首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F Boulay  L Mery  M Tardif  L Brouchon  P Vignais 《Biochemistry》1991,30(12):2993-2999
A cDNA clone encoding the human C5a anaphylatoxin receptor has been isolated by expression cloning from a CDM8 expression library prepared from mRNA of human myeloid HL-60 cells differentiated to the granulocyte phenotype with dibutyryladenosine cyclic monophosphate. The cDNA clone was able to transfer to COS-7 cells the capacity to specifically bind iodinated human recombinant C5a. The cDNA was 2.3 kb long, with an open reading frame encoding a 350-residue polypeptide. Cross-linking of iodinated C5a to the plasma membrane of transfected COS cells revealed a complex with an apparent molecular mass of 52-55 kDa, similar to that observed for the constitutively expressed receptor in differentiated HL-60 cells or human neutrophils. Although differentiated HL-60 cells display a single class of binding sites, with a dissociation constant of approximately 800-900 pM, the C5a-R cDNA, expressed in COS cells, generates both high-affinity (1.7 nM) and low-affinity (20-25 nM) receptors. Sequence comparison established that the degree of sequence identity between the C5a receptor and the N-formylpeptide receptor is 34%.  相似文献   

2.
C5L2 is an enigmatic serpentine receptor that is co-expressed with the C5a receptor on many cells including polymorphonuclear neutrophils. The apparent absence of coupling of C5L2 with G proteins suggests that this receptor may modulate the biological activity of C5a, perhaps by acting as a decoy receptor. Alternatively, C5L2 may affect C5a function through formation of a heteromeric complex with the C5aR, or it may utilize a G protein-independent signaling pathway. Here we show that in mice bearing a targeted deletion of C5L2, the biological activity of C5a/C5a(desArg) is enhanced both in vivo and in vitro. The biological role of C5L2 thus appears to be limiting to the pro-inflammatory response to the anaphylatoxin. Accordingly, up-regulation of C5L2 may be of benefit in inflammatory states driven by C5a, including sepsis, asthma, cystic fibrosis, and chronic obstructive lung disease.  相似文献   

3.
Nine different murine anti-human C5a monoclonal antibodies have been produced and characterized. They exhibit Kas for the 125I-labeled ligand that range from 0.4 to 48 X 10(8) M-1, and they display limited cross-reactivity with C5a from other species. Each of these antibodies has been found to compete with the granulocyte C5a receptor for binding site(s) on the C5a polypeptide. Exploration of the antigenic topography of C5a revealed that the immunodominant portion of this glycopolypeptide resides between residues Lys20 and Arg37, with the area surrounding Cys27 being particularly important. In addition, a specific C5a derived tryptic peptide containing these amino acid residues competes with 125I-C5a for binding to the receptor. These observations are consistent with previously published data and suggest that this area of the C5a molecule is an important part of the receptor "recognition domain", and thus plays a critical role in the C5a receptor interaction.  相似文献   

4.
The C5a receptor has been extracted in an active state from the membranes of human polymorphonuclear leukocytes with the detergents digitonin and beta-dodecyl maltoside. The solubilized receptor exhibits a single class of high affinity binding sites with a Kd = 90 pM, a value similar to that found with intact membranes. Physical studies with the soluble receptor demonstrate that it exists in two forms which differ in molecular mass. Gel filtration experiments with receptor to which C5a has been bound give an apparent molecular mass for the complex of 150-200 kDa. When the experiments were repeated with nonliganded receptor, most of the C5a binding activity eluted with an apparent mass of 150-200 kDa. However, the peak had a pronounced trailing shoulder indicating that, in the nonliganded state, a portion of the receptor population exists in a smaller form, which may be converted to the larger form on binding C5a. The molecular mass of the smaller form, estimated to be 30-70 kDa, is consistent with that of the binding subunit of the receptor. These data imply that the larger form, and therefore the bulk of the solubilized receptor, is oligomeric, a conclusion which is supported by cross-linking studies. When C5a was cross-linked to the soluble receptor two specific complexes with molecular masses of 52 and 95 kDa were formed. The former is the covalent adduct of C5a and the binding subunit of the receptor and the latter appears to be a complex between the 52-kDa species and an additional polypeptide.  相似文献   

