首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
DNA-based molecular markers have been used in numerous studies for tagging specific genes in wheat for subsequent use in marker-assisted selection. Usually in plant breeding, procedures for mapping genes are based on analysis of a single segregating population. However, breeding programmes routinely evaluate large numbers of progeny derived from multiple-related crosses with some parental lines shared. In most such related crosses, the number of progeny is quite small. Thus, statistical techniques for detecting quantitative trait loci (QTLs) using data from conventional multi-cross breeding programmes are interesting. The objective of this study is to present a mixture model for QTL mapping in crosses of multiple inbred varieties with non-normal phenotype distributions and to use this model to map QTLs for yellow rust resistance in elite wheat breeding material. Three doubled haploid populations consisting of 41, 42 and 55 lines, respectively, originating from four parental varieties were studied. Multi-cross QTL analysis with three specific pathogen isolates of Puccinia striiformis f. sp. tritici and a mixture of the isolates revealed QTLs for resistance at four different genomic locations. These QTLs were found on chromosome 2AL, 2AS, 2BL and 6BL and explained between 21 and 41% of the phenotypic variation. Two of these QTLs, one on the long arm of chromosome 2A and one on the short arm of chromosome 2A were identical to the known yellow rust resistance genes Yr32 and Yr17, respectively, whereas the QTLs located on the long arms of chromosomes 2B and 6B may reflect types of resistance to yellow rust, which have not previously been mapped.  相似文献   

2.
 Genome-analysis tools are useful for dissecting complex phenotypes and manipulating determinants of these phenotypes in breeding programs. Quantitative trait locus (QTL)-analysis tools were used to map QTLs conferring adult plant resistance to stripe rust (caused by Puccinia striiformis f.sp. hordei) in barley. The resistance QTLs were introgressed into a genetic background unrelated to the mapping population with one cycle of marker-assisted backcrossing. Doubled-haploid lines were derived from selected backcross lines, phenotyped for stripe-rust resistance, and genotyped with an array of molecular markers. The resistance QTLs that were introgressed were significant determinants of resistance in the new genetic background. Additional resistance QTLs were also detected. The susceptible parent contributed resistance alleles at two of these new QTLs. We hypothesize that favorable alleles were fixed at these new QTLs in the original mapping population. Genetic background may, therefore, have an important role in QTL-transfer experiments. A breeding system is described that integrates single-copy and multiplex markers with confirmation of the target phenotype in doubled-haploid lines phenotyped in field tests. This approach may be useful for simultaneously producing agronomically useful germplasm and contributing to an understanding of quantitatively inherited traits. Received: 6 May 1997 / Accepted: 1 September 1997  相似文献   

3.
We report the characterization of 12 microsatellite markers in the biotrophic fungus Puccinia striiformis f.sp. tritici, responsible for yellow rust on wheat. An enrichment protocol was used to isolate microsatellite loci, and polymorphism was explored with 96 isolates from natural populations collected from several French and Chinese locations. Eight primers (67%) showed cross‐amplification when tested with eight isolates of P. triticina.  相似文献   

4.
The incorporation of effective and durable disease resistance is an important breeding objective for wheat improvement. The leaf rust resistance gene Lr34 and stripe rust resistance gene Yr18 are effective at the adult plant stage and have provided moderate levels of durable resistance to leaf rust caused by Puccinia triticina Eriks. and to stripe rust caused by Puccinia striiformis Westend. f. sp. tritici. These genes have not been separated by recombination and map to chromosome 7DS in wheat. In a population of 110 F7 lines derived from a Thatcher × Thatcher isogenic line with Lr34/Yr18, field resistance to leaf rust conferred by Lr34 and to stripe rust resistance conferred by Yr18 cosegregated with adult plant resistance to powdery mildew caused by Blumeria graminis (DC) EO Speer f. sp. tritici. Lr34 and Yr18 were previously shown to be associated with enhanced stem rust resistance and tolerance to barley yellow dwarf virus infection. This chromosomal region in wheat has now been linked with resistance to five different pathogens. The Lr34/Yr18 phenotypes and associated powdery mildew resistance were mapped to a single locus flanked by microsatellite loci Xgwm1220 and Xgwm295 on chromosome 7DS.  相似文献   

