首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Sodium/proton-antiporters (Nha) are known to play an important role in pH- and Na+-homeostasis. In microorganisms several types with different capacity, affinity and selectivity for Na+ and Li+ exist. The homeostasis system of E. coli, NhaA and NhaB, is well researched, but the function of other types of Na+/H+-antiporters like NhaD is yet to be fully understood. Since several antiporters play an important role at various points in the physiology of higher organisms, one can speculate that the main functions of some of those procaryotic antiporters differ from pH- and Na+-homeostasis.

Results

This study investigates the function and regulation of a gene encoding for a NhaD type antiporter which was discovered in the halophilic eubacterium Halomonas elongata. The deduced primary amino acid sequence of the abovementioned gene showed more than 60% identity to known antiporters of the NhaD type from Alkalimonas amylolytica, Shewanella oneidensis and several other marine organisms of the γ-Proteobacteria. Evidence was found for a dual regulation of H. elongata NhaD expression. The gene was cloned and expressed in E. coli. Antiporter deficient NaCl and LiCl sensitive E. coli mutants EP432 and KNabc were partially complemented by a plasmid carrying the H. elongata nhaD gene. Surprisingly the LiCl sensitivity of E. coli strain DH5α having a complete homeostasis system was increased when NhaD was co-expressed.

Conclusion

Since NhaD is an antiporter known so far only from halophilic or haloalcaliphilic Proteobacteria one can speculate that this type of antiporter provides a special mechanism for adaptation to marine habitats. As was already speculated – though without supporting data – and substantiated in this study this might be active Na+-import for osmoregulatory purposes.  相似文献   

3.
We report evidence for the existence of a putative ABC transporter for corrinoid utilization in the extremely halophilic archaeon Halobacterium sp. strain NRC-1. Results from genetic and nutritional analyses of Halobacterium showed that mutants with lesions in open reading frames (ORFs) Vng1370G, Vng1371Gm, and Vng1369G required a 10(5)-fold higher concentration of cobalamin for growth than the wild-type or parent strain. The data support the conclusion that these ORFs encode orthologs of the bacterial cobalamin ABC transporter permease (btuC; Vng1370G), ATPase (btuD; Vng1371Gm), and substrate-binding protein (btuF; Vng1369G) components. Mutations in the Vng1370G, Vng1371Gm, and Vng1369G genes were epistatic, consistent with the hypothesis that their products work together to accomplish the same function. Extracts of btuF mutant strains grown in the presence of cobalamin did not contain any cobalamin molecules detectable by a sensitive bioassay, whereas btuCD mutant strain extracts did. The data are consistent with the hypothesis that the BtuF protein is exported to the extracellular side of the cell membrane, where it can bind cobalamin in the absence of BtuC and BtuD. Our data also provide evidence for the regulation of corrinoid transport and biosynthesis. Halobacterium synthesized cobalamin in a chemically defined medium lacking corrinoid precursors. To the best of our knowledge, this is the first genetic analysis of an archaeal corrinoid transport system.  相似文献   

4.
Multiple replication origins of the archaeon Halobacterium species NRC-1   总被引:5,自引:0,他引:5  
The genomic sequence of the halophilic archaeon Halobacterium NRC-1 has been analyzed by the Z curve method. The Z curve is a three-dimensional curve that uniquely represents a given DNA sequence. Based on the known behaviors of the Z curves for the archaea whose replication origins have been identified, the analysis of the Z curve for the genome of Halobacterium NRC-1 strongly suggests that the large genome has two replication origins, oriC1 (921,863-922,014) and oriC2 (1,806,444-1,807,229), which are located at two sharp peaks of the Z curve. These two regions are next to the cdc6 genes and contain multiple copies of stretches of G and C, i.e., ggggtgggg and ccccacccc, which may also be regarded as direct and inverted repeats. Based on the above analysis, a model of replication of Halobacterium NRC-1 with two replication origins and two termini has been proposed. The experimental confirmation of this model would constitute the first example of multiple replication origins of archaea, which will finally provide much insight into the understanding of replication mechanisms of eukaryotic organisms, including human. In addition, the potential multiple replication origins of the archaeon Sulfolobus solfataricus are suggested by the analysis based on the Z curve method.  相似文献   

