首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The actinomycete Streptomyces scabies 87-22 is the causal agent of common scab, an economically important disease of potato and taproot crops. Sequencing of the S. scabies 87-22 genome revealed the presence of a gene with high homology to the gene encoding the alpha-tomatine-detoxifying enzyme tomatinase found in fungal tomato pathogens. The tomA gene from S. scabies 87-22 was cotranscribed with a putative family 1 glycosyl hydrolase gene, and purified TomA protein was active only on alpha-tomatine and not potato glycoalkaloids or xylans. Tomatinase-null mutants were more sensitive to alpha-tomatine than the wild-type strain in a disk diffusion assay. Interestingly, tomatine affected only aerial mycelium and not vegetative mycelium, suggesting that the target(s) of alpha-tomatine is not present during vegetative growth. Severities of disease for tomato seedlings affected by S. scabies 87-22 wild-type and DeltatomA1 strains were indistinguishable, suggesting that tomatinase is not important in pathogenicity on tomato plants. However, conservation of tomA on a pathogenicity island in S. acidiscabies and S. turgidiscabies suggests a role in plant-microbe interaction.  相似文献   

2.
Cryptococcus neoformans is an opportunistic pathogen that mainly infects immunocompromised individuals. The fungal cell wall of C. neoformans is an excellent target for antifungal therapies since it is an essential organelle that provides cell structure and integrity. Importantly, it is needed for localization or attachment of known virulence factors, including melanin, phospholipase, and the polysaccharide capsule. The polysaccharide fraction of the cryptococcal cell wall is a complex structure composed of chitin, chitosan, and glucans. Chitin is an indispensable component of many fungal cell walls that contributes significantly to cell wall strength and integrity. Fungal cell walls are very dynamic, constantly changing during cell division and morphogenesis. Hydrolytic enzymes, such as chitinases, have been implicated in the maintenance of cell wall plasticity and separation of the mother and daughter cells at the bud neck during vegetative growth in yeast. In C. neoformans we identified four predicted endochitinases, CHI2, CHI21, CHI22, and CHI4, and a predicted exochitinase, hexosaminidase, HEX1. Enzymatic analysis indicated that Chi2, Chi22, and Hex1 actively degraded chitinoligomeric substrates. Chi2 and Hex1 activity was associated mostly with the cellular fraction, and Chi22 activity was more prominent in the supernatant. The enzymatic activity of Hex1 increased when grown in media containing only N-acetylglucosamine as a carbon source, suggesting that its activity may be inducible by chitin degradation products. Using a quadruple endochitinase deletion strain, we determined that the endochitinases do not affect the growth or morphology of C. neoformans during asexual reproduction. However, mating assays indicated that Chi2, Chi21, and Chi4 are each involved in sexual reproduction. In summary, the endochitinases were found to be dispensable for routine vegetative growth but not sexual reproduction.Cryptococcus neoformans is an opportunistic fungal pathogen that causes cryptococcosis in immunocompromised individuals. The incidence of cryptococcosis continues to rise in direct proportion to the spread of the human immunodeficiency virus (for review, see Casadevall and Perfect [7]). It is estimated that up to 13% of AIDS patients in the United States will develop life-threatening cryptococcal meningitis, and in some parts of Africa this estimate increases to 40% (7). Current antifungal therapies for treatment of cryptococcosis are inadequate. Amphotericin B, which is believed to interact with membrane sterols (ergosterol) to produce an aggregate that forms a transmembrane channel is effective, but toxic (50, 62). Fluconazole inhibits cytochrome P-450-dependent 14α-sterol demethylase, which leads to the depletion of ergosterol and the accumulation of sterol precursors and results in the formation of a plasma membrane with altered structure and function. It is fungistatic and has high relapse rates (18, 41, 42, 50, 62). Flucytosine can be toxic and resistance occurs frequently (9, 41, 42, 50, 62). The newest class of antifungals to emerge is the echinocandins that targets an essential fungal enzyme required for the synthesis of a β-(1,3)-glucan in the fungal cell wall (17, 34). In addition, the echinocandins have been shown to be safe and effective for treatment of specific fungal infections, including candidiasis and aspergillosis caused by Candida albicans and Aspergillus fumigatus, respectively (23, 59). However, even though C. neoformans possesses the target enzyme β-(1,3)-glucan synthase and in vitro assays have shown the enzyme''s activity to be inhibited by the echinocandin caspofungin (34), C. neoformans still exhibits resistance to this class of drugs (26).Because fungi are eukaryotes and share many biochemical processes with their host, antifungal drug design has been problematic. The cell wall is a prominent structure that differentiates fungi from mammalian host cells. For all fungi, this organelle is essential and provides structure as well as integrity; thus, the cell wall components or their biosynthetic pathways make attractive drug targets. In addition, the cell wall of C. neoformans is associated with a variety of known virulence factors that are important for host-pathogen interactions, and it contains polymers including chitin and chitosan that are necessary for the viability of C. neoformans. The first