m association with the MHC complex. Therefore, beta2m is both a structural component of the MHC complex and a chaperone-like molecule for MHC folding. In this study we provide data supporting a model in which the chaperone-like role of beta2m is dependent on initial binding to only one of the two beta2m interfaces with class 1 heavy chain. beta2-Microglobulin binding to an isolated alpha3 domain of the class I MHC heavy chain accurately models the biochemistry and thermodynamics of beta2m-driven refolding. Our results explain a 1000-fold discrepancy between beta2m binding and refolding of MHC1. The biochemical study of the individual domains of complex molecules is an important strategy for understanding their dynamic structure and multiple functions.  相似文献   

9.
Major histocompatibility class (MHC) II molecules are essential for running adaptive immune response. They are produced in the ER and targeted to late endosomes with the help of invariant chain (Ii) trimers. Ii trimerization may be induced by the Ii TM domain. To enable mechanistic and structural studies of MHC class II-Ii assembly, soluble forms of the complexes were expressed. We show that Ii trimerizes in the absence of the transmembrane part, prior to binding of α/β chains. The biochemical analysis supports the suggestion that the MHC class II-Ii complexes are not necessarily trimers of trimers, but that the Ii trimer can also be occupied by one or two MHC class II complexes.  相似文献   

10.
Kang SJ  Cresswell P 《The EMBO journal》2002,21(7):1650-1660
CD1 family members are antigen-presenting molecules capable of presenting bacterial or synthetic glycolipids to T cells. Here we show that a subset of human CD1d molecules are associated with major histocompatibility complex (MHC) class II molecules, both on the cell surface and in the late endosomal/lysosomal compartments where class II molecules transiently accumulate during transport. The interaction is initiated in the endoplasmic reticulum with class II-invariant chain complexes and appears to be maintained throughout the class II trafficking pathway. A truncated form of CD1d which lacks its cytoplasmic YXXZ internalization motif is transported to late endosomal/lysosomal compartments in the presence of class II molecules. Furthermore, the same CD1d deletion mutant is targeted to lysosomal compartments in HeLa cells expressing class II molecules and invariant chain by transfection. The deletion mutant was also found in lysosomal compartments in HeLa cells expressing only the p33 form of the invariant chain. These data suggest that the intracellular trafficking pathway of CD1d may be altered by class II molecules and invariant chain induced during inflammation.  相似文献   

11.
Heterodimers of MHC class I glycoprotein and beta(2)-microglobulin (beta(2)m) bind short peptides in the endoplasmic reticulum (ER). Before peptide binding these molecules form part of a multisubunit loading complex that also contains the two subunits of the TAP, the transmembrane glycoprotein tapasin, the soluble chaperone calreticulin, and the thiol oxidoreductase ERp57. We have investigated the assembly of the loading complex and provide evidence that after TAP and tapasin associate with each other, the transmembrane chaperone calnexin and ERp57 bind to the TAP-tapasin complex to generate an intermediate. These interactions are independent of the N:-linked glycan of tapasin, but require its transmembrane and/or cytoplasmic domain. This intermediate complex binds MHC class I-beta(2)m dimers, an event accompanied by the loss of calnexin and the acquisition of calreticulin, generating the MHC class I loading complex. Peptide binding then induces the dissociation of MHC class I-beta(2)m dimers, which can be transported to the cell surface.  相似文献   

12.
Genetic modulation of tumor antigen presentation   总被引:5,自引:0,他引:5  
An effective cancer-cell vaccine is created by expressing major-histocompatibility-complex (MHC) class II molecules without the invariant chain protein (Ii) that normally blocks the antigenic-peptide-binding site of MHC class II molecules at their synthesis in the endoplasmic reticulum. Such tumor-cell constructs are created either by the transfer of genes for MHC class IIalpha and beta chains, or by the induction of MHC class II molecules and Ii protein with a transacting factor, followed by Ii suppression using antisense methods. Preclinical validation of this approach is reviewed with the goal of using this immunotherapy for metastatic human cancers.  相似文献   

