首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The affinity and selectivity of protein-protein interactions can be fine-tuned by varying the size, flexibility, and amino acid composition of involved surface loops. As a model for such surface loops, we study the conformational landscape of an octapeptide, whose flexibility is chemically steered by a covalent ring closure integrating an azobenzene dye into and by a disulfide bridge additionally constraining the peptide backbone. Because the covalently integrated azobenzene dyes can be switched by light between a bent cis state and an elongated trans state, six cyclic peptide models of strongly different flexibilities are obtained. The conformational states of these peptide models are sampled by NMR and by unconstrained molecular dynamics (MD) simulations. Prototypical conformations and the free-energy landscapes in the high-dimensional space spanned by the phi/psi angles at the peptide backbone are obtained by clustering techniques from the MD trajectories. Multiple open-loop conformations are shown to be predicted by MD particularly in the very flexible cases and are shown to comply with the NMR data despite the fact that such open-loop conformations are missing in the refined NMR structures.  相似文献   

2.
Alkaline hydrolysis of corneal proteins in the alkali-injured eye releases N-acetyl-proline-glycine-proline (Ac-Pro-Gly-Pro-OH) among other peptides. It has been shown that this tripeptide is a neutrophil chemoattractant. Existing data suggest that the release of this peptide is the catalytic event for early neutrophil invasion of the cornea leading to corneal ulcers. In order to design inhibitors of this tripeptide chemoattractant that would block neutrophil invasion and diminish corneal ulcers, we studied the solution properties of this tripeptide by NMR spectroscopy and compared this peptide to Ac-Pro-Gly-OH (a weaker chemoattractant), and to Ac-Pro-OH (inactive). The NMR data were consistent with Ac-Pro-Gly-Pro-OH existing in solution as a mixture of four isomers with different cis and trans conformations about the two X-proline amide bonds. The isomer with two trans conformations (trans-trans) was the most dominant (41%) in aqueous solution. This was followed by the isomers with mixed cis and trans conformations (trans-cis, 26% and cis-trans, 20%). The isomer with two cis conformations (cis-cis) was the least favored (13%). The populations of these isomers were investigated in DMSO and they were similar to those reported in aqueous solutions except that the ordering of the trans-cis and cis-trans isomers were reversed. NMR NH temperature coefficients and nuclear Overhauser effect (NOE) measurements as well as CD spectroscopy were used to demonstrate that the four isomers exist primarily in an extended conformation with little hydrogen bonding. The available (NOE) information was used with molecular dynamics calculations to construct a dominant solution conformation for each isomer of the tripeptide. This information will serve as a model for the design of peptide and nonpeptide inhibitors of the chemoattractant.  相似文献   

3.
To evaluate the ability of molecular dynamics (MD) simulations using atomic force-fields to correctly predict stable folded conformations of a peptide in solution, we show results from MD simulations of the reversible folding of an octapeptide rich in alpha-aminoisobutyric acid (2-amino-2-methyl-propanoic acid, Aib) solvated in di-methyl-sulfoxide (DMSO). This solvent generally prevents the formation of secondary structure, whereas Aib-rich peptides show a high propensity to form secondary structural elements, in particular 3(10)- and alpha-helical structures. Aib is, moreover, achiral, so that Aib-rich peptides can form left- or right-handed helices depending on the overall composition of the peptide, the temperature, and the solvation conditions. This makes the system an interesting case to study the ensembles of peptide conformations as a function of temperature by MD simulation. Simulations involving the folding and unfolding of the peptide were performed starting from two initial structures, a right-handed alpha-helical structure and an extended structure, at three temperatures, 298 K, 340 K, and 380 K, and the results are compared with experimental nuclear magnetic resonance (NMR) data measured at 298 K and 340 K. The simulations generally reproduce the available experimental nuclear Overhauser effect (NOE) data, even when a wide range of conformations is sampled at each temperature. The importance of adequate statistical sampling in order to reliably interpret the experimental data is discussed.  相似文献   