virulence factor that a host cell encounters is the polysaccharide capsule. The capsule attachment to the outer portion of the cell wall requires α-(1-3)-glucan (15, 46). Another cell wall associated virulence factor is the melanin pigment (61) that is produced by two laccase proteins, Lac1 and Lac2 (38, 44). Lac1 is responsible for generating the majority of melanin and is localized to the cell wall (38, 63, 69). Chitin and chitosan are essential components of the cell wall that have been shown to contribute to the overall strength and integrity of the cell wall (4, 5). The essentiality of the chitin component and the lack of it being present in host cells make chitin and its biosynthetic components attractive targets for drug design.Chitin is one of the most abundant polymers found in nature (1, 12). It is a linear polymer of β-(1,4)-linked N-acetylglucosamine (GlcNAc), and in fungi it is formed from cytoplasmic pools of UDP-GlcNAc. C. neoformans has eight predicted chitin synthases and three putative chitin synthase regulators for synthesis of chitin polymers. Mutational analysis indicate that two chitin synthases, Chs4 and Chs5, produce the majority of vegetative chitin, and one, Chs3, produces the majority of chitin that is converted to chitosan during vegetative growth (5). Chitosan, the deacetylated version of chitin, is produced by chitin deacetylases (EC 3.5.1.41) that remove acetyl groups from nascent chitin polymers. In C. neoformans the chitin produced by Chs3 and the chitin synthase regulator, Csr2, is deacetylated to chitosan by up to three chitin deacetylases (Cda1, Cda2, and Cda3) (4, 5). Strains of C. neoformans lacking either CHS3 or CSR2 have significantly reduced chitosan levels and are sensitive to a variety of cell wall inhibitors (5). Similarly, strains lacking all three chitin deacetylases are unable to convert chitin to chitosan and are sensitive to cell wall inhibitors (4). This indicates that chitosan is essential for the proper maintenance of cell wall integrity in C. neoformans and Chs3, Csr2, and the chitin deacetylases contribute to its formation (4, 5). Chitosan polymers of other fungi have been reported to possess various degrees of deacetylation (57). Chitin and chitosan are located throughout the lateral cell wall and bud neck regions of C. neoformans (4). During growth cellular chitin and chitosan need to be continuously remodeled, presumably through the enzymatic digestion of chitin and chitosan polymers by chitinases and or chitosanases.Chitinases (EC 3.2.1.14) are enzymes that hydrolyze the β-(1-4) linkages in polymers of chitin. Besides being in fungi, these enzymes occur in a wide variety of organisms, including viruses, bacteria, plants, and animals (1, 12). There are two major categories of chitinases: endochitinases and exochitinases. Generally, the endochitinases cleave chitin chains internally to generate low-molecular-mass multimers of GlcNAc. In contrast, the exochitinases are divided into two subcategories: chitobiosidases (EC 3.2.1.29) release diacetylchitobiose from the nonreducing end of chitin chains, and β-(1,4)-N-acetylhexosaminidases (EC 3.2.1.52) release GlcNAc from the nonreducing end of chitin oligosaccharides; both types are usually processive (12). Fungal chitosanases (EC 3.2.1.132) are less understood. They have been found in Aspergillus spp. and Gongronella sp. strain JG. Although these chitosanases have been shown to degrade chitosan, their in vitro physiological relevance has not been elucidated (8, 60).In other fungal systems chitinases are known to be involved in cell separation, hyphal growth and branching, development of reproductive structures, spore germination, and autolysis (1, 12). In the nonpathogenic model yeast Saccharomyces cerevisiae two chitinases, Cts1p and Cts2p, function independently in bud separation and spore formation, respectively (25, 27). Cts1p is the only chitinase expressed during vegetative growth, and strains lacking this enzyme display incomplete cell separation (27) that can lead to pseudohyphalike growth (25). The synthesis of the spore wall is adversely affected by the deletion of CTS2 and affects the ability of the yeast to form mature asci (19).C. neoformans reproduces predominantly by budding, but also has a defined sexual cycle that culminates in the production of basidiospores. Both the yeast and the spore forms are thought to be infectious particles (7). C. neoformans typically colonizes the lungs of a immunocompromised host, from where it can disseminate to the central nervous system (7). As such, reproduction by budding has been shown to occur within host macrophages and dendritic cells (3, 28). Because fungal chitinases in other systems such as S. cerevisiae and C. albicans have been shown to be necessary for the completion of cell division (11, 27), understanding the biosynthesis and activity of chitinases could determine whether interfering with chitinase activity would impair the ability of C. neoformans to reproduce.We hypothesized that the chitinases in C. neoformans would be involved in growth and, like the chitinases in S. cerevisiae and C. albicans, that they would degrade specific chitin during either bud separation, hyphal growth, or sporulation. In the present study we utilized a homology-based search to identify five potential chitinases in C. neoformans, the four endochitinases CHI2, CHI21, CHI22, and CHI4 and one exochitinase, HEX1. Using a panel of chitinase deletion strains we discovered that the chitinases are dispensable for “normal” vegetative growth but were necessary during development of the sexual phase of C. neoformans.  相似文献   

