共查询到20条相似文献,搜索用时 15 毫秒
1.
Time-Related Loss of Glutamine from Hippocampal Slices and Concomitant Changes in Neurotransmitter Amino Acids 总被引:2,自引:1,他引:1
Izet M. Kapetanovic Wayne D. Yonekawa Harvey J. Kupferberg 《Journal of neurochemistry》1993,61(3):865-872
Abstract: A dramatic, time-dependent loss of l -glutamine was observed in mouse and rat hippocampal slices equilibrated in normal artificial CSF under static (no-flow) and super-fused (constant-flow) conditions. Concomitant with the decline in l -glutamine, there was a significant, but less pronounced, decrease in levels of the neurotransmitter amino acids, γ-aminobutyric acid, l -aspartate, and l -glutamate. The disappearance of l -glutamine was a result of diffusion from the tissue to the artificial CSF rather than chemical or biochemical transformation. The loss of amino acids from the hippocampal slices was prevented to different degrees by the addition of 0.5 m M exogenous l -glutamine to the artificial CSF. The levels of newly synthesized amino acids were also determined, because they may be more indicative of the neuronal activity than the total tissue levels of amino acids. The effects of perturbations in glutamine (length of the equilibration time and addition of exogenous. glutamine) on newly synthesized glutamate were more pronounced under 4-aminopyridine-stimulated than control (unstimulated) conditions. Therefore, a loss of l -glutamine from the hippocampal slices may have neurophysiological effects and warrants further investigation. 相似文献
2.
Abstract: As γ-aminobutyric acid (GABA) was first discovered as the free acid in the mammalian central nervous system, it has been assumed that GABA is generally to be found in significant amounts only in the brain, in spite of reports of its presence in a number of non-neuronal tissues. In this study, GABA was detected amongst the free amino acids in most rat tissues that were examined. The highest concentration outside the brain was in the ovary (0.59 μmol/g fresh tissue). It is concluded that the synthesis of the GABA is intragonadal and probably of metabolic importance. 相似文献
3.
Effects of Lead In Vivo and In Vitro on GABAergic Neurochemistry 总被引:1,自引:1,他引:1
Ellen K. Silbergeld Robert E. Hruska Leonard P. Miller Nancy Eng 《Journal of neurochemistry》1980,34(6):1712-1718
Abstract: Alterations in aspects of neurotransmission utilizing -γ-aminobutyric acid (GABA) are associated with in vivo exposure of rats to lead at doses that do not produce convulsions, but sensitize animals to convulsant agents. These effects are observed regionally and include: decreased GABA levels in cerebellum; increased activity of glutamate decarboxylase (GAD) in caudate; and decreased GABA release (both resting and K+ -stimulated) in cortex, caudate, cerebellum and substantia nigra. Sodium-dependent uptake of GABA by synaptosomes of cerebellum, substantia nigra and caudate was also affected: in these regions, affinity (Km ) was increased and maximal velocity (Vmax ) was reduced. Sodium-independent binding of GABA to synaptic membranes was increased in cerebellum, but was observed only when tissue was Tritonized and prepared without freezing and washing. No effects on GAD or on GABA uptake, release, or binding were observed when lead was added to brain tissue in vitro in concentrations as high as 100 μM. The results suggest that lead may produce chronic inhibition of presynaptic GABAergic function, notably in the cerebellum, which is associated with supersensitivity of postsynaptic GABA receptors. Failure of lead to affect GABAergic function in vitro may indicate that these effects are secondary to another neurotoxic action of lead in the CNS or are consequent to a nonneuronal metabolic action of lead. 相似文献
4.