5.
Genetic analysis of durable resistance to yellow rust in bread wheat   总被引:8,自引:0,他引:8  
Yellow rust, caused by Puccinia striiformis, is one of the most damaging diseases affecting bread wheat in temperate regions. Although resistance to yellow rust is frequently overcome by new virulent races, a durable form of resistance in the French bread wheat Camp Rémy (CR) has remained effective since its introduction in 1980. We used 217 F7 recombinant inbred lines (RILs) derived from the cross between CR and the susceptible cultivar Récital to identify and map quantitative trait loci (QTLs) involved in durable yellow rust resistance. Six significant QTLs that were stable over a 4-year period were detected. Two QTLs, denoted QYr.inra-2DS and QYr.inra-5BL.2, were located on the short arm of chromosome 2D and the long arm of chromosome 5B, respectively. Each explained on average 25–35% of the observed phenotypic variation and were probably inherited from Cappelle Desprez, a parent of CR that confers durable adult plant resistance to yellow rust. QYr.inra-2DS probably corresponds to the Yr16 gene. The most consistent QTL, designated QYr.inra-2BL, was located on the centromeric region of chromosome 2B and explained 61% of the phenotypic variation in 2003. This QTL was responsible for seedling-stage resistance and may correspond to a cluster of genes, including Yr7. The remaining QTLs were mapped to the short arm of chromosome 2B (R2=22–70%) and to the long arm of chromosomes 2A (R2=0.20–0.40) and 5B (R2=0.18–0.26). This specific combination of seedling and adult plant resistance genes found in CR and CD may constitute the key to their durable resistance against yellow rust.  相似文献   

6.
Stripe or yellow rust of wheat, caused by Puccinia striiformis f. sp. tritici, is an important disease in many wheat-growing regions of the world. A number of major genes providing resistance to stripe rust have been used in breeding, including one gene that is present in the differential tester Carstens V. The objective of this study was to locate and map a stripe rust resistance gene transferred from Carstens V to Avocet S and to use molecular tools to locate a number of genes segregating in the cross Savannah/Senat. One of the genes present in Senat was predicted to be a gene that is present in Carstens V. For this latter purpose, stripe rust response data from both seedling and field tests on a doubled haploid population consisting of 77 lines were compared to an available molecular map for the same lines using a non-parametric quantitative trait loci (QTL) analysis. Results obtained in Denmark suggested that a strong component of resistance with the specificity of Carstens V was located in chromosome arm 2AL, and this was consistent with chromosome location work undertaken in Australia. Since this gene segregated independently of Yr1, the only other stripe rust resistance gene known to be located in this chromosome arm, it was designated Yr32. Further QTLs originating from Senat were located in chromosomes 1BL, 4D, and 7DS and from Savannah on 5B, but it was not possible to characterize them as unique resistance genes in any definitive way. Yr32 was detected in several wheats, including the North American differential tester Tres.An erratum to this article can be found at Communicated by G. Wenzel  相似文献   

7.
Barley stripe rust, caused by Puccinia striiformis f. sp. hordei, is one of the most important barley (Hordeum vulgare) diseases in the United States. The disease is best controlled using resistant cultivars. Barley genotype Grannenlose Zweizeilige (GZ) has a recessive gene (rpsGZ) that is effective against all races of P. striiformis f. sp. hordei identified so far in the USA. To develop a molecular map for mapping the gene, F8 recombinant inbred lines (RILs) were developed from the Steptoe X GZ cross through single-seed descent. Seedlings of the parents and RILs were evaluated for resistance to races PSH-14 and PSH-54 of P. striiformis f. sp. hordei under controlled greenhouse conditions. Genomic DNA was extracted from the parents and 182 F8 RILs and used for linkage analysis. The resistance gene analog polymorphism (RGAP) technique was used to identify molecular markers for rpsGZ. A linkage group for the gene was constructed with 12 RGAP markers, of which two markers co-segregated with the resistance locus, and two markers were closely linked to the locus with a genetic distance of 0.9 and 2.0 cM, respectively. These four markers were present only in the susceptible parent. The closest marker to the resistance allele was 11.7 cM away. Analyses of two sets of barley chromosome addition lines of wheat with the two RGAP markers that were cosegregating with the susceptibility allele showed that rpsGZ and the markers were located on the long arm of barley chromosome 4H. Further, tests with four simple sequence repeat (SSR) markers confirmed the chromosomal location of the rpsGZ gene and also integrated the RGAP markers into the known SSR-based linkage map of barley. The closest SSR marker EBmac0679 had a genetic distance of 7.5 cM with the gene in the integrated linkage map constructed with the 12 RGAP markers and 4 SSR markers. The information on chromosomal location and molecular markers for rpsGZ should be useful for incorporating this gene into commercial cultivars and combining it with other resistance genes for durable resistance.  相似文献   