4.
Proline switches, controlled by cis-trans isomerization, have emerged as a particularly effective regulatory mechanism in a wide range of biological processes. Here we report the structures of both the cis and trans conformers of a proline switch in the Crk signaling protein. Proline isomerization toggles Crk between two conformations: an autoinhibitory conformation, stabilized by the intramolecular association of two tandem SH3 domains in the cis form, and an uninhibited, activated conformation promoted by the trans form. In addition to acting as a structural switch, the heterogeneous proline recruits cyclophilin A, which accelerates the interconversion rate between the isomers, thereby regulating the kinetics of Crk activation. The data provide atomic insight into the mechanisms that underpin the functionality of this binary switch and elucidate its remarkable efficiency. The results also reveal new SH3 binding surfaces, highlighting the binding versatility and expanding the noncanonical ligand repertoire of this important signaling domain.  相似文献   

5.
多肽和蛋白质中Xaa-Pro片段肽脯酰胺键顺反异构对其构象与功能有重要影响.设计合成了一系列模型多肽及其磷酸化多肽,并采用核磁共振实验和分子动力学模拟的方法,研究了所合成多肽中肽脯酰胺键的顺反异构化.结果表明,对脯氨酸之前的Xaa残基进行侧链O-磷酸化会极大地影响该顺反异构化过程,进而调节肽链构象.此外,磷酸化使得多肽顺式构象比例增加,且当磷酸基团不带负电荷时顺式构象所占比例最大.同时,分子动力学模拟所得结果与核磁共振实验相一致,包括最稳定构象和顺反构象统计分布.磷酸基团所带电荷及其空间位阻可能是影响这类磷酸化多肽构象变化的主要因素.  相似文献   

6.
Pallaghy PK  He W  Jimenez EC  Olivera BM  Norton RS 《Biochemistry》2000,39(42):12845-12852
The contryphan family of cyclic peptides, isolated recently from various species of cone shell, has the conserved sequence motif NH(3)(+)-X(1)COD-WX(5)PWC-NH(2), where X(1) is either Gly or absent, O is 4-trans-hydroxyproline, and X(5) is Glu, Asp, or Gln. The solution structures described herein of two new naturally occurring contryphan sequences, contryphan-Sm and des[Gly1]-contryphan-R, are similar to those of contryphan-R, the structure of which has been determined recently [Pallaghy et al. (1999) Biochemistry 38, 11553-11559]. The (1)H NMR chemical shifts of another naturally occurring peptide, contryphan-P, indicate that it also adopts a similar structure. All of these contryphans exist in solution as a mixture of two conformers due to cis-trans isomerization about the Cys2-Hyp3 peptide bond. The lower cis-trans ratio for contryphan-Sm enabled elucidation of the 3D structure of both its major and its minor forms, for which the patterns of (3)J(H)(alpha)(HN) coupling constants are very different. As with contryphan-R, the structure of the major form of contryphan-Sm (cis Cys2-Hyp3 peptide bond) contains an N-terminal chain reversal and a C-terminal type I beta-turn. The minor conformer (trans peptide bond) forms a hairpin structure with sheetlike hydrogen bonds and a type II beta-turn, with the D-Trp4 at the 'Gly position' of the turn. The ratio of conformers arising from cis-trans isomerism around the peptide bond preceding Hyp3 is sensitive to both the amino acid sequence and the solution conditions, varying from 2.7:1 to 17:1 across the five sequences. The sequence and structural determinants of the cis-trans isomerism have been elucidated by comparison of the cis-trans ratios for these peptides with those for contryphan-R and an N-acetylated derivative thereof. The cis-trans ratio is reduced for peptides in which either the charged N-terminal ammonium or the X(5) side-chain carboxylate is neutralized, implying that an electrostatic interaction between these groups stabilizes the cis conformer relative to the trans. These results on the structures and cis-trans equilibrium of different conformers suggest a paradigm of 'locally determined but globally selected' folding for cyclic peptides and constrained protein loops, where the series of stereochemical centers in the loop dictates the favorable conformations and the equilibrium is determined by a small number of side-chain interactions.  相似文献   