Abstract: The inactivation of γ-aminobutyrate (GABA)-transaminase by the highly specific and potent neurotoxin gabaculine leads to different neurochemical consequences in the chick brain as opposed to the chick retina. In the brain, GABA levels continually climb, reaching approximately eightfold increases over control values after 24 h. The elevation in GABA levels leads to a time-dependent and coincident fall in glutamate decarboxylase and cysteine- sulfinatc decarboxylase activities, to approximately 50% of control values. On the other hand, in the retina GABA levels only increase to a plateau level two- to threcfold that of control after inactivation of GABA-transaminase. Further- more, although the glutamate decarboxylase activity decreases to about 50% of control values, cysteinesulfinate decarboxylase activity is not affected. These studies show that the processing of GABA in the retina differs from that in the brain, and that cysteinesulfinate and glutamate decarboxylase activity probably reside in different enzyme molecules in the retina, although they may reside in the same enzyme in the brain. 相似文献
5.
Abstract A Rhizobium meliloti mutant, CMF1 2:38, was isolated which was specifically defective in the degradation of glutamate as sole carbon and nitrogen source. Biochemical analysis of CMF1 2:38 revealed a reduction in succinic semialdehyde dehydrogenase (SSDH) activity, the third enzyme of the γ-aminobutyrate (GABA) bypass. Evidence is presented which suggests that the Tn 5-induced mutation in CMF1 2:38 exists in a regulatory gene governing the expression of both NAD and NADP-linked SSDH activity. CMF1 2:38 nodulated alfalfa plants, but was reduced in its nitrogen fixation activity and biomass accumulating ability relative to the wild-type strain. The results presented in this study indicate that the GABA bypass is a major mechanism of glutamate degradation in R. meliloti CMF1 and that glutamate catabolism via this pathway may play an important role in the symbiotic nitrogen fixation process. 相似文献
6.
Two Forms of the γ-Aminobutyric Acid Synthetic Enzyme Glutamate Decarboxylase Have Distinct Intraneuronal Distributions and Cofactor Interactions 总被引:12,自引:6,他引:6
Daniel L. Kaufman Carolyn R. Houser†‡§ Allan J. Tobin‡ 《Journal of neurochemistry》1991,56(2):720-723
Glutamate decarboxylase (GAD) catalyzes the production of gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter. The mammalian brain contains two forms of GAD, with Mrs of 67,000 and 65,000 (GAD67 and GAD65). Using a new antiserum specific for GAD67 and a monoclonal antibody specific for GAD65, we show that the two forms of GAD differ in their intraneuronal distributions: GAD67 is widely distributed throughout the neuron, whereas GAD65 lies primarily in axon terminals. In brain extracts, almost all GAD67 is in an active holoenzyme form, saturated with its cofactor, pyridoxal phosphate. In contrast, only about half of GAD65 (which is found in synaptic terminals) exists as active holoenzyme. We suggest that the relative levels of apo-GAD65 and holo-GAD65 in synaptic terminals may couple GABA production to neuronal activity. 相似文献
7.
Abstract: Rats were injected with saline or the γ-aminobutyric acid (GABA) transaminase inhibitor γ-vinyl-GABA for 7 days and the effects on GABA content and glutamic acid decarboxylase (GAD) activity, and the protein and mRNA levels of the two forms of GAD (GAD67 and GAD65 ) in the cerebral cortex were studied. γ-Vinyl-GABA induced a 2.3-fold increase in GABA content, whereas total GAD activity decreased by 30%. Quantitative immunoblotting showed that the decline in GAD activity was attributable to a 75–80% decrease in GAD67 levels, whereas the levels of GAD65 remained unchanged. RNA slot-blotting with a 32 P-labeled GAD67 cDNA probe demonstrated that the change in GAD67 protein content was not associated with a change in GAD67 mRNA levels. Our results suggest that GABA specifically controls the level of GAD67 protein. This effect may be mediated by a decreased translation of the GAD67 mRNA and/or a change in the stability of the GAD67 protein. 相似文献
8.