5.
C5L2, a nonsignaling C5A binding protein   总被引:11,自引:0,他引:11  
  相似文献   

6.
S A Cain  T Coughlan  P N Monk 《Biochemistry》2001,40(46):14047-14052
The interaction between the anaphylatoxin C5a and its receptor involves two distinct sites. One site is formed by acidic residues at the receptor N-terminus and contributes to only ligand binding. The second site, responsible for activation, is less well defined. In this study, we demonstrate that the receptor residue D(282), near the extracellular face of transmembrane domain VII, is a component of the second ligand-binding site. Mutation of D(282) to A decreases the sensitivity of the receptor to activation by intact C5a but not by its less potent metabolite, C5adR(74), which lacks the C-terminal arginine(74). The mutation of the R(74) residue of C5a to A causes a 60-fold decrease in wild-type receptor sensitivity, but only a 2-fold decrease for the receptor mutated at D(282). In contrast, the mutation of R(74) to D makes C5a completely inactive on both wild-type and A(282) C5a receptors. The mutation of D(282) to R partly restores the response to C5a[D(74)], which is a more effective ligand than C5a at the mutant receptor. A peptide mimic of the C5a activation domain with a C-terminal R potently activates the wild type but is only a weak agonist at the mutant D(282)R-C5a receptor. Conversely, a peptide with D at the C-terminus is a more effective activator of D(282)R than wild-type C5a receptors. These data indicate that the R(74) side chain of C5a makes an interaction with receptor D(282) that is responsible for the higher potency of intact C5a versus that of C5adR(74).  相似文献   

7.
The anaphylatoxin C5a exerts a plethora of biologic activities critical in the pathogenesis of systemic inflammatory diseases. Recently, we reported on a C5a mutant, jun/fos-A8, as a potent antagonist for the human and mouse C5a receptor (CD88). Addressing the molecular mechanism accounting for CD88 receptor antagonism by site-directed mutagenesis, we found that a positively charged amino acid at position 69 is crucial. Replacements by either hydrophobic or negatively charged amino acids switched the CD88 antagonist jun/fos-A8 to a CD88 agonist. In addition to CD88, the seven-transmembrane receptor C5L2 has recently been found to provide high affinity binding sites for C5a and its desarginated form, C5adesArg74. A jun/fos-A8 mutant in which the jun/ fos moieties and amino acids at positions 71-73 were deleted, A8Delta71-73, blocked C5a and C5adesArg74 binding to CD88 and C5L2. In contrast, the cyclic C5a C-terminal analog peptide AcF-[OP-d-ChaWR] inhibited binding of the two anaphylatoxins to CD88 but not to C5L2, suggesting that the C5a core segment is important for high affinity binding to C5L2. Both receptors are coexpressed on human monocytes and the human mast cell line HMC-1; however, C5L2 expression on monocytes is weaker as compared with HMC-1 cells and highly variable. In contrast, no C5L2 expression was found on human neutrophils. A8Delta71-73 is the first antagonist that blocks C5a and C5adesArg74 binding to both C5a receptors, CD88 and C5L2, making it a valuable tool for studying C5L2 functions and for blocking the biological activities of C5a and C5adesArg74 in mice and humans.  相似文献   

8.
The complement anaphylatoxin C5a is a proinflammatory component of host defense that functions through two identified receptors, C5a receptor (C5aR) and C5L2. C5aR is a classical G protein-coupled receptor, whereas C5L2 is structurally homologous but deficient in G protein coupling. In human neutrophils, we show C5L2 is predominantly intracellular, whereas C5aR is expressed on the plasma membrane. Confocal analysis shows internalized C5aR following ligand binding is co-localized with both C5L2 and β-arrestin. Antibody blockade of C5L2 results in a dramatic increase in C5a-mediated chemotaxis and ERK1/2 phosphorylation but does not alter C5a-mediated calcium mobilization, supporting its role in modulation of the β-arrestin pathway. Association of C5L2 with β-arrestin is confirmed by cellular co-immunoprecipitation assays. C5L2 blockade also has no effect on ligand uptake or C5aR endocytosis in human polymorphonuclear leukocytes, distinguishing its role from that of a rapid recycling or scavenging receptor in this cell type. This is thus the first example of a naturally occurring seven-transmembrane segment receptor that is both obligately uncoupled from G proteins and a negative modulator of signal transduction through the β-arrestin pathway. Physiologically, these properties provide the possibility for additional fine-tuning of host defense.  相似文献   