3.
4.
5.
FtsZ1 and FtsZ2 are phylogenetically distinct families of FtsZ in plants that co-localize to mid-plastid rings and facilitate division of chloroplasts. In plants, altered levels of either FtsZ1 or FtsZ2 cause dose-dependent defects in chloroplast division; thus, studies on the functional relationship between FtsZgenes require careful manipulation of FtsZ levels in vivo. To define the functional relationship between the two FtsZ2 genes in Arabidopsis thaliana, FtsZ2-1 and FtsZ2-2, we expressed FtsZ2-1 in an ftsZ2-2 null mutant, and vice versa, and determined whether the chloroplast division defects were rescued in plants expressing different total levels of FtsZ2. Full rescue was observed when either the FtsZ2-1 or FtsZ2-2 level approximated total FtsZ2 levels in wild-type (WT). Additionally, FtsZ2-2 interacts with ARC6, as shown previously for FtsZ2- 1. These data indicate that FtsZ2-1 and FtsZ2-2 are functionally redundant for chloroplast division in Arabidopsis. To rigorously validate the requirement of each FtsZ family for chloroplast division, we replaced FtsZ1 with FtsZ2 in vivo, and vice versa, while maintaining the FtsZ level in the transgenic plants equal to that of the total level in WT. Chloroplast division defects were not rescued, demonstrating conclusively that FtsZ1 and FtsZ2 are non-redundant for maintenance of WT chloroplast numbers. Finally, we generated ftsZtriple null mutants and show that plants completely devoid of FtsZ protein are viable and fertile. As plastids are presumably essential organelles, these findings suggest that an FtsZ-independent mode of plastid partitioning may occur in higher plants.  相似文献   