Because previous work showed that in the newborn brain, but not in the adult brain, glutamate decarboxylase (GAD) is notably susceptible to heat, we have studied the possible involvement of GAD inhibition in febrile convulsions and the related changes in gamma-aminobutyric acid (GABA) content. Rats of different ages were subjected to hyperthermia, and GAD activity was determined in brain homogenates by measuring the release of 14CO2 from labeled glutamate and by measuring the formation of GABA. The latter method gave considerably lower values than the former in the youngest rats, and was considered more reliable. With this method, we found a 37-48% inhibition of GAD activity in rat pups 2-5 days old, which showed febrile seizures at progressively higher body temperatures, whereas in 10- and 15-day-old animals, which did not show convulsions, GAD activity was not affected by hyperthermia. Whole-brain GABA levels, however, did not change at any age. In contrast to GAD, choline acetyltransferase and lactic dehydrogenase activities were not altered by hyperthermia at any of the ages studied. These results suggest that a decreased efficiency of the inhibitory neurotransmission mediated by GABA, consequent to the inhibition of GAD activity, may be a factor related to febrile convulsions. 相似文献
9.
Abstract: The GABA content was determined simultaneously in two peripheral organs, i.e., ovary and Fallopian tube. Moreover, the effects of inhibitors of glutamate decarboxylase or γ-aminobutyrate transaminase (GABA-T) on the GABA concentrations of the two organs were examined, to point out similarities and differences between central and peripheral pathways of GABA biosynthesis and degradation. In ovary, GABA concentration was found to be about 30% of that in total brain tissue. Furthermore, isoniazid and thiosemicarbazide caused significant reduction of GABA levels in peripheral organs. In contrast to the CNS, aminooxyacetic acid failed to increase, but even produced a significant diminution in peripheral GABA content. Gabaculine did not change GABA levels. In conclusion, it has been demonstrated for the first time that a peripheral organ, i.e. fallopian tube, contained higher GABA concentrations than the CNS. On the other hand, in the organs examined GABA seemed to be synthesized similarly, but metabolized by a pathway different from that in the brian. 相似文献
10.
The stability and activation of glutamate apodecarboxylase was studied with three forms of the enzyme from pig brain (referred to as the alpha, beta, and gamma forms). Apoenzyme was prepared by incubating the holoenzyme with aspartate followed by chromatography on Sephadex G-25. Apoenzyme was much less stable than holoenzyme to inactivation by heat (for beta-glutamate decarboxylase (beta-GAD) at 30 degrees C, t1/2 values of apo- and holoenzyme were 17 and greater than 100 min). ATP protected holoenzyme and apoenzyme against heat inactivation. The kinetics of reactivation of apoenzyme by pyridoxal-P was consistent with a two-step mechanism comprised of a rapid, reversible association of the cofactor with apoenzyme followed by a slow conversion of the complex to active holoenzyme. The reactivation rate constant (kr) and apparent dissociation constant (KD) for the binding of pyridoxal-P to apoenzyme differed substantially among the forms (for alpha-, beta-, and gamma-GAD, kr = 0.032, 0.17, and 0.27 min-1, and KD = 0.014, 0.018, and 0.04 microM). ATP was a strong competitive inhibitor of activation (Ki = 0.45, 0.18, and 0.39 microM for alpha-, beta-, and gamma-GAD). In contrast, Pi stimulated activation at 1-5 mM but inhibited at much higher concentrations. The results suggest that ATP is important in stabilizing the apoenzyme in brain and that ATP, Pi, and other compounds regulate its activation. 相似文献
11.
Some biochemical characteristics of L-glutamate decarboxylase (GAD) were compared using crude homogenates of the rat oviduct, ovary, and hypothalamus. As estimated by the measurement of CO2 production, the specific activities of oviductal and ovarian GAD were about 10 and 3% of the hypothalamic value, respectively. Stoichiometric formation of gamma-aminobutyric acid (GABA) and CO2 from L-glutamate could be observed in oviduct and hypothalamus, while in ovarian homogenates the production of CO2 was more than nine times that of GABA. Hypothalamic and tubal GAD showed similar time course, temperature dependence, and pH dependence. The dependence on protein concentration and on exogenous cofactor supply was also similar in these two tissues. The kinetic constant for L-glutamate as a substrate was nearly the same in oviduct (1.30 mM) and hypothalamus (1.64 mM). The responsiveness of tubal and hypothalamic GAD to various inhibitors was also similar. The present findings indicate that the oviductal and the hypothalamic GAD may be identical, and they suggest a possible GABAergic innervation of the Fallopian tube. 相似文献
12.