7.
Stress and strain in staphylococcal nuclease.   总被引:5,自引:5,他引:0       下载免费PDF全文
Protein molecules generally adopt a tertiary structure in which all backbone and side chain conformations are arranged in local energy minima; however, in several well-refined protein structures examples of locally strained geometries, such as cis peptide bonds, have been observed. Staphylococcal nuclease A contains a single cis peptide bond between residues Lys 116 and Pro 117 within a type VIa beta-turn. Alternative native folded forms of nuclease A have been detected by NMR spectroscopy and attributed to a mixture of cis and trans isomers at the Lys 116-Pro 117 peptide bond. Analyses of nuclease variants K116G and K116A by NMR spectroscopy and X-ray crystallography are reported herein. The structure of K116A is indistinguishable from that of nuclease A, including a cis 116-117 peptide bond (92% populated in solution). The overall fold of K116G is also indistinguishable from nuclease A except in the region of the substitution (residues 112-117), which contains a predominantly trans Gly 116-Pro 117 peptide bond (80% populated in solution). Both Lys and Ala would be prohibited from adopting the backbone conformation of Gly 116 due to steric clashes between the beta-carbon and the surrounding residues. One explanation for these results is that the position of the ends of the residue 112-117 loop only allow trans conformations where the local backbone interactions associated with the phi and psi torsion angles are strained. When the 116-117 peptide bond is cis, less strained backbone conformations are available. Thus the relaxation of the backbone strain intrinsic to the trans conformation compensates for the energetically unfavorable cis X-Pro peptide bond. With the removal of the side chain from residue 116 (K116G), the backbone strain of the trans conformation is reduced to the point that the conformation associated with the cis peptide bond is no longer favorable.  相似文献   

8.
9.
Theoretical conformational analysis of L,D alternating sequences of poly alpha-amino acids is reported in connection with the ability of naturally occurring peptide and depsipeptide having alternating configurations to increase selectively the ion permeability across membranes. The most stable structures of poly(DL-proline), of which the conformational variability is practically limited to the choice between cis and trans conformations of the peptide bonds, were characterized. The all-trans conformation results in a flat helical structure possessing the main features for acting as an ion channel across membranes as actually found experimentally. Random cis-trans conformational sequences provide an alternative mechanism of ion transport intermediate between the ion channel and the ion carrier.  相似文献   

10.
Autoinhibition is being widely used in nature to repress otherwise constitutive protein activities and is typically regulated by extrinsic factors. Here we show that autoinhibition can be controlled by an intrinsic intramolecular switch afforded by prolyl cis-trans isomerization. We find that a proline on the linker tethering the two SH3 domains of the Crk adaptor protein interconverts between the cis and trans conformation. In the cis conformation, the two SH3 domains interact intramolecularly, thereby forming the basis of an autoinhibitory mechanism. Conversely, in the trans conformation Crk exists in an extended, uninhibited conformation that is marginally populated but serves to activate the protein upon ligand binding. Interconversion between the cis and trans, and, hence, of the autoinhibited and activated conformations, is accelerated by the action of peptidyl-prolyl isomerases. Proline isomerization appears to make an ideal switch that can regulate the kinetics of activation, thereby modulating the dynamics of signal response.  相似文献   

11.
The conformation of cyclolinopeptide A, c(Pro-Pro-Phe-Phe-Leu-Ile-Ile-Leu-Val), a naturally occurring peptide with remarkable cytoprotective activity, has been investigated by means of distance geometry calculations and molecular dynamics simulations. The starting points for all the calculations were an X-ray structure and other structures obtained from distance geometry calculations based on NMR data. Restrained and unrestrained molecular dynamics simulations are reported in vacuo and in CCl4. Structural and dynamic properties are investigated and compared with those experimentally determined. The conformation obtained from the MD simulations which best reproduces the NMR parameters is at the same time one of the most stable ones and is also fairly similar to the crystal structure. An explanation for the occurrence of multiple conformations in solution at room temperature is given.  相似文献   