13.
Major histocompatibility (MHC) class I tetramers are used in the quantitative analysis of epitope peptide-specific CD8+ T-cells. An MHC class I tetramer was composed of 4 MHC class I complexes and a fluorescently labeled streptavidin (SA) molecule. Each MHC class I complex consists of an MHC heavy chain, a beta(2)-microglobulin (beta(2)m) molecule and a synthetic epitope peptide. In most previous studies, an MHC class I complex was formed in the refolding buffer with an expressed MHC heavy chain molecule and beta(2)m, respectively. This procedure inevitably resulted in the disadvantages of forming unwanted multimers and self-refolding products, and the purification of each kind of monomer was time-consuming. In the present study, the genes of a human/murine chimeric MHC heavy chain (HLA-A2 alpha1, HLA-A2 alpha2 and MHC-H2D alpha3) and beta(2)m were tandem-cloned into plasmid pET17b and expressed as a fusion protein. The recombinant fusion protein was refolded with each of the three HLA-A2 restricted peptides (HBc18-27 FLPSDFFPSI, HBx52-60 HLSLRGLPV, and HBx92-100 VLHKRTLGL) and thus three chimeric MHC class I complexes were obtained. Biotinylation was performed, and its level of efficiency was observed via a band-shift assay in non-reducing polyacrylamide gel electrophoresis (PAGE). Such chimeric MHC class I tetramers showed a sensitive binding activity in monitoring HLA/A2 restrictive cytotoxic T lymphocytes (CTLs) in immunized HLA/A*0201 transgenic mice.  相似文献   

14.
We have examined trafficking of major histocompatibility complex (MHC) class II molecules in human B cells exposed to concanamycin B, a highly specific inhibitor of the vacuolar H(+)-ATPases required for acidification of the vacuolar system and for early to late endosomal transport. Neutralization of vacuolar compartments prevents breakdown of the invariant chain (Ii) and blocks conversion of MHC class II molecules to peptide-loaded, SDS-stable alpha beta dimers. Ii remains associated with alpha beta and this complex accumulates internally, as ascertained biochemically and by morphological methods. In concanamycin B-treated cells, a slow increase (> 20-fold) in surface expression of Ii, mostly complexed with alpha beta, is detected. This surface-disposed fraction of alpha beta Ii is nevertheless a minor population that reaches the cell surface directly, or is routed via early endosomes as intermediary stations. In inhibitor-treated cells, the bulk of newly synthesized alpha beta Ii is no longer accessible to fluid phase endocytic markers. It is concluded that the majority of alpha beta Ii is targeted directly from the trans-Golgi network to the compartment for peptide loading, bypassing the cell surface and early endosomes en route to the endocytic pathway.  相似文献   

15.
Class II major histocompatibility complex (MHC) molecules are cell surface glycoproteins that bind and present immunogenic peptides to T cells. Intracellularly, class II molecules associate with a polypeptide referred to as the invariant (Ii) chain. Ii is proteolytically degraded and dissociates from the class II complex prior to cell surface expression of the mature class II alpha beta heterodimer. Using human fibroblasts transfected with HLA-DR1 and Ii cDNAs, we now demonstrate that truncation of the cytoplasmic domain of Ii results in the failure of Ii to dissociate from the alpha beta Ii complex and leads to stable expression of class II alpha beta Ii complexes on the cell surface. Furthermore, biochemical analysis and peptide presentation assays demonstrated that transfectants with stable surface alpha beta Ii complexes expressed very few free alpha beta heterodimers at the surface and were very inefficient in their ability to present immunogenic peptides to T cells. These results support the hypothesis that the cytoplasmic domain of Ii is responsible for endosomal targeting of alpha beta Ii and directly demonstrate that association with Ii interferes with the antigen presentation function of class II molecules.  相似文献   

16.
K Reske  R Zecher  E Stenger 《FEBS letters》1983,159(1-2):153-157
The 3 major constituents of the I-Ak subregion-associated complex alpha, beta and gamma were obtained from splenocytes in homogeneous form by differential isolation methods. alpha, beta and gamma were compared on the primary structural level by enzymatic fragmentation procedures and tryptic peptide map analysis of radiolabeled proteins. The data indicate that the invariant chain gamma exhibits extensive structural homology to the polymorphic beta-light and the alpha-heavy chain. Thus, although not being encoded within the MHC gamma appears to belong structurally to the MHC-encoded class II proteins.  相似文献   