8.
A genetic linkage map, based on a cross between the synthetic hexaploid CPI133872 and the bread wheat cultivar Janz, was established using 111 F1-derived doubled haploid lines. The population was phenotyped in multiple years and/or locations for seven disease resistance traits, namely, Septoria tritici blotch (Mycosphaeralla graminicola), yellow leaf spot also known as tan spot (Pyrenophora tritici-repentis), stripe rust (Puccinia striiformis f. sp. tritici), leaf rust (Puccinia triticina), stem rust (Puccinia graminis f. sp. tritici) and two species of root-lesion nematode (Pratylenchyus thornei and P. neglectus). The DH population was also scored for coleoptile colour and the presence of the seedling leaf rust resistance gene Lr24. Implementation of a multiple-QTL model identified a tightly linked cluster of foliar disease resistance QTL in chromosome 3DL. Major QTL each for resistance to Septoria tritici blotch and yellow leaf spot were contributed by the synthetic hexaploid parent CPI133872 and linked in repulsion with the coincident Lr24/Sr24 locus carried by parent Janz. This is the first report of linked QTL for Septoria tritici blotch and yellow leaf spot contributed by the same parent. Additional QTL for yellow leaf spot were detected in 5AS and 5BL. Consistent QTL for stripe rust resistance were identified in chromosomes 1BL, 4BL and 7DS, with the QTL in 7DS corresponding to the Yr18/Lr34 region. Three major QTL for P. thornei resistance (2BS, 6DS, 6DL) and two for P. neglectus resistance (2BS, 6DS) were detected. The recombinants combining resistance to Septoria tritici blotch, yellow leaf spot, rust diseases and root-lesion nematodes from parents CPI133872 and Janz constitute valuable germplasm for the transfer of multiple disease resistance into new wheat cultivars.  相似文献   

9.
‘Express’, a hard red spring wheat cultivar that has been widely grown in the western United States, is used to differentiate races of Puccinia striiformis f. sp. tritici, the causal fungal pathogen of wheat stripe rust. To identify genes conferring race-specific, overall resistance to stripe rust, Express was crossed with ‘Avocet S’. The parents and F1, F2, F3 and F5 populations were tested with races PST-1, PST-21, PST-43, and PST-45 of P. striiformis f. sp. tritici in the seedling stage under controlled greenhouse conditions. Two dominant genes for resistance to stripe rust were identified, one conferring resistance to PST-1 and PST-21, and the other conferring resistance to all four races. Linkage groups were constructed for the resistance genes using 146 F5 lines to establish resistance gene analog and chromosome-specific simple sequence repeat marker polymorphisms. The gene for resistance to races PST-1 and PST-21 was mapped on the long arm of chromosome 1B, and that conferring resistance to all four races was mapped on the long arm of chromosome 5B. We temporarily designate the gene on 1BL as YrExp1 and the gene on 5BL as YrExp2. Polymorphism of at least one of the two markers flanking YrExp2 was detected in 91% of the 44 tested wheat genotypes, suggesting that they would be useful in marker-assisted selection for combining the gene with other resistance genes into many other wheat cultivars. Knowledge of these genes will be useful to understand recent virulence changes in the pathogen populations.  相似文献   