12.
Meng HY  Thomas KM  Lee AE  Zondlo NJ 《Biopolymers》2006,84(2):192-204
Cis-trans isomerization of amide bonds plays critical roles in protein molecular recognition, protein folding, protein misfolding, and disease. Aromatic-proline sequences are particularly prone to exhibit cis amide bonds. The roles of residues adjacent to a tyrosine-proline residue pair on cis-trans isomerism were examined. A short series of peptides XYPZ was synthesized and cis-trans isomerism was analyzed. Based on these initial studies, a series of peptides XYPN, X = all 20 canonical amino acids, was synthesized and analyzed by NMR for i residue effects on cis-trans isomerization. The following effects were observed: (a) aromatic residues immediately preceding Tyr-Pro disfavor cis amide bonds, with K(trans/cis)= 5.7-8.0, W > Y > F; (b) proline residues preceding Tyr-Pro lead to multiple species, exhibiting cis-trans isomerization of either or both X-Pro amide bonds; and (c) other residues exhibit similar values of K(trans/cis) (= 2.9-4.2), with Thr and protonated His exhibiting the highest fraction cis. beta-Branched and short polar residues were somewhat more favorable in stabilizing the cis conformation. Phosphorylation of serine at the i position modestly increases the stability of the cis conformer. In addition, the effect of the i+3 residue was examined in a limited series of peptides TYPZ. NMR data indicated that aromatic residues, Pro, Asn, Ala, and Val at the i+3 residue all favor cis amide bonds, with aromatic residues and Asn favoring more compact phi at Tyr(cis) and Ala and Pro favoring more extended phi at Tyr(cis). D-Alanine at the i+3 position particularly disfavors cis amide bonds.  相似文献   

13.
Daly NL  Hoffmann R  Otvos L  Craik DJ 《Biochemistry》2000,39(30):9039-9046
A series of peptides corresponding to isolated regions of Tau (tau) protein have been synthesized and their conformations determined by (1)H NMR spectroscopy. Immunodominant peptides corresponding to tau(224-240) and a bisphosphorylated derivative in which a single Thr and a single Ser are phosphorylated at positions 231 and 235 respectively, and which are recognized by an Alzheimer's disease-specific monoclonal antibody, were the main focus of the study. The nonphosphorylated peptide adopts essentially a random coil conformation in aqueous solution, but becomes slightly more ordered into beta-type structure as the hydrophobicity of the solvent is increased by adding up to 50% trifluoroethanol (TFE). Similar trends are observed for the bisphosphorylated peptide, with a somewhat stronger tendency to form an extended structure. There is tentative NMR evidence for a small population of species containing a turn at residues 229-231 in the phosphorylated peptide, and this is strongly supported by CD spectroscopy. A proposal that the selection of a bioactive conformation from a disordered solution ensemble may be an important step (in either tubulin binding or in the formation of PHF) is supported by kinetic data on Pro isomerization. A recent study showed that Thr231 phosphorylation affected the rate of prolyl isomerization and abolished tubulin binding. This binding was restored by the action of the prolyl isomerase Pin1. In the current study, we find evidence for the existence of both trans and cis forms of tau peptides in solution but no difference in the equilibrium distribution of cis-trans isomers upon phosphorylation. Increasing hydrophobicity decreases the prevalence of cis forms and increases the major trans conformation of each of the prolines present in these molecules. We also synthesized mutant peptides containing Tyr substitutions preceding the Pro residues and found that phosphorylation of Tyr appears to have an effect on the equilibrium ratio of cis-trans isomerization and decreases the cis content.  相似文献   