6.
Although peptidoglycan synthesis is one of the best-studied metabolic pathways in bacteria, the mechanism underlying the membrane translocation of lipid II, the undecaprenyl-disaccharide pentapeptide peptidoglycan precursor, remains mysterious. Recently, it was proposed that the essential Escherichia coli mviN gene encodes the lipid II flippase. Bacillus subtilis contains four proteins that are putatively homologous to MviN, including SpoVB, previously reported to be necessary for spore cortex peptidoglycan synthesis during sporulation. MviN complemented the sporulation defect of a ΔspoVB mutation, and SpoVB and another of the B. subtilis homologs, YtgP, complemented the growth defect of an E. coli strain depleted for MviN. Thus, these B. subtilis proteins are likely to be MviN homologs. However, B. subtilis strains lacking these four proteins have no defects in growth, indicating that they likely do not serve as lipid II flippases in this organism.Peptidoglycan synthesis is vital for cell growth and maintenance of cell shape in both gram-positive and gram-negative bacteria. This polymer of glycan chains that are cross-linked by peptide bridges forms an extracellular shell which provides protection against osmotic stresses as well as a sturdy scaffolding for extracellular appendages. The enzymes responsible for peptidoglycan synthesis are highly conserved in all bacteria with a cell wall. In the cytoplasm, the enzymes MurA to MurE synthesize the soluble MurNAc-pentapeptide starting with UDP-GlcNAc. MraY links this molecule to an isoprenoid chain, forming the membrane-associated lipid I precursor. MurG then adds UDP-GlcNAc to make lipid II, which is subsequently flipped across the cytoplasmic membrane and attached by penicillin-binding proteins via transglycosylation and transpeptidation reactions to the mature peptidoglycan.While these cytoplasmic and extracellular steps are well characterized, comparatively little is known about the mechanism of membrane translocation. Fluorescently tagged lipid II does not spontaneously flip in protein-free liposomes (31), as would be expected given its large hydrophilic carbohydrate and protein groups. This observation suggests that that flipping is a protein-mediated process, and, consistent with this prediction, fluorescent lipid II molecules were translocated across vesicles made from Escherichia coli membranes. Genetic data have pointed to proteins belonging to the SEDS family as potential lipid II flippases (14). These proteins are highly conserved and contain multiple membrane-spanning domains (generally 10 to 12 transmembrane helices). Since they are in most cases essential for viability, it has been problematic to demonstrate their function. However, depletion or temperature-sensitive mutations result in phenotypes consistent with a block in peptidoglycan synthesis. A nonessential SEDS protein, Bacillus subtilis SpoVE, is necessary for the formation of peptidoglycan during a later step in spore development (13), and point mutations in SpoVE block peptidoglycan synthesis without disturbing protein production or localization (24).Recently, the integral membrane protein MviN, encoded by an essential E. coli gene, was proposed to be the lipid II flippase (26). Strains carrying a temperature-sensitive mutation in MviN underwent lysis following incubation at the nonpermissive temperature and showed a twofold increase in lipid II accumulation (16). While the operon that includes mviN is essential in the gram-negative bacteria Sinorhizobium meliloti and Burkholderia pseudomallei (20, 25), mviN mutations in Rhizobium tropici, Salmonella enterica serovar Typhimurium, and Bdellovibrio bacteriovorus have not been fully characterized, and therefore the essentiality of MviN in these species remains to be demonstrated (4, 19, 21). Due to the high degree of conservation of other proteins involved in peptidoglycan synthesis between gram-positive and gram-negative bacteria and the essential nature of peptidoglycan synthesis, the protein(s) necessary for flipping of lipid II should also be essential and conserved in a gram-positive organism. We therefore set out to identify and examine the MviN (MurJ) homologs of B. subtilis.  相似文献   

7.
8.
Two‐dimensional (2D) PAGE was used to detect proteins induced in Streptomyces scabies by potato suberin, a lipidic plant polymer. Nineteen up‐regulated proteins were excised from 2D gels and analysed by N‐terminal sequencing or tandem mass spectrometry (MS/MS). Four of the up‐regulated proteins could be linked to the bacterial response to stress (AldH, GroES, TerD and LexA). Specific metabolic pathways seemed to be activated in the presence of suberin, as shown by the increased expression of specific transporters and of enzymes related not only to glycolysis, but also to nucleotide and amino acid metabolism. Suberin also appeared to influence secondary metabolism as it also caused the overproduction of the BldK proteins that are known to be involved in differentiation and secondary metabolism.  相似文献   

9.
10.
11.
The unknown protein family 0224 (UPF0224) includes three members that are expressed in germ-line cells in mice: Gtsf1, Gtsf1l, and BC048502 (Gtsf2). These genes produce proteins with two repeats of the CHHC Zn-finger domain, a predicted RNA-binding motif, in the N terminus. We previously reported that Gtsf1 is essential for spermatogenesis and retrotransposon suppression. In this study, we investigated the expression patterns and functions of Gtsf1l and Gtsf2. Interestingly, Gtsf1l and Gtsf2 were found to be sequentially but not simultaneously expressed in gonocytes and spermatids. Pull-down experiments showed that both GTSF1L and GTSF2 can interact with PIWI-protein complexes. Nevertheless, knocking out Gtsf1, Gtsf2, or both did not cause defects in spermatogenesis or retrotransposon suppression in mice.  相似文献   