10.
Powdery mildew, caused by Blumeria graminis f. sp. tritici is a major disease of wheat (Triticum aestivum L.) that can be controlled by resistance breeding. The CIMMYT bread wheat line Saar is known for its good level of partial and race non-specific resistance, and the aim of this study was to map QTLs for resistance to powdery mildew in a population of 113 recombinant inbred lines from a cross between Saar and the susceptible line Avocet. The population was tested over 2 years in field trials at two locations in southeastern Norway and once in Beijing, China. SSR markers were screened for association with powdery mildew resistance in a bulked segregant analysis, and linkage maps were created based on selected SSR markers and supplemented with DArT genotyping. The most important QTLs for powdery mildew resistance derived from Saar were located on chromosomes 7DS and 1BL and corresponded to the adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29. A major QTL was also located on 4BL with resistance contributed by Avocet. Additional QTLs were detected at 3AS and 5AL in the Norwegian testing environments and at 5BS in Beijing. The population was also tested for leaf rust (caused by Puccinia triticina) and stripe rust (caused by P. striiformis f. sp. tritici) resistance and leaf tip necrosis in Mexico. QTLs for these traits were detected on 7DS and 1BL at the same positions as the QTLs for powdery mildew resistance, and confirmed the presence of Lr34/Yr18 and Lr46/Yr29 in Saar. The powdery mildew resistance gene at the Lr34/Yr18 locus has recently been named Pm38. The powdery mildew resistance gene at the Lr46/Yr29 locus is designated as Pm39.  相似文献   

11.

Key Message

This is the first report on genetic analysis and genome mapping of major dominant genes for near non-host resistance to barley crown rust ( Puccinia coronata var. hordei ) in common wheat.

Abstract

Barley crown rust, caused by Puccinia coronata var. hordei, primarily occurs on barley (Hordeum vulgare L.) in the Great Plain regions of the United States. However, a few genotypes of common wheat (Triticum aestivum L.) were susceptible to this pathogen among 750 wheat accessions evaluated. To investigate the genetics of crown rust resistance in wheat, a susceptible winter wheat accession PI 350005 was used in crosses with two resistant wheat varieties, Chinese Spring and Chris. Analysis of F1 plants and F2 populations from these two crosses indicated that crown rust resistance is controlled by one and two dominant genes in Chris and Chinese Spring, respectively. To determine the chromosome location of the resistance gene Cr1 in Chris, a set of 21 monosomic lines derived from Chris was used as female parents to cross with a susceptible spring type selection (SSTS35) derived from the PI 350005/Chris cross. Monosomic analysis indicated that Cr1 is located on chromosome 5D in Chris and one of the crown rust resistance genes is located on chromosome 2D in Chinese Spring. The other gene in Chinese Spring is not on 5D and thus is different from Cr1. Molecular linkage analysis and QTL mapping using a population of 136 doubled haploid lines derived from Chris/PI 350005 further positioned Cr1 between SSR markers Xwmc41-2 and Xgdm63 located on the long arm of chromosome 5D. Our study suggests that near non-host resistance to crown rust in these different common wheat genotypes is simply inherited.  相似文献   

12.
Stripe rust (yellow rust) caused by Puccinia striiformis f. sp. tritici has been an important disease of wheat in the Indian subcontinent since 1786. Currently, it prevails across all the wheat growing areas from north to south in the country. Due to the favourable weather conditions, the northern uplands have been historically hit by the severe disease epidemics. These epidemics caused significant losses to national wheat production. Acquisition of broader virulence pattern by the pathogen poses a serious threat to national agriculture. Although the deployed national wheat varieties have adequate resistance, these are developed around few major genes and are vulnerable to the new evolving strains of the pathogen. Utilisation of race non-specific durable resistance and seedling resistance via gene pyramiding, based on the current virulence scenario of the pathogen should provide sustainable control. This review focuses on the national milestones that recognise the economic significance of the disease and current status of stripe rust and its management in Pakistan.  相似文献   