Freeze-dried sections (14 microns thick) of retinal layers were prepared from mice with retinal degeneration (C3H strain) and control mice (C57BL strain). The weighed sections (2-30 ng dry weight) were analyzed using our microassay methods. In the control retina, gamma-aminobutyric acid (GABA) concentration and glutamate decarboxylase (GAD) activity, on a dry weight basis, increased from birth to 9 weeks of age and decreased slightly at 20 weeks. In the degenerated retina, the levels of GABA and GAD activity were higher at birth than in the control retina, and continued to increase until 20 weeks of age, at which time the GAD activity reached a markedly high level. This increase was found when the total GABA and GAD levels per retina were determined. In the normal retinal layers, GABA and GAD were confined primarily to the inner plexiform layer. In the degenerated retina, GAD activity gradually increased in the inner layers during postnatal development, but by 20 weeks the increase was most prominent in the inner part of inner nuclear layer and in the outer part of inner plexiform layer. GABA transaminase activity and its distribution were not much different in both normal and degenerated retinas during development. 相似文献
13.
P. Ferenci R. Jacobs S. C. Pappas D. F. Schafer E. A. Jones 《Journal of neurochemistry》1984,42(5):1487-1490
Abstract: Measurements of the activities of the two key enzymes in cerebral GABA metabolism—glutamate decarboxylase (GAD) and GABA-transaminase (GABA-T)—were performed in normal rabbits and in rabbits with hepatic encephalopathy due to galactosamine-induced liver failure. Furthermore the uptake of GABA by synaptosomes was studied. Hepatic encephalopathy was associated with a marked decrease in the activity of GAB A-T. This decrease in activity was already apparent in galactosamine-treated rabbits before the onset of hepatic encephalopathy. Sera and serum ultrafiltrates of rabbits with hepatic encephalopathy but not of normal rabbits or of rabbits with uremic encephalopathy were shown to inhibit GABA-T activity in vitro . Cerebral GAD activity and synaptosomal GABA uptake in rabbits with hepatic encephalopathy and in untreated animals were not different. These later findings indicate that hepatic encephalopathy is not associated with alterations of presynaptic GABA nerve terminals in the central nervous system. The demonstration of a decrease in cortical GABA-T activity provides indirect evidence for decreased GABA turnover in the brains of rabbits with hepatic encephalopathy and thus is compatible with augmented GABA-ergic inhibitory neurotransmission contributing to the neural inhibition of hepatic encephalopathy. 相似文献
14.
Niranjala J. K. Tillakaratne Mark G. Erlander† Michael W. Collard‡ Karen F. Greif§ Allan J. Tobin¶ 《Journal of neurochemistry》1992,58(2):618-627
gamma-Aminobutyric acid (GABA) and its synthetic enzyme, glutamate decarboxylase (GAD), are not limited to the nervous system but are also found in nonneural tissues. The mammalian brain contains at least two forms of GAD (GAD67 and GAD65), which differ from each other in size, sequence, immunoreactivity, and their interaction with the cofactor pyridoxal 5'-phosphate (PLP). We used cDNAs and antibodies specific to GAD65 and GAD67 to study the molecular identity of GADs in peripheral tissues. We detected GAD and GAD mRNAs in rat oviduct and testis. In oviduct, the size of GAD, its response to PLP, its immunoreactivity, and its hybridization to specific RNA and DNA probes all indicate the specific expression of the GAD65 gene. In contrast, rat testis expresses the GAD67 gene. The GAD in these two reproductive tissues is not in neurons but in nonneural cells. The localization of brain GAD and GAD mRNAs in the mucosal epithelial cells of the oviduct and in spermatocytes and spermatids of the testis shows that GAD is not limited to neurons and that GABA may have functions other than neurotransmission. 相似文献
15.