9.
C5a is a potent anaphylatoxin that modulates inflammation through the C5aR1 and C5aR2 receptors. The molecular interactions between C5a–C5aR1 receptor are well defined, whereas C5a–C5aR2 receptor interactions are poorly understood. Here, we describe the generation of a human antibody, MEDI7814, that neutralizes C5a and C5adesArg binding to the C5aR1 and C5aR2 receptors, without affecting complement–mediated bacterial cell killing. Unlike other anti–C5a mAbs described, this antibody has been shown to inhibit the effects of C5a by blocking C5a binding to both C5aR1 and C5aR2 receptors. The crystal structure of the antibody in complex with human C5a reveals a discontinuous epitope of 22 amino acids. This is the first time the epitope for an antibody that blocks C5aR1 and C5aR2 receptors has been described, and this work provides a basis for molecular studies aimed at further understanding the C5a–C5aR2 receptor interaction. MEDI7814 has therapeutic potential for the treatment of acute inflammatory conditions in which both C5a receptors may mediate inflammation, such as sepsis or renal ischemia–reperfusion injury.  相似文献   

10.
The substantial variations in the responses of cells to the anaphylatoxin C5a and its desarginated form, C5adR(74), suggest that more than one type of cell surface receptor for these ligands might exist. However, only a single receptor for C5a and C5adR(74), CD88, has been characterized to date. Here we report that the orphan receptor C5L2/gpr77, which shares 35% amino acid identity with CD88, binds C5a with high affinity but has a 10-fold higher affinity for C5adR(74) than CD88. C5L2 also has a moderate affinity for anaphylatoxin C3a, but cross-competition studies suggest that C3a binds to a distinct site from C5a. C4a was able to displace C3a, suggesting that C5L2, like the C3a receptor, may have a low binding affinity for this anaphylatoxin. Unlike CD88 and C3a receptor, C5L2 transfected into RBL-2H3 cells does not support degranulation or increases in intracellular [Ca(2+)] and is not rapidly internalized in response to ligand binding. However, ligation of C5L2 by anaphylatoxin did potentiate the degranulation response to cross-linkage of the high affinity IgE receptor by a pertussis toxin-sensitive mechanism. These results suggest that C5L2 is an anaphylatoxin-binding protein with unique ligand binding and signaling properties.  相似文献   

11.
Complement component C5a is one of the most potent inflammatory chemoattractants and has been implicated in the pathogenesis of numerous inflammatory diseases. C5a binds two receptors, C5aR and C5L2. Most of the C5a functional effects occur through C5aR, and the pharmaceutical industry has focused on this receptor for the development of new anti-inflammatory therapies. We used a novel approach to generate and test therapeutics that target C5aR. We created human C5aR knock-in mice, and used neutrophils from these to immunize wild-type mice. This yielded high-affinity blocking mAbs to human C5aR. We tested these anti-human C5aR mAbs in mouse models of inflammation, using the human C5aR knock-in mice. These antibodies completely prevented disease onset and were also able to reverse established disease in the K/B x N arthritis model. The physiological role of the other C5a receptor, C5L2 is still unclear, and our studies with blocking mAbs to human C5L2 have failed to demonstrate a clear functional role in signaling to C5a. The development of effective mAbs to human C5aR is an alternative approach to drug development, for this highly attractive target.  相似文献   