13.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is the preferred control of the disease. The spring wheat cultivar ‘Alpowa’ has both race-specific, all-stage resistance and non-race-specific, high-temperature adult-plant (HTAP) resistances to stripe rust. To identify genes for the stripe rust resistances, Alpowa was crossed with ‘Avocet Susceptible’ (AVS). Seedlings of the parents, and F1, F2 and F3 progeny were tested with races PST-1 and PST-21 of P. striiformis f. sp. tritici under controlled greenhouse conditions. Alpowa has a single partially dominant gene, designated as YrAlp, conferring all-stage resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrAlp. A linkage group of five RGAP markers and two SSR markers was constructed for YrAlp using 136 F3 lines. Amplification of a set of nulli-tetrasomic Chinese Spring lines with RGAP markers Xwgp47 and Xwgp48 and the two SSR markers indicated that YrAlp is located on the short arm of chromosome 1B. To map quantitative trait loci (QTLs) for the non-race-specific HTAP resistance, the parents and 136 F3 lines were tested at two sites near Pullman and one site near Mount Vernon, Washington, under naturally infected conditions. A major HTAP QTL was consistently detected across environments and was located on chromosome 7BL. Because of its chromosomal location and the non-race-specific nature of the HTAP resistance, this gene is different from previously described genes for adult-plant resistance, and is therefore designated Yr39. The gene contributed to 64.2% of the total variation of relative area under disease progress curve (AUDPC) data and 59.1% of the total variation of infection type data recorded at the heading-flowering stages. Two RGAP markers, Xwgp36 and Xwgp45 with the highest R 2 values were closely linked to Yr39, should be useful for incorporation of the non-race-specific resistance gene into new cultivars and for combining Yr39 with other genes for durable and high-level resistance.  相似文献   

14.
A set of 59 spring barley introgression lines (ILs) was developed from the advanced backcross population S42. The ILs were generated by three rounds of backcrossing, two to four subsequent selfings, and, in parallel, marker-assisted selection. Each line includes a single marker-defined chromosomal segment of the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum), whereas the remaining part of the genome is derived from the elite barley cultivar Scarlett (H. vulgare ssp. vulgare). Based on a map containing 98 SSR markers, the IL set covers so far 86.6% (1041.5 cM) of the donor genome. Each single line contains an average exotic introgression of 39.2 cM, representing 3.2% of the exotic genome. The utility of the developed IL set is illustrated by verification of QTLs controlling resistance to powdery mildew (Blumeria graminis f. sp. hordei L.) and leaf rust (Puccinia hordei L.) which were previously identified in the advanced backcross population S42. Altogether 57.1 and 75.0% of QTLs conferring resistance to powdery mildew and leaf rust, respectively, were verified by ILs. The strongest favorable effects were mapped to regions 1H, 0–85 cM and 4H, 125–170 cM, where susceptibility to powdery mildew and leaf rust was decreased by 66.1 and 34.7%, respectively, compared to the recurrent parent. In addition, three and one new QTLs were localized, respectively. A co-localization of two favorable QTLs was identified for line S42IL-138, which holds an introgressed segment in region 7H, 166–181. Here, a reduction effect was revealed for powdery mildew as well as for leaf rust severity. This line might be a valuable resource for transferring new resistance alleles into elite cultivars. In future, we aim to cover the complete exotic genome by selecting additional ILs. We intend to conduct further phenotype studies with the IL set in regard to the trait complexes agronomic performance, malting quality, biotic stress, and abiotic stress.  相似文献   

15.
Stripe or yellow rust caused by Puccinia striiformis f. sp. tritici is a threat to many of the existing cultivars of Pakistan. Many attempts are being made to evolve new varieties resistant to stripe rust to reduce the losses caused by this disease. For this purpose, novel genes are needed to incorporate into the existing cultivars. These genes are found in the wild progenitors of wheat that are D-genome donors to wheat. As a result of extensive research, wheat synthetic hexaploids have been developed. These synthetics have resistances against biotic as well as abiotic stresses including the yellow rust. A group of such synthetics has been identified which seems resistant to this destructive disease. This group was tested under field conditions to identify resistance against stripe rust. The same population was analysed at molecular level to explore the genetic diversity for rust resistance. Genetic diversity among 34 selected synthetic hexaploid wheats was studied by random amplified polymorphic DNA (RAPD) analysis. A set of 12 RAPD primers was applied, and the level of polymorphism was found to be 46.67%. The coefficients in the range of 71–100% were detected by genetic similarity matrix based on Nei and Li's index. These coefficients were used for constructing a dendrogram using unweighted pair group of arithmetic means. Synthetic hexaploid line 34 was found to exhibit maximum genetic distances among the 34 selected lines. The same accession also showed excellent phenotypic characters with above average grain weight. These synthetic hexaploids carrying genetic potential for stripe rust resistance and morphological traits should be useful for improvement of existing wheat cultivars.  相似文献   