12.
Systemic acquired resistance (SAR) develops in response to local microbial leaf inoculation and renders the whole plant more resistant to subsequent pathogen infection. Accumulation of salicylic acid (SA) in noninfected plant parts is required for SAR, and methyl salicylate (MeSA) and jasmonate (JA) are proposed to have critical roles during SAR long-distance signaling from inoculated to distant leaves. Here, we address the significance of MeSA and JA during SAR development in Arabidopsis thaliana. MeSA production increases in leaves inoculated with the SAR-inducing bacterial pathogen Pseudomonas syringae; however, most MeSA is emitted into the atmosphere, and only small amounts are retained. We show that in several Arabidopsis defense mutants, the abilities to produce MeSA and to establish SAR do not coincide. T-DNA insertion lines defective in expression of a pathogen-responsive SA methyltransferase gene are completely devoid of induced MeSA production but increase systemic SA levels and develop SAR upon local P. syringae inoculation. Therefore, MeSA is dispensable for SAR in Arabidopsis, and SA accumulation in distant leaves appears to occur by de novo synthesis via isochorismate synthase. We show that MeSA production induced by P. syringae depends on the JA pathway but that JA biosynthesis or downstream signaling is not required for SAR. In compatible interactions, MeSA production depends on the P. syringae virulence factor coronatine, suggesting that the phytopathogen uses coronatine-mediated volatilization of MeSA from leaves to attenuate the SA-based defense pathway.  相似文献   

13.
14.
15.
Streptomyces hygroscopicus 10-22 harbors a conjugative, autonomously replicating linear plasmid pHZ6 of ca. 70 kb, which shows no obvious homology with chromosomal DNA and is temperature-sensitive for replication, being stable in the host at 28 degrees C but easily lost at 37 degrees C. On a lawn of the wild-type S. hygroscopicus 10-22 cured of pHZ6, pHZ6 elicit pocks. Temperature sensitivity seemed to be a unique property for pHZ6 among six linear plasmids tested, including the well-known linear plasmids SLP2 in Streptomyces lividans 1326 and SCP1 in Streptomyces coelicolor A3(2). The distinct identity of pHZ6 from previously identified pHZ1-pHZ5 was demonstrated by the profile of relevant plasmids in six well-defined strains originated from S. hygroscopicus 10-22.  相似文献   

16.
A series of large chromosomal deletions in Streptomyces hygroscopicus 10-22 were aligned on the physical map of the wild-type strain and the mutants were assessed for their ability to produce the aminocyclitol antibiotic 5102-I (jinggangmycin). Twenty-eight mutants were blocked for jinggangmycin production and all of them were found to lack a 300 kb AseI-F fragment of the wild-type chromosome. An ordered cosmid library of the 300 kb AseI-F fragment was made and one of the cosmids conferred jinggangmycin productivity to Streptomyces lividans ZX1. Three of the overlapping cosmids (18G7, 5H3 and 9A2) also hybridized to the valA gene of the validamycin pathway from S. hygroscopicus 5008 as a probe. This gene resembles acbC from Actinoplanes sp. 50/110, which encodes a C7-cyclitol synthase that catalyses the transformation of sedoheptulose 7-phosphate into 2-5-epi-valiolone for acarbose biosynthesis. The valA/acbC-homolog (orf1) of S. hygroscopicus 10-22 was shown to be essential for jinggangmycin biosynthesis as an engineered mutant with a specific in-frame deletion removing a 609 bp sequence internal to orf1 completely abolished jinggangmycin production and the corresponding knock-out mutant (JXH4) could be complemented for jinggangmycin production by the introduction of an orf1-containing construct. Concurrently, the identities of the genes common to S. hygroscopicus strains 10-22 and 5008 prompted a comparison of the chemical structures of jinggangmycin and validamycin, which led to a clear demonstration that they are identical.The first two authors contributed equally to this study.  相似文献   

17.
Streptomyces scabies, a causal agent of common scab, produces both melanin and a secondary metabolite called thaxtomin A. To establish a possible relation between melanin and thaxtomin A production in S. scabies, we carried out N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis and isolated 11 melanin-negative mutants of S. scabies EF-35. These mutants were characterized for thaxtomin A production, pathogenicity, sporulation, and stress resistance. Nine of these mutants showed a significant reduction in thaxtomin A production when compared with the wild strain. However, only a few mutants exhibited a reduced level of virulence or a loss in their ability to induce common scab symptoms on potato tubers. Other pleiotrophic effects, such as higher sensitivity to heavy metals and incapacity to sporulate under certain stress conditions, were also associated with a deficiency in melanin production.  相似文献   