17.
Studies with the T-cell antigen receptor (TCR) have shown that the endoplasmic reticulum, or an organelle closely associated with it, can retain and degrade membrane proteins selectively. The observation that only three (alpha, beta, and delta) of the six (alpha beta gamma delta epsilon zeta) subunits of the TCR are susceptible to proteolysis implies that structural features within the labile proteins mark them for degradation. The TCR beta chain is degraded in the endoplasmic reticulum, and, in this study, we have started to define the domains of the protein that make it susceptible to proteolysis. The experiments show that the transmembrane anchor and short five-amino-acid cytoplasmic tail of the protein contain a dominant determinant of proteolysis. When these residues were removed from the beta chain, the protein became resistant to proteolysis. Even though the resulting ectodomain of the beta chain lacked a transmembrane anchor, it was not secreted by cells and was retained in the endoplasmic reticulum. We conclude that retention in the endoplasmic reticulum alone does not lead to degradation. The results suggest that structural features within the membrane anchor of the protein predispose the beta chain to proteolysis. This was confirmed by replacing the membrane anchor of the interleukin 2 (IL2) receptor, a protein that was stable within the secretory pathway, with that of the TCR beta chain. The unmodified IL2 receptor was transported efficiently to the surface of cells, and an "anchor minus" construct was secreted quantitatively into the culture media. When the membrane anchor of the IL2 receptor was replaced with that of the TCR beta chain, the chimera was unable to reach the Golgi apparatus and was degraded rapidly.  相似文献   

18.
Prior to the binding of peptide in the endoplasmic reticulum (ER), the major histocompatibility complex (MHC) class I heavy chain associates with an assembly complex that includes the transporter associated with antigen processing (TAP). The proximity of a part of the MHC class I alpha2 domain alpha-helix to areas previously shown to influence assembly complex binding suggests that this region might also be involved in chaperone association. Position 151, found in this part of the alpha2 domain alpha-helix, has a side chain that points up, away from direct contact with peptide, and is occupied by a glycine in all murine MHC class I heavy chains. We found that substitution of this glycine in H-2L(d) with a histidine substantially increased the proportion of peptide-free forms, although TAP binding was not abrogated. Thus, interaction of the heavy chain with peptides, but not with the assembly complex, is influenced by this glycine.  相似文献   

19.
The assembly of major histocompatibility complex (MHC) class I molecules is one of the more widely studied examples of protein folding in the endoplasmic reticulum (ER). It is also one of the most unusual cases of glycoprotein quality control involving the thiol oxidoreductase ERp57 and the lectin-like chaperones calnexin and calreticulin. The multistep assembly of MHC class I heavy chain with beta(2)-microglobulin and peptide is facilitated by these ER-resident proteins and further tailored by the involvement of a peptide transporter, aminopeptidases, and the chaperone-like molecule tapasin. Here we summarize recent progress in understanding the roles of these general and class I-specific ER proteins in facilitating the optimal assembly of MHC class I molecules with high affinity peptides for antigen presentation.  相似文献   

20.
The major histocompatibility complex class I (MHC1) molecule plays a crucial role in cytotoxic lymphocyte function. beta 2-Microglobulin (beta 2m) has been demonstrated to be both a structural component of the MHC1 complex and a chaperone-like molecule for MHC1 folding. beta 2m binding to an isolated alpha 3 domain of MHC1 heavy chain at micromolar concentrations has been shown to accurately model the biochemistry and thermodynamics of beta 2m-driven MHC1 folding. These results suggested a model in which the chaperone-like role of beta 2m is dependent on initial binding to the alpha 3 domain interface of MHC1 with beta 2m. Such a model predicts that a mutant beta 2m molecule with an intact MHC1 alpha 3 domain interaction but a defective MHC1 alpha 1 alpha 2 domain interaction would block beta2m-driven folding of MHC1. In this study we generated such a beta 2m mutant and demonstrated that it blocks MHC1 folding by normal beta 2m at the expected micromolar concentrations. Our data support an initial interaction of beta 2m with the MHC1 alpha 3 domain in MHC1 folding. In addition, the dominant negative mutant beta 2m can block T-cell functional responses to antigenic peptide and MHC1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号