12.
Characterization of a receptor for C5a anaphylatoxin on human eosinophils   总被引:12,自引:0,他引:12  
The complement anaphylatoxin peptide C5a is well known to activate human polymorphonuclear leukocytes through receptor-mediated processes. C5a has also been reported to activate eosinophils for both chemotaxis and hexose uptake. We characterized the receptor molecule for human C5a on human eosinophils and compared it with the receptor on human neutrophils. At 4 degrees C, uptake of 1 nM 125I-C5a reaches equilibrium within 10 min on both cell types. Binding of 125I-C5a occurs over a concentration range comparable to that which stimulates lysosomal enzyme release and hexose uptake in both cell types. Scatchard analyses of the data indicate the presence of two receptor populations on eosinophils; a high affinity receptor with 15,000-20,000 sites/cell and a Kd of 3.1 +/- 0.6 x 10(-11) M, and a low affinity receptor with approximately 375,000 sites/cell and a Kd of 1 x 10(-7) M. Parallel experiments with neutrophils indicate the presence of a single receptor population with approximately 90,000 sites/cell and a Kd of 4.8 +/- 0.1 x 10(-10)M. The eosinophil receptor molecule was further characterized by covalently cross-linking 125I-C5a to cells followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the solubilized material. Autoradiography indicates the presence of a dominant C5a-eosinophil receptor complex with an apparent mass of 60-65 kDa. The corresponding neutrophil-C5a receptor complex has an apparent mass of 50-52 kDa as observed by others. When the cross-linked 125I-C5a-receptor complex was treated with cyanogen bromide, different patterns were observed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis for neutrophils and eosinophils. Thus, human eosinophils have a receptor for C5a anaphylatoxin which appears to be distinct from the C5a receptor present on human neutrophils.  相似文献   

13.
Elucidation of the interactions between C5a and granulocytes is central to understanding the role of C5a in inflammation. In this study, interactions between C5a and PMN have been studied at two levels. Binding of human C5a to intact human cells has been characterized by using the radiolabeled ligand 125I-C5a. Binding is shown to be reversible, saturable, and to reach equilibrium in 60 to 90 min at 0 degrees C. Results show high affinity C5a binding sites with Kd = 2 X 10(-9) M and a range of 50,000 to 113,000 binding sites per PMN. These values for C5a receptors are comparable with the number of fMLP and LTB4 receptors on PMN. Binding of C5a to PMN fails to reach equilibrium at 37 degrees C because there is an irreversible loss of available surface receptors caused by an active internalization of the ligand-receptor complex. Interactions between C5a and human PMN were characterized further by cross-linking experiments, with the use of ethylene glycol bis succinimidylsuccinate (EGS). Cross-linking of 125I-C5a to intact PMN followed by subcellular fractionation revealed a single radioactive band present only in the plasma membrane fraction and visualized by autoradiography. Similar experiments resulted in a covalent linkage between 125I-C5a and a component in the isolated plasma membrane of PMN. The covalent complex containing C5a and a putative receptor has been visualized by autoradiography as a single 60,000 Mr complex on SDS-PAGE. The complex is not present when experiments are performed in the presence of excess unlabeled C5a or in the absence of EGS. Therefore, the putative receptor for C5a on human neutrophils is estimated to be approximately 48,000 Mr, assuming contribution of 12,000 to 13,000 daltons by the ligand 125I-C5a.  相似文献   

14.
C5a is an inflammatory mediator that evokes a variety of immune effector functions including chemotaxis, cell activation, spasmogenesis, and immune modulation. It is well established that the effector site in C5a is located in the C-terminal region, although other regions in C5a also contribute to receptor interaction. We have examined the N-terminal region (NTR) of human C5a by replacing selected residues in the NTR with glycine via site-directed mutagenesis. Mutants of rC5a were expressed as fusion proteins, and rC5a was isolated after factor Xa cleavage. The potency of the mutants was evaluated by measuring both neutrophil chemotaxis and degranulation (beta-glucuronidase release). Mutants that contained the single residue substitutions Ile-6-->Gly or Tyr-13-->Gly were reduced in potency to 4-30% compared with wild-type rC5a. Other single-site glycine substitutions at positions Leu-2, Ala-10, Lys-4, Lys-5, Glu-7, Glu-8, and Lys-14 showed little effect on C5a potency. The double mutant, Ile-6-->Gly/Tyr-13-->Gly, was reduced in potency to < 0.2%, which correlated with a correspondingly low binding affinity for neutrophil C5a receptors. Circular dichroism studies revealed a 40% reduction in alpha-helical content for the double mutant, suggesting that the NTR contributes stabilizing interactions that maintain local secondary or tertiary structure of C5a important for receptor interaction. We conclude that the N-terminal region in C5a is involved in receptor binding either through direct interaction with the receptor or by stabilizing a binding site elsewhere in the intact C5a molecule.  相似文献   

