首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Mutations affecting the heritable maintenance of epigenetic states in maize identify multiple small RNA biogenesis factors including NRPD1, the largest subunit of the presumed maize Pol IV holoenzyme. Here we show that mutations defining the required to maintain repression7 locus identify a second RNA polymerase subunit related to Arabidopsis NRPD2a, the sole second largest subunit shared between Arabidopsis Pol IV and Pol V. A phylogenetic analysis shows that, in contrast to representative eudicots, grasses have retained duplicate loci capable of producing functional NRPD2-like proteins, which is indicative of increased RNA polymerase diversity in grasses relative to eudicots. Together with comparisons of rmr7 mutant plant phenotypes and their effects on the maintenance of epigenetic states with parallel analyses of NRPD1 defects, our results imply that maize utilizes multiple functional NRPD2-like proteins. Despite the observation that RMR7/NRPD2, like NRPD1, is required for the accumulation of most siRNAs, our data indicate that different Pol IV isoforms play distinct roles in the maintenance of meiotically-heritable epigenetic information in the grasses.  相似文献   

4.
5.
6.
siRNAs from miRNA sites mediate DNA methylation of target genes   总被引:1,自引:0,他引:1  
Arabidopsis microRNA (miRNA) genes (MIR) give rise to 20- to 22-nt miRNAs that are generated predominantly by the type III endoribonuclease Dicer-like 1 (DCL1) but do not require any RNA-dependent RNA Polymerases (RDRs) or RNA Polymerase IV (Pol IV). Here, we identify a novel class of non-conserved MIR genes that give rise to two small RNA species, a 20- to 22-nt species and a 23- to 27-nt species, at the same site. Genetic analysis using small RNA pathway mutants reveals that the 20- to 22-nt small RNAs are typical miRNAs generated by DCL1 and are associated with Argonaute 1 (AGO1). In contrast, the accumulation of the 23- to 27-nt small RNAs from the miRNA-generating sites is dependent on DCL3, RDR2 and Pol IV, components of the typical heterochromatic small interfering RNA (hc-siRNA) pathway. We further demonstrate that these MIR-derived siRNAs associate with AGO4 and direct DNA methylation at some of their target loci in trans. In addition, we find that at the miRNA-generating sites, some conserved canonical MIR genes also produce siRNAs, which also induce DNA methylation at some of their target sites. Our systematic examination of published small RNA deep sequencing datasets of rice and moss suggests that this type of dual functional MIRs exist broadly in plants.  相似文献   

7.
8.
9.
10.
11.
To successfully infect plants, viruses must counteract small RNA-based host defense responses. During infection of Arabidopsis, Cauliflower mosaic pararetrovirus (CaMV) is transcribed into pregenomic 35S and subgenomic 19S RNAs. The 35S RNA is both reverse transcribed and also used as an mRNA with highly structured 600 nt leader. We found that this leader region is transcribed into long sense- and antisense-RNAs and spawns a massive quantity of 21, 22 and 24 nt viral small RNAs (vsRNAs), comparable to the entire complement of host-encoded small-interfering RNAs and microRNAs. Leader-derived vsRNAs were detected bound to the Argonaute 1 (AGO1) effector protein, unlike vsRNAs from other viral regions. Only negligible amounts of leader-derived vsRNAs were bound to AGO4. Genetic evidence showed that all four Dicer-like (DCL) proteins mediate vsRNA biogenesis, whereas the RNA polymerases Pol IV, Pol V, RDR1, RDR2 and RDR6 are not required for this process. Surprisingly, CaMV titers were not increased in dcl1/2/3/4 quadruple mutants that accumulate only residual amounts of vsRNAs. Ectopic expression of CaMV leader vsRNAs from an attenuated geminivirus led to increased accumulation of this chimeric virus. Thus, massive production of leader-derived vsRNAs does not restrict viral replication but may serve as a decoy diverting the silencing machinery from viral promoter and coding regions.  相似文献   

12.
13.
14.
15.
16.
17.
RNA–protein interactions are the structural and functional basis of significant numbers of RNA molecules. RNA–protein interaction assays though, still mainly depend on biochemical tests in vitro. Here, we establish a convenient and reliable RNA fluorescent three-hybrid (rF3H) method to detect/interrogate the interactions between RNAs and proteins in cells. A GFP tagged highly specific RNA trap is constructed to anchor the RNA of interest to an artificial or natural subcellular structure, and RNA–protein interactions can be detected and visualized by the enrichment of RNA binding proteins (RBPs) at these structures. Different RNA trapping systems are developed and detection of RNA–protein complexes at multiple subcellular structures are assayed. With this new toolset, interactions between proteins and mRNA or noncoding RNAs are characterized, including the interaction between a long noncoding RNA and an epigenetic modulator. Our approach provides a flexible and reliable method for the characterization of RNA–protein interactions in living cells.  相似文献   

18.
Northern-blot hybridization and low-scale sequencing have revealed that plants infected by viroids, non-protein-coding RNA replicons, accumulate 21–24 nt viroid-derived small RNAs (vd-sRNAs) similar to the small interfering RNAs, the hallmarks of RNA silencing. These results strongly support that viroids are elicitors and targets of the RNA silencing machinery of their hosts. Low-scale sequencing, however, retrieves partial datasets and may lead to biased interpretations. To overcome this restraint we have examined by deep sequencing (Solexa-Illumina) and computational approaches the vd-sRNAs accumulating in GF-305 peach seedlings infected by two molecular variants of Peach latent mosaic viroid (PLMVd) inciting peach calico (albinism) and peach mosaic. Our results show in both samples multiple PLMVd-sRNAs, with prevalent 21-nt (+) and (−) RNAs presenting a biased distribution of their 5′ nucleotide, and adopting a hotspot profile along the genomic (+) and (−) RNAs. Dicer-like 4 and 2 (DCL4 and DCL2, respectively), which act hierarchically in antiviral defense, likely also mediate the genesis of the 21- and 22-nt PLMVd-sRNAs. More specifically, because PLMVd replicates in plastids wherein RNA silencing has not been reported, DCL4 and DCL2 should dice the PLMVd genomic RNAs during their cytoplasmic movement or the PLMVd-dsRNAs generated by a cytoplasmic RNA-dependent RNA polymerase (RDR), like RDR6, acting in concert with DCL4 processing. Furthermore, given that vd-sRNAs derived from the 12–14-nt insertion containing the pathogenicity determinant of peach calico are underrepresented, it is unlikely that symptoms may result from the accidental targeting of host mRNAs by vd-sRNAs from this determinant guiding the RNA silencing machinery.  相似文献   

19.
Plant microRNAs (miRNAs) and small interfering RNAs (siRNAs) bear a 2′-O-methyl group on the 3′-terminal nucleotide. This methyl group is post-synthetically added by the methyltransferase protein HEN1 and protects small RNAs from enzymatic activities that target the 3′-OH. A mutagenesis screen for suppressors of the partial loss-of-function hen1-2 allele in Arabidopsis identified second-site mutations that restore miRNA methylation. These mutations affect two subunits of the DNA-dependent RNA polymerase IV (Pol IV), which is essential for the biogenesis of 24 nt endogenous siRNAs. A mutation in RNA-dependent RNA polymerase 2, another essential gene for the biogenesis of endogenous 24-nt siRNAs, also rescued the defects in miRNA methylation of hen1-2, revealing a previously unsuspected, negative influence of siRNAs on HEN1-mediated miRNA methylation. In addition, our findings imply the existence of a negative modifier of HEN1 activity in the Columbia genetic background.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号