16.
Wheat production in Pakistan is seriously constrained due to rust diseases and stripe rust (yellow) caused by Puccinia striiformis f. sp. tritici, which could limit yields. Thus development and cultivation of genetically diverse and resistant varieties is the most sustainable solution to overcome these diseases. The first objective of the present study was to evaluate 100 Pakistan wheat cultivars that have been grown over the past 60 years. These cultivars were inoculated at the seedling stage with two virulent stripe rust isolates from the United States and two from Pakistan. None of the wheat cultivars were resistant to all tested stripe rust isolates, and 16% of cultivars were susceptible to the four isolates at the seedling stage. The data indicated that none of the Pakistan wheat cultivars contained either Yr5 or Yr15 genes that were considered to be effective against most P. striiformis f. sp. tritici isolates from around the world. Several Pakistan wheat cultivars may have gene Yr10, which is effective against isolate PST-127 but ineffective against PST-116. It is also possible that these cultivars may have other previously unidentified genes or gene combinations. The second objective was to evaluate the 100 Pakistan wheat cultivars for stripe rust resistance during natural epidemics in Pakistan and Washington State, USA. It was found that a higher frequency of resistance was present under field conditions compared with greenhouse conditions. Thirty genotypes (30% of germplasms) were found to have a potentially high temperature adult plant (HTAP) resistance. The third objective was to determine the genetic diversity in Pakistan wheat germplasms using molecular markers. This study was based on DNA fingerprinting using resistance gene analog polymorphism (RGAP) marker analysis. The highest polymorphism detected with RGAP primer pairs was 40%, 50% and 57% with a mean polymorphism of 36%. A total of 22 RGAP markers were obtained in this study. RGAP, simple sequence repeat (SSR) and sequence tagged site (STS) markers were used to determine the presence and absence of some important stripe rust resistance genes, such as Yr5, Yr8, Yr9, Yr15 and Yr18. Of the 60 cultivars analyzed, 17% of cultivars showed a RGAP marker band for Yr9 and 12% of cultivars exhibited the Yr18 marker band. No marker band was detected for Yr5, Yr8 and Yr15, indicating a likely absence of these genes in the tested Pakistan wheat cultivars. Cluster analysis based on molecular and stripe rust reaction data is useful in identifying considerable genetic diversity among Pakistan wheat cultivars. The resistant germplasms identified with 22 RGAP markers and from the resistance evaluations should be useful in developing new wheat cultivars with stripe rust resistance.  相似文献   

17.
A set of 148 modern spring barley cultivars was explored for the extent of linkage disequilibrium (LD) between genes governing traits and nearby marker alleles. Associations of agronomically relevant traits (days to heading, plant height), resistance traits (leaf rust, barley yellow dwarf virus (BYD)), and morphological traits (rachilla hair length, lodicule size) with AFLP markers and SSR markers were found. Known major genes and QTLs were confirmed, but also new putative QTLs were found. The LD mapping clearly indicated the common occurrence of Rph3, a gene for hypersensitivity resistance against Puccinia hordei, and also confirmed the QTL Rphq2 for prolonging latency period of P. hordei in seedlings. We also found strong indication for a hitherto not reported gene for resistance or tolerance to BYD on chromosome 2, linked to SSR marker HVM054. Our conclusion is that LD mapping is a valuable additional tool in the search for applicable marker associations with major genes and QTLs. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

18.
Aims: Wheat stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is the most important foliar disease on wheat in China. Early molecular diagnosis and detection of stripe rust will provide a useful aid to the accurate forecast and seasonal control of this destructive disease. Our objective was to develop PCR assays for the rapid identification and detection of P. striiformis. Methods and Results: The genomic DNA of P. striiformis and P. triticina were amplified by a pair of primers derived from conserved β‐tubulin gene sequence. A 235‐bp specific DNA fragment of P. striiformis was isolated and purified. Based on its sequence, another two primer sets were designed successfully to obtain new sequence‐characterized amplified region (SCAR) markers of P. striiformis, which could be amplified in all test isolates of P. striiformis, whereas no DNA fragment was obtained in other nontarget wheat pathogens. The detection limit of the primer set YR (f)/YR (r1) was 2·20 pg μl?1. The new SCAR markers of P. striiformis can also be detected in Pst‐infected wheat leaves postinoculated for 2 days. Conclusions: Our assays are significantly faster than the conventional methods used in the identification of P. striiformis. Significance and Impact of the Study: Development of a simple, high‐throughput assay kit for the rapid diagnosis and detection of wheat stripe rust would be anticipated in a further study.  相似文献   