5.
Here we report the characterization of the type-1 isopentenyl diphosphate isomerase derived from Halobacterium sp. NRC-1. The expressed purified enzyme showed maximum isomerase activity in the presence of 1 M NaCl at 37 degrees C at pH 6.0. This type-1 enzyme appears to be the first for which the Co2+ ion is required for activity.  相似文献   

6.
Here we report the characterization of the type-1 isopentenyl diphosphate isomerase derived from Halobacterium sp. NRC-1. The expressed purified enzyme showed maximum isomerase activity in the presence of 1 M NaCl at 37 °C at pH 6.0. This type-1 enzyme appears to be the first for which the Co2+ ion is required for activity.  相似文献   

7.
Halobacterium sp. NRC-1 insoluble membrane and soluble cytoplasmic proteins were isolated by ultracentrifugation of whole cell lysate. Using an ion trap mass spectrometer equipped with a C18 trap electrospray ionization emitter/micro-liquid chromatography column, a number of trypsin-generated peptide tags from 426 unique proteins were identified. This represents approximately one-fifth of the theoretical proteome of Halobacterium. Of these, 232 proteins were found only in the soluble fraction, 165 were only in the insoluble membrane fraction, and 29 were in both fractions. There were 72 and 61% previously annotated proteins identified in the soluble and membrane protein fractions, respectively. Interestingly, 57 of previously unannotated proteins found only in Halobacterium NRC-1 were identified. Such proteins could be interesting targets for understanding unique physiology of Halobacterium NRC-1. A group of proteins involved in various metabolic pathways were identified among the expressed proteins, suggesting these pathways were active at the time the cells were collected. This data containing a list of expressed proteins, their cellular locations, and biological functions could be used in future studies to investigate the interaction of the genes and proteins in relation to genetic or environmental perturbations.  相似文献   

8.
To better understand the extremely halophilic archaeon Halobacterium species NRC-1, we analyzed its soluble proteome by two-dimensional liquid chromatography coupled to electrospray ionization tandem mass spectrometry. A total of 888 unique proteins were identified with a ProteinProphet probability (P) between 0.9 and 1.0. To evaluate the biochemical activities of the organism, the proteomic data were subjected to a biological network analysis using our BMSorter software. This allowed us to examine the proteins expressed in different biomodules and study the interactions between pertinent biomodules. Interestingly an integrated analysis of the enzymes in the amino acid metabolism and citrate cycle networks suggested that up to eight amino acids may be converted to oxaloacetate, fumarate, or oxoglutarate in the citrate cycle for energy production. In addition, glutamate and aspartate may be interconverted from other amino acids or synthesized from citrate cycle intermediates to meet the high demand for the acidic amino acids that are required to build the highly acidic proteome of the organism. Thus this study demonstrated that proteome analysis can provide useful information and help systems analyses of organisms.  相似文献   

9.
10.
11.
The capability of Halobacterium sp. NRC-1 to synthesize carboxyl ester hydrolases was investigated, and the effect of physicochemical conditions on the growth rate and production of esterases was evaluated. The haloarchaeon synthesized a carboxyl ester hydrolase, confirming the genomic prediction. This enzymatic activity was intracellularly produced as a growth-associated metabolite. Esterase activity was assayed using different p-nitrophenyl-esters and triacyl-glycerides, which showed a preference for hydrolyzing tributyrin. The archaeal growth rate and esterase production were significantly influenced by the pH and the NaCl concentration. An interaction effect between temperature and NaCl was also seen. The maximal growth rate and esterase production found for Halobacterium sp. NRC-1 were 0.136 h−1 (at 4.2 M NaCl, pH 6 and 44°C) and 1.64 U/l (at 4.6 M NaCl, pH 6 and 30°C), respectively. Furthermore, the effects of NaCl concentration, pH and temperature on enzyme activity were studied. Two maximal esterase activities were elucidated from the intracellular crude extract when it was incubated at different NaCl concentrations (1 M and 5 M) and at different pHs (6 and 7.5). This is the first report that shows experimentally the synthesis of carboxyl ester hydrolases by Halobacterium sp. NRC-1. This enzyme was found to be extremely halophilic (5 M NaCl) and thermophilic (80°C), making it very interesting for future investigations in non-aqueous biocatalysis.  相似文献   