15.
The 74 amino acid glycoprotein, complement component 5a (C5a), is a potent pro-inflammatory mediator cleaved enzymatically from its precursor, C5, upon activation of the complement cascade. C5a is quickly metabolised by carboxypeptidases, forming the less potent C5adesArg. Acting via a classical G protein-coupled receptor, CD88, C5a and C5adesArg exert a number of effects essential to the innate immune response, while their actions at the more recently discovered non-G protein-coupled receptor, C5L2 (or GPR77), remain unclear. The widespread expression of C5a receptors throughout the body allows C5a to elicit a broad range of effects. Thus, C5a has been found to be a significant pathogenic driver in a number of immuno-inflammatory diseases, making C5a inhibition an attractive therapeutic strategy.  相似文献   

16.
This study presents the 3D model of the complex between the anaphylatoxin C5a and its specific receptor, C5aR. This is the first 3D model of a G-protein-coupled receptor (GPCR) complex with a peptide ligand deduced by a molecular modeling procedure analyzing various conformational possibilities of the extracellular loops and the N-terminal segment of the GPCR. The modeling results indicated two very different ways of interacting between C5a and C5aR at the two interaction sites suggested earlier based on the data of site-directed mutagenesis. Specifically, C5a and C5aR can be involved in "mutual-induced fit", where the interface between the molecules is determined by both the receptor and the ligand. The rigid core of the C5a ligand selects the proper conformations of the highly flexible N-terminal segment of C5aR (the first interaction site). At the same time, the binding conformation of the flexible C-terminal fragment of C5a is selected by well-defined interactions with the TM region of the C5aR receptor (the second interaction site). The proposed 3D model of C5a/C5aR complex was built without direct use of structural constraints derived from site-directed mutagenesis reserving those data for validation of the model. The available data of site-directed mutagenesis of C5a and C5aR were successfully rationalized with the help of the model. Also, the modeling results predicted that the full-length C5a and C5a-des74 metabolite would have different binding modes with C5aR. Modeling approaches employed in this study are readily applicable for studies of molecular mechanisms of binding of other polypeptide ligands to their specific GPCRs.  相似文献   

17.
Identification of the polymorphonuclear leukocyte C5a receptor   总被引:9,自引:0,他引:9  
The peptide C5a is thought to play an important role in the inflammatory response primarily through its action on the polymorphonuclear leukocyte (PMN). The receptor for C5a on human PMN has now been identified by affinity labeling. Cross-linking 125I-C5a to intact PMN with disuccinimidyl suberate produced a species that had a molecular mass on sodium dodecyl sulfate gels of 5.2 X 10(4) daltons. We believe this species represents a complex between C5a and its receptor for the following reasons. The band is eliminated if the cross-linking experiment is performed in the presence of a large excess of unlabeled C5a, but is unaffected by the presence of nonspecific protein or the chemotactic factors N-formyl-Met-Leu-Phe and leukotriene B4. The 5.2 X 10(4)-dalton species is not observed if the cross-linker is omitted. Finally, the dose-response curves for the inhibition of binding of 125I-C5a by unlabeled C5a and the inhibition of cross-linking are similar. Subtraction of the molecular mass of C5a from that of the complex gives a molecular mass for the binding moiety of the C5a receptor of 4.0 X 10(4) daltons.  相似文献   