Abstract: γ-Aminobutyric acid (GABA) is synthesized in brain in at least two compartments, commonly called the transmitter and metabolic compartments, and because reglatory processes must serve the physiologic function of each compartment, the regulation of GABA synthesis presents a complex problem. Brain contains at least two molecular forms of glutamate decarboxylase (GAD), the principal synthetic enzyme for GABA. Two forms, termed GAD65 and GAD67, are the products of two genes and differ in sequence, molecular weight, interaction with the cofactor, pyridoxal 5′-phosphate (pyridoxal-P), and level of expression among brain regions. GAD65 appears to be localized in nerve terminals to a greater degree than GAD67, which appears to be more uniformly distributed throughout the cell. The interaction of GAD with pyridoxal-P is a major factor in the short-term regulation of GAD activity. At least 50% of GAD is present in brain as apoenzyme (GAD without bound cofactor; apoGAD), which serves as a reservoir of inactive GAD that can be drawn on when additional GABA synthesis is needed. A substantial majority of apoGAD in brain is accounted for by GAD65, but GAD67 also contributes to the pool of apoGAD. The apparent localization of GAD65 in nerve terminals and the large reserve of apo-GAD65 suggest that GAD65 is specialized to respond to short-term changes in demand for transmitter GABA. The levels of apoGAD and the holoenzyme of GAD (holoGAD) are controlled by a cycle of reactions that is regulated by physiologically relevant concentrations of ATP and other polyanions and by inorganic phosphate, and it appears possible that GAD activity is linked to neuronal activity through energy metabolism. GAD is not saturated by glutamate in synaptosomes or cortical slices, but there is no evidence that GABA synthesis in vivo is regulated physiologically by the availability of glutamate. GABA competitively inhibits GAD and converts holo- to apoGAD, but it is not clear if intracellular GABA levels are high enough to regulate GAD. There is no evidence of short-term regulation by second messengers. The syntheses of GAD65 and GAD67 proteins are regulated separately. GAD67 regulation is complex; it not only is present as apoGAD67, but the expression of GAD67 protein is regulated by two mechanisms: (a) by control of mRNA levels and (b) at the level of translation or protein stability. The latter mechanism appears to be mediated by intracellular GABA levels. 相似文献
16.
The regulation of glutamate decarboxylase (GAD; EC 4.1.1.15) was studied by using cultures of cerebral cortical neurons from rat brain grown in serum-free medium. About 50% of the neurons in the cultures were gamma-aminobutyric acid (GABA)ergic as determined by two double-staining procedures. Immunoblotting experiments with four anti-GAD sera that recognize the two forms to varying degrees, demonstrated that the cultures contained the two forms of GAD that are present in rat brain (apparent molecular masses = 63 and 66 kDa). GAD activity was reduced by 60-70% when intracellular GABA levels were increased by incubating the cultures with the GABA-transaminase inhibitor gamma-vinyl-GABA for greater than 5-10 h or with 1 mM GABA itself. Neither baclofen nor muscimol (100 microM) affected GAD activity. Immunoblotting experiments showed that only the larger of the two forms of GAD (66 kDa) was decreased by elevated GABA levels. These results, together with previous results indicating that the smaller form of GAD is more strongly regulated by pyridoxal 5'-phosphate (the cofactor for GAD), suggest that the two forms of GAD are regulated by different mechanisms. 相似文献
17.
The intracerebroventricular injection of pyridoxal phosphate (PLP, 0.125-1.25 μmol/rat) causes epileptic seizures (4 min → 1 min) that are preventable or reversible by GABA (1 μmol/rat), by muscimol (O.025 μmol/rat), or by diazepam (1.75 μmol/rat). At the peak of PLP-induced convulsions, the activities of GAD and GABA-T in 14 regions of rat brain remained unaltered, whereas the concentrations of PLP remained elevated. The PLP-induced convulsion was blocked by DABA (10 μmol/rat) but was not altered by β-alanine (50 μmol/rat). The previous in vitro studies have shown that PLP increases the uptake of [3H]GABA into synaptosomes and inhibits the binding of [3H]GABA to synaptic membranes. These data suggest that PLP-induced convulsion is due to reduced availability of GABA to its recognition sites, rather than to alteration in the activity of GABA metabolizing enzymes, or unavailability of PLP as a coenzyme for GAD and GABA-T. Since the duration of PLP-induced epileptic seizures is short and can be prevented by GABA agonists, PLP may be used as a tool to study the nature of GABA-mediated neuroinhibition and the properties of GABA receptor sites. 相似文献
18.