19.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Growing resistant cultivars is the most effective approach to control the disease, but only a few genes confer effective all-stage resistance against the current populations of the pathogen worldwide. It is urgent to identify new genes for diversifying sources of resistance genes and for pyramiding genes for different types of resistance in order to achieve high levels of durable resistance for sustainable control of stripe rust. The common spring wheat genotype ‘PI 181434’, originally from Afghanistan, was resistant in all greenhouse and field tests in our previous studies. To identify the resistance gene(s) PI 181434 was crossed with susceptible genotype ‘Avocet Susceptible’. Adult plants of 103 F2 progeny were tested in the field under the natural infection of P. striiformis f. sp. tritici. Seedlings of the parents, F2 and F3 were tested with races PST-100 and PST-127 of the pathogen under controlled greenhouse conditions. The genetic study showed that PI 181434 has a single dominant gene conferring all-stage resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to the gene. A linkage map of 8 RGAP and 2 SSR markers was constructed for the gene using data from the 103 F2 plants and their derived F3 lines tested in the greenhouse. Amplification of the complete set of nulli-tetrasomic lines and selected ditelosomic lines of Chinese Spring with an RGAP marker and the two SSR markers mapped the gene on the long arm of chromosome 3D. Because it is the first gene for stripe rust resistance mapped on chromosome 3DL and different from all previously named Yr genes, the gene in PI 181434 was designated Yr45. Polymorphism rates of the two closest flanking markers, Xwgp115 and Xwgp118, in 45 wheat genotypes were 73.3 and 82.2%, respectively. Single nucleotide polymorphisms (SNPs) were identified in the eight wheat genotypes sharing both flanking markers. The RGAP markers and potential SNP markers should be useful in incorporating the gene into wheat cultivars and in pyramiding it with other genes for durable resistance.  相似文献   

20.
The wheat crop remains vulnerable to all three rust diseases (leaf rust, stem rust and yellow rust) caused by Puccinia spp. according to the prevalence of the pathogen in different wheat-growing areas worldwide. Stripe rust or yellow rust caused by Puccinia striiformis f. sp. tritici is the most significant rust pathogen which prefers cool, moist areas and highlands. The pathogen is recognised as responsible for huge production losses in wheat. Genetic variation in pathogen makes its control difficult. Therefore, resistance against all the races of the pathogen known as durable or race-non-specific resistance is preferred. The present study was carried out to identify durable resistance against stripe rust in selected wheat cultivars from Pakistan through seedling testing, field evaluation at adult stage, morphological marker studies and marker-assisted selection. Results revealed that 4% of the cultivars were resistant at the seedling stage while the rest were susceptible or intermediate. To confirm their field resistance, the same cultivars were evaluated under field conditions at Cereal Crops Research Institute Pirsabak (located in Khyber Pakhtunkhwa, KP) a hot spot of stripe rust in Pakistan. Observations exhibited that at the adult stage 4% of the cultivars were resistant, 70% intermediate or moderately resistant while the others were highly susceptible. Leaf tip necrosis was observed in 30% of the cultivars. Wheat cultivars showing susceptibility at the seedling stage were highly to moderately resistant at adult stage showing durable resistance. For further validation, morphological markers were also observed in cultivars indicating the presence of Yr18/Lr34 gene. Eleven cultivars (C-518, Mexipak, Kohinoor-83, Faisalabad-83, Zardana-93, Shahkar-95, Moomal-2002, Wattan-94, Pasban-90, Kiran-95, and Haider-2000) were identified, having durable or race non-specific resistance against stripe rust. These cultivars can further be utilised in wheat breeding programmes for deploying durable resistance to attain long lasting control against stripe rust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号