12.
MOTIVATION: A large fraction of open reading frames (ORFs) identified as 'hypothetical' proteins correspond to either 'conserved hypothetical' proteins, representing sequences homologous to ORFs of unknown function from other organisms, or to hypothetical proteins lacking any significant sequence similarity to other ORFs in the databases. Elucidating the functions and three-dimensional structures of such orphan ORFs, termed ORFans or poorly conserved ORFs (PCOs), is essential for understanding biodiversity. However, it has been claimed that many ORFans may not encode for expressed proteins. RESULTS: A genome-wide experimental study of 'paralogous PCOs' in the halophilic archaea Halobacterium sp. NRC-1 was conducted. Paralogous PCOs are ORFs with at least one homolog in the same organism, but with no clear homologs in other organisms. The results reveal that mRNA is synthesized for a majority of the Halobacterium sp. NRC-1 paralogous PCO families, including those comprising relatively short proteins, strongly suggesting that these Halobacterium sp. NRC-1 paralogous PCOs correspond to true, expressed proteins. Hence, further computational and experimental studies aimed at characterizing PCOs in this and other organisms are merited. Such efforts could shed light on PCOs' functions and origins, thereby serving to elucidate the vast diversity observed in the genetic material.  相似文献   

13.
The genome of Halobacterium sp. strain NRC-1 contains a large gene cluster, gvpMLKJIHGFEDACNO, that is both necessary and sufficient for the production of buoyant gas-filled vesicles. Due to the resistance of gas vesicles to solubilization, only the major gas vesicle protein GvpA and a single minor protein, GvpC, were previously detected. Here, we used immunoblotting analysis to probe for the presence of gas vesicle proteins corresponding to five additional gvp gene products. Polyclonal antisera were raised in rabbits against LacZ-GvpF, -GvpJ, and -GvpM fusion proteins and against synthetic 15-amino-acid peptides from GvpG and -L. Immunoblotting analysis was performed on cell lysates of wild-type Halobacterium sp. strain NRC-1, gas vesicle-deficient mutants, and purified gas vesicles, after purification of LacZ fusion antibodies on protein A and beta-galactosidase affinity columns. Our results show the presence of five new gas vesicle proteins (GvpF, GvpG, GvpJ, GvpL, and GvpM), bringing the total number of proteins identified in the organelles to seven. Two of the new gas vesicle proteins are similar to GvpA (GvpJ and GvpM), and two proteins contain predicted coiled-coil domains (GvpF and GvpL). GvpL exhibited a multiplet ladder on sodium dodecyl sulfate-polyacrylamide gels indicative of oligomerization and self-assembly. We discuss the possible functions of the newly discovered gas vesicle proteins in biogenesis of these unique prokaryotic flotation organelles.  相似文献   

14.
RNase H1 from Halobacterium sp. NRC-1 (Halo-RNase H1) is characterized by the abundance of acidic residues on the surface, including bi/quad-aspartate site residues. Halo-RNase H1 exists in partially folded (I) and native (N) states in low-salt and high-salt conditions respectively. Its folding is also induced by divalent metal ions. To understand this unique folding mechanism of Halo-RNase H1, the active site mutant (2A-RNase H1), the bi/quad-aspartate site mutant (6A-RNase H1), and the mutant at both sites (8A-RNase H1) were constructed. The far-UV CD spectra of these mutants suggest that 2A-RNase H1 mainly exists in the I state, 6A-RNase H1 exists both in the I and N states, and 8A-RNase H1 mainly exists in the N state in a low salt-condition. These results suggest that folding of Halo-RNase H1 is induced by binding of divalent metal ions to the bi/quad-aspartate site. To examine whether metal-induced folding is unique to Halo-RNase H1, RNase H2 from the same organism (Halo-RNase H2) was overproduced and purified. Halo-RNase H2 exists in the I and N states in low-salt and high-salt conditions respectively, as does Halo-RNase H1. However, this protein exists in the I state even in the presence of divalent metal ions. Halo-RNase H2 exhibits junction ribonuclease activity only in a high-salt condition. A tertiary model of this protein suggests that this protein does not have a quad-aspartate site. We propose that folding of Halo-RNase H1 is induced by binding of divalent metal ion to the quad-aspartate site in a low-salt condition.  相似文献   