14.
The Bowman-Birk inhibitor (BBI) family of protease inhibitors has an inhibitory region comprising a disulfide-linked nine-residue loop that adopts the characteristic canonical motif found in many serine protease inhibitors. A unique feature of the BBI loop is the presence of a cis peptide bond at the edge of the inhibitory loop. BBI-related protein fragments that encapsulate this loop retain the structure and inhibitory activity of the parent protein. The most common BBI loop sequence has a proline-proline element with a cis-trans geometry at P3'-P4'. We have examined this element by analysis of the inhibitory activity and structure for a series of synthetic fragments where each of these proline residues has been systematically replaced with alanine. The results show that only when a proline is present at P3' are potent inhibition and a cis peptide bond at that position in the solution structure observed, suggesting that this conformation is required for biological activity. Though a P4' proline is not essential for activity, it effectively stabilizes the cis conformation at P3' by suppressing alternative conformations. This is most evident from the Pro-Ala variant, which comprises a 1:1 mixture of slowly exchanging and structurally different cis and trans isomers. Monitoring the action of trypsin on this mixture by NMR shows that this protease interacts selectively with the cis P3' structure, providing direct evidence for the link between activity and the nativelike structure of the cis isomer. This is, to the best of our knowledge, the first example where cis isomer selectivity can be demonstrated for a proteinase.  相似文献   

15.
Mallik B  Lambris JD  Morikis D 《Proteins》2003,53(1):130-141
Compstatin is a 13-residue cyclic peptide that has the potential to become a therapeutic agent against unregulated complement activation. In our effort to understand the structural and dynamic characteristics of compstatin that form the basis for rational and combinatorial optimization of structure and activity, we performed 1-ns molecular dynamics (MD) simulations. We used as input in the MD simulations the ensemble of 21 lowest energy NMR structures, the average minimized structure, and a global optimization structure. At the end of the MD simulations we identified five conformations, with populations ranging between 9% and 44%. These conformations are as follows: 1) coil with alphaR-alphaR beta-turn, as was the conformation of the initial ensemble of NMR structures; 2) beta-hairpin with epsilon-alphaR beta-turn; 3) beta-hairpin with alphaR-alphaR beta-turn; 4) beta-hairpin with alphaR-beta beta-turn; and 5) alpha-helical. Conformational switch was possible with small amplitude backbone motions of the order of 0.1-0.4 A and free energy barrier crossing of 2-11 kcal/mol. All of the 21 MD structures corresponding to the NMR ensemble possessed a beta-turn, with 14 structures retaining the alphaR-alphaR beta-turn type, but the average minimized structure and the global optimization structures were converted to alpha-helical conformations. Overall, the MD simulations have aided to gain insight into the conformational space sampled by compstatin and have provided a measure of conformational interconversion. The calculated conformers will be useful as structural and possibly dynamic templates for optimization in the design of compstatin using structure-activity relations (SAR) or dynamics-activity relations (DAR).  相似文献   