18.
The C3a anaphylatoxin receptor (C3aR) is a G protein-coupled receptor with an unusually large second extracellular loop (e2 loop, approximately 172 amino acids). To determine the function of this unique structure, chimeric and deletion mutants were prepared and analyzed in transfected RBL-2H3 cells. Whereas replacement of the C3aR N-terminal segment with that from the human C5a receptor had minimal effect on C3a binding, substitution of the e2 loop with a smaller e2 loop from the C5a receptor (C5aR) abolished binding of 125I-C3a and C3a-stimulated calcium mobilization. However, as much as 65% of the e2 loop sequence (amino acids 198-308) may be removed without affecting C3a binding or calcium responses. The e2 loop sequences adjacent to the transmembrane domains contain multiple aspartate residues and are found to play an important role in C3a binding based on deletion mutagenesis. Replacement of five aspartate residues in the e2 loop with lysyl residues significantly compromised both the binding and functional capabilities of the C3a receptor mediated by intact C3a or by two C3a analog peptides. These data suggest a two-site C3a-C3aR interaction model similar to that established for C5a/C5aR. The anionic residues near the N and C termini of the C3aR e2 loop constitute a non-effector secondary interaction site with cationic residues in the C-terminal helical region of C3a, whereas the C3a C-terminal sequence LGLAR engages the primary effector site in C3aR.  相似文献   

19.
Reaction of either human C5a or its des-Arg74 derivative (des-Arg74-C5a) with tetranitromethane under nondenaturing conditions results in selective nitration of only 1 of the 2 tyrosine residues found in these glycopolypeptides. This reactive tyrosyl residue was identified as that found in position 23 of the sequence. Nitrotyrosyl23-C5a and -des-Arg74-C5a were separated from their respective unmodified precursors by cation-exchange fast protein liquid chromatography. These purified derivatives served as reagents for the subsequent preparation of both aminotyrosyl23-C5a and -des-Arg74-C5a as well as photoreactive analogs of C5a. Radioimmunoassays performed with C5a derivatives serving as competing ligands and a murine antihuman C5a monoclonal antibody employed as first antibody demonstrated that selective modification of tyrosine23 did not produce a detectible alteration in the antigenic properties of C5a. By contrast, either nitro- or aminotyrosyl23-C5a was approximately 3-fold less active than native C5a in both bioassays and competitive ligand-receptor binding assays. Additionally, photoreactive derivatives prepared by coupling either N-succinimidyl-6-(4'-azido-2'-nitrophenylamino)-hexanoate or p-nitrophenyl-2-diazo-3,3,3-trifluoropropionate to aminotyrosyl23-C5a at pH 5.0 failed to interact with the neutrophil C5a receptor. These observations suggest that the tyrosyl23 residue of C5a may participate importantly in the binding interactions of this chemotactic factor and its granulocyte receptor.  相似文献   

20.
The carboxyl tail of G protein-coupled receptors contains motifs that regulate receptor interactions with intracellular partners. Activation of the human neutrophil complement fragment C5a receptor (C5aR) is terminated by phosphorylation of the carboxyl tail followed by receptor internalization. In this study, we demonstrated that bulky hydrophobic residues in the membrane-proximal region of the C5aR carboxyl tail play an important role in proper structure and function of the receptor: Substitution of leucine 319 with alanine (L319A) resulted in receptor retention in the endoplasmic reticulum, whereas a L318A substitution allowed receptor transport to the cell surface, but showed slow internalization upon activation, presumably due to a defect in phosphorylation by both PKC and GRK. Normal agonist-induced activation of ERK1/2 and intracellular calcium release suggested that the L318A mutation did not affect receptor signaling. Binding of GRK2 and PKCbetaII to intracellular loop 3 of C5aR in vitro indicated that mutagenesis of L318 did not affect kinase binding. Limited proteolysis with trypsin revealed a conformational difference between wild type and mutant receptor. Our studies support a model in which the L318/L319 stabilizes an amphipathic helix (Q305-R320) in the membrane-proximal region of C5aR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号