15.
16.
Genetic and nutritional analyses of mutants of the extremely halophilic archaeon Halobacterium sp. strain NRC-1 showed that open reading frame (ORF) Vng1581C encodes a protein with nucleoside triphosphate:adenosylcobinamide-phosphate nucleotidyltransferase enzyme activity. This activity was previously associated with the cobY gene of the methanogenic archaeon Methanobacterium thermoautotrophicum strain DeltaH, but no evidence was obtained to demonstrate the direct involvement of this protein in cobamide biosynthesis in archaea. Computer analysis of the Halobacterium sp. strain NRC-1 ORF Vng1581C gene and the cobY gene of M. thermoautotrophicum strain DeltaH showed the primary amino acid sequence of the proteins encoded by these two genes to be 35% identical and 48% similar. A strain of Halobacterium sp. strain NRC-1 carrying a null allele of the cobY gene was auxotrophic for cobinamide-GDP, a known intermediate of the late steps of cobamide biosynthesis. The auxotrophic requirement for cobinamide-GDP was corrected when a wild-type allele of cobY was introduced into the mutant strain, demonstrating that the lack of cobY function was solely responsible for the observed block in cobamide biosynthesis in this archaeon. The data also show that Halobacterium sp. strain NRC-1 possesses a high-affinity transport system for corrinoids and that this archaeon can synthesize cobamides de novo under aerobic growth conditions. To the best of our knowledge this is the first genetic and nutritional analysis of cobalamin biosynthetic mutants in archaea.  相似文献   

17.
We report on the identification and first cloning of an autonomously replicating sequence element from the chromosome of an archaeon, the extreme halophile Halobacterium strain NRC-1. The putative replication origin was identified by association with the orc7 gene and replication ability in the host strain, demonstrated by cloning into a nonreplicating plasmid. Deletion analysis showed that sequences located up to 750 bp upstream of the orc7 gene translational start, plus the orc7 gene and 50 bp downstream, are sufficient to endow the plasmid with replication ability, as judged by expression of a plasmid-encoded mevinolin resistance selectable marker and plasmid recovery after transformation. Sequences located proximal to the two other chromosomally carried haloarchaeal orc genes (orc6 and orc8) are not able to promote efficient autonomous replication. Located within the 750-bp region upstream of orc7 is a nearly perfect inverted repeat of 31 bp, which flanks an extremely AT-rich (44%) stretch of 189 bp. The replication ability of the plasmid was lost when one copy of the inverted repeat was deleted. Additionally, the inverted repeat structure near orc7 homologs in the genomic sequences of two other halophiles, Haloarcula marismortui and Haloferax volcanii, is highly conserved. Our results indicate that, in halophilic archaea, a chromosomal origin of replication is physically linked to orc7 homologs and that this element is sufficient to promote autonomous replication. We discuss the finding of a functional haloarchaeal origin in relation to the large number of orc1-cdc6 homologs identified in the genomes of all haloarchaea to date.  相似文献   

18.
Replacement of chemical steps with biocatalytic ones is becoming increasingly more interesting due to the remarkable catalytic properties of enzymes, such as their wide range of substrate specificities and variety of chemo-, stereo- and regioselective reactions. This study presents characterisation of an alcohol dehydrogenase (ADH) from the halophilic archaeum Halobacterium sp. NRC-1 (HsADH2). A hexahistidine-tagged recombinant version of HsADH2 (His-HsADH2) was heterologously overexpressed in Haloferax volcanii. The enzyme was purified in one step by immobilised Ni-affinity chromatography. His-HsADH2 was halophilic and mildly thermophilic with optimal activity for ethanol oxidation at 4 M KCl around 60 °C and pH 10.0. The enzyme was extremely stable, retaining 80 % activity after 30 days. His-HsADH2 showed preference for NADP(H) but interestingly retained 60 % activity towards NADH. The enzyme displayed broad substrate specificity, with maximum activity obtained for 1-propanol. The enzyme also accepted secondary alcohols such as 2-butanol and even 1-phenylethanol. In the reductive reaction, working conditions for His-HsADH2 were optimised for acetaldehyde and found to be 4 M KCl and pH 6.0. His-HsADH2 displayed intrinsic organic solvent tolerance, which is highly relevant for biotechnological applications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号