16.
The propensity for peptide bonds to adopt the trans configuration in native and unfolded proteins, and the relatively slow rates of cis-trans isomerization reactions, imply that the formation of cis peptide bonds in native conformations are likely to limit folding reactions. The role of the conserved cis Gly95-Gly96 peptide bond in dihydrofolate reductase (DHFR) from Escherichia coli was examined by replacing Gly95 with alanine. The introduction of a beta carbon at position 95 is expected to increase the propensity for the trans isomer and perturb the isomerization reaction required to reach the native conformation. Although G95A DHFR is 1.30 kcal mol(-1) less stable than the wild-type protein, it adopts a well-folded structure that can be chemically denatured in a cooperative fashion. The mutant protein also retains the complex refolding kinetic pattern attributed to a parallel-channel mechanism in wild-type DHFR. The spectroscopic response upon refolding monitored by Trp fluorescence and the absence of a Trp/Trp exciton coupling apparent in the far-UV CD spectrum of the wild-type protein, however, indicated that the tertiary structure of the folded state for G95A DHFR is altered. The addition of methotrexate (MTX), a tight-binding inhibitor, to folded G95A DHFR restored the exciton coupling and the fluorescence properties through five slow kinetic events whose relaxation times are independent of the ligand and the denaturant concentrations. The results were interpreted to mean that MTX-binding drives the formation of the cis isomer of the peptide bond between Ala95 and Gly96 in five compact and stable but not wild-type-like conformations that contain the trans isomer. Folding studies in the presence of MTX for both wild-type and G95A DHFR support the notion that the cis peptide bond between Gly95 and Gly96 in the wild-type protein forms during four parallel rate-limiting steps, which are primarily controlled by folding reactions, and lead directly to a set of native, or native-like, conformers. The isomerization of the cis peptide bond is not a source of the parallel channels that characterize the complex folding mechanism for DHFR.  相似文献   

17.
K L Borden  F M Richards 《Biochemistry》1990,29(12):3071-3077
The folding mechanism for bacteriophage T4 thioredoxin is best described by a four-state box mechanism, N----Uc----Ut----It----N, where N indicates native, Uc the unfolded form with the cis proline isomer, Ut unfolded with the trans proline isomer, and It a compact form with a trans proline isomer. Both manual mixing fluorescence and size-exclusion chromatography indicate that there is a cis-trans proline isomerization that is important to the folding pathway. Furthermore, the data suggest that the cis-trans isomerization can also occur in a compact nativelike state which is referred to as It. The slow phase seen in fluorescence seems to be monitoring the cis-trans isomerization in the compact form, not the isomerization which occurs in the denatured state.  相似文献   

18.
The lipid modified human N-Ras protein, implicated in human cancer development, is of particular interest due to its membrane anchor that determines the activity and subcellular location of the protein. Previous solid-state NMR investigations indicated that this membrane anchor is highly dynamic, which may be indicative of backbone conformational flexibility. This article aims to address if a dynamic exchange between three structural models exist that had been determined previously. We applied a combination of solid-state nuclear magnetic resonance (NMR) methods and replica exchange molecular dynamics (MD) simulations using a Ras peptide that represents the terminal seven amino acids of the human N-Ras protein. Analysis of correlations between the conformations of individual amino acids revealed that Cys 181 and Met 182 undergo collective conformational exchange. Two major structures constituting about 60% of all conformations could be identified. The two conformations found in the simulation are in rapid exchange, which gives rise to low backbone order parameters and nuclear spin relaxation as measured by experimental NMR methods. These parameters were also determined from two 300 ns conventional MD simulations, providing very good agreement with the experimental data.  相似文献   

19.
Energy difference associated with proline isomerization in ribonuclease A   总被引:1,自引:0,他引:1  
We examined energy differences caused by the cis-trans transformation of every proline residues in the native structure of RNAase A. The results show that the cis form of Pro-93 and Pro-114 gave the lowest conformational energy, i.e., conformations after conversion of one of the proline residues to the trans form had a little higher energy; the transformation of Pro-42 and Pro-117 to the cis form, on the other hand, caused a much higher energy increase.  相似文献   

20.
Tuftsin, a natural linear tetrapeptide (Thr-Lys-Pro-Arg) of potential antitumor activity, has been studied in DMSO-d6 solution by 2D NMR spectroscopy. 1H and 13C spectra show the presence of two families of conformations characterized by a trans or cis Lys-Pro bond, respectively. The family of conformers containing the cis peptide bond is a mixture of extended structures as expected for a short linear peptide. On the contrary, the trans isomer appears to be a rigid, folded conformer, as indicated by crucial NOEs and by the exceptionally low temperature coefficient of Arg NH. Analysis of the solution data by means of energy calculations leads to a unique structure, characterized by a Lys-Pro inverse gamma-turn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号