Philippe Vayer Brigitte Charlier Paul Mandel Michel Maitre 《Journal of neurochemistry》1987,49(4):1022-1024
The effects of some anticonvulsant drugs have been investigated on gamma-hydroxybutyrate release from rat hippocampal and striatal slices. Sodium valproate and ethosuximide inhibited the depolarization-evoked release of gamma-hydroxybutyrate induced by 40 mM K+. The IC50 values for these two drugs are in the concentration range of valproate and ethosuximide that exists in rat brain after administration of anticonvulsant doses to the animals. Trimethadione and pentobarbital are without significant effects. It can be concluded that the inhibition of gamma-hydroxybutyrate release, particularly that observed for hippocampus, might explain the protective effect of valproate and ethosuximide on gamma-hydroxybutyrate-induced seizures and perhaps on other kinds of epileptoid phenomenon. 相似文献
19.
Biochemical and Immunochemical Studies on the GABAergic System in the Rat Fallopian Tube and Ovary 总被引:1,自引:2,他引:1
J. A. Apud M. L. Tappaz† F. Celotti‡ P. Negri-Cesi‡ C. Masotto G. Racagni 《Journal of neurochemistry》1984,43(1):120-125
gamma-Aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD) activities were measured in the ovary and the Fallopian tube of rats and compared with brain values. GABA levels in the Fallopian tube were about twice as high as in the brain, while in the ovary they represented only about 5% of the amino acid content of the CNS. In vitro decarboxylation of glutamate, measured via CO2 formation, occurred both in the Fallopian tube and in the ovary. These two organs contained, respectively, 10% and 1% of brain GAD activity. However, the actual formation of GABA from glutamate in a high-speed supernatant was detectable only in the Fallopian tube, where it represented about 5% of brain GAD activity. In contrast with the enzyme present in ovary, liver, anterior pituitary, and kidney, that in the Fallopian tube was quantitatively precipitated by a specific antiserum directed against rat neuronal GAD. Moreover, subcutaneous transplantation resulted in a quantitative decrease of both GABA levels and GAD activity in the Fallopian tube while no change occurred in the ovary, and vagus nerve section induced a 50% decrease of GAD activity in the Fallopian tube, although GABA levels were not significantly altered. The findings suggest an extrinsic GABAergic innervation in the rat Fallopian tube but not in the ovary. 相似文献
20.
Increases (>2.5-fold) in GABA levels in rat brain lead to a large decrease in the level of the 67-kDa form of glutamate decarboxylase (GAD67 ) through a mechanism involving either a change in GAD67 protein stability or a change in GAD67 mRNA translation. In the present study, brain levels of GABA were manipulated by treating rats with various doses of γ-vinyl-γ-aminobutyric acid (GVG), and the dependence of total GAD activity and levels of GAD67 and GAD65 protein on the levels of GABA was analyzed. Initial studies showed that both GABA and GAD67 protein levels reached new steady-state levels after two to four daily injections; GABA increased 1.5- (30 mg of GVG/kg) and fourfold (150 mg of GVG/kg), and GAD67 protein content decreased by 30 and 70%. To assess the sensitivity of GAD67 to GABA, rats were injected with eight different doses of GVG (15-150 mg/kg) for 5 days. With increasing doses of GVG, we observed a gradual increase in both whole-tissue and synaptosomal GABA levels and a gradual decrease in GAD67 protein and GAD activity. The levels of GAD67 remained constant at all GVG doses. GAD67 was remarkably sensitive to GABA. The synaptosomal GAD67 level decreased ∼12% and the whole-neuron GAD67 level decreased ∼3% for each 1 % increase in nerve terminal GABA content when it was close to its physiological level. Our results clearly demonstrate that GAD67 is tightly controlled by intraneuronal GABA, and we suggest that this regulatory mechanism has important implications for the physiological regulation of GABAergic function in the mammalian brain. 相似文献