18.
19.
Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechococcus sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.Cyanobacteria (oxygenic photosynthetic bacteria) are found in nearly every environment on Earth and are major contributors to global carbon and nitrogen fixation (Galloway et al., 2004; Zwirglmaier et al., 2008). They are distinguished among prokaryotes in containing multiple internal thylakoid membranes, the site of photosynthesis, and a large protein compartment, the carboxysome, involved in carbon fixation. Despite these extra features, cyanobacteria can be as small as 0.6 µm in diameter (Raven, 1998).All cyanobacteria with sequenced genomes encode the pathway for the biosynthesis of hydrocarbons, implying an important, although as-yet-undefined, role for these compounds (Lea-Smith et al., 2015). The major forms are C15-C19 alkanes and alkenes, which can be synthesized from fatty acyl-acyl-carrier proteins (ACPs) by one or other of two separate pathways (Fig. 1; Schirmer et al., 2010; Mendez-Perez et al., 2011). The majority of species produce alkanes and alkenes via acyl-ACP reductase (FAR) and aldehyde deformylating oxygenase (FAD; Schirmer et al., 2010; Li et al., 2012; Coates et al., 2014; Lea-Smith et al., 2015). Cyanobacterial species lacking the FAR/FAD pathway synthesize alkenes via olefin synthase (Ols; Mendez-Perez et al., 2011; Coates et al., 2014; Lea-Smith et al., 2015). This suggests that hydrocarbons produced by either pathway serve a similar role in the cell. Homologs of FAR/FAD or Ols are not present in other bacteria or plant and algal species. However, C15-C17 alkanes and alkenes, synthesized by an alternate, uncharacterized pathway, were recently detected in a range of green microalgae, including Chlamydomonas reinhardtii, Chlorella variabilis NC64A, and several Nannochloropsis species (Sorigué et al., 2016). In C. reinhardtii, hydrocarbons were primarily localized to the chloroplast, which originated in evolution from a cyanobacterium that was engulfed by a host organism (Howe et al., 2008). Hydrocarbons may therefore have a similar role in cyanobacteria, some green microalgae species, and possibly a broader range of photosynthetic organisms.Open in a separate windowFigure 1.Hydrocarbon biosynthesis is encoded in all sequenced cyanobacteria. Detailed are the two hydrocarbon biosynthetic pathways, indicated in blue and red, respectively, in cyanobacteria. The number of species encoding the enzymes in each pathway is indicated.Hydrocarbons act as antidesiccants, waterproofing agents, and signaling molecules in insects (Howard and Blomquist, 2005) and prevent water loss, ensure pollen viability, and influence pathogen interactions in plants (Kosma et al., 2009; Bourdenx et al., 2011). However, the function of hydrocarbons in cyanobacteria has not been determined. Characterization of cyanobacterial hydrocarbon biosynthesis pathways has provided the basis for investigating synthetic microbial biofuel systems, which may be a renewable substitute for fossil fuels (Schirmer et al., 2010; Choi and Lee, 2013; Howard et al., 2013). However, secretion of long-chain hydrocarbons from the cell into the medium, which is likely essential for commercially viable production, has not been observed in the absence of a membrane solubilization agent (Schirmer et al., 2010; Tan et al., 2011). Cyanobacterial hydrocarbons also have a significant environmental role. Due to the abundance of cyanobacteria in the environment, hydrocarbon production is considerable, with hundreds of millions of tons released into the ocean per annum following cell death (Lea-Smith et al., 2015). This production may be sufficient to sustain populations of hydrocarbon-degrading bacteria, which can then play an important role in consuming anthropogenic oil spills (Lea-Smith et al., 2015).Here, we investigated the cellular location and role of hydrocarbons in both spherical Synechocystis sp. PCC 6803 (Synechocystis) and rod-shaped Synechococcus sp. PCC 7002 (Synechococcus) cells. We developed a model of the cyanobacterial membrane, which indicated that hydrocarbons aggregate in the middle of the lipid bilayer and, when present at levels observed in cells, lead to membrane swelling associated with pools of hydrocarbon. This suggested that alkanes may facilitate membrane curvature. In vivo measurements of Synechococcus thylakoid membrane conformation are consistent with this model.  相似文献   

20.
Procyclic forms of Trypanosoma brucei reside in the midgut of tsetse flies where they are covered by several million copies of glycosylphosphatidylinositol-anchored proteins known as procyclins. It has been proposed that procyclins protect parasites against proteases and/or participate in tropism, directing them from the midgut to the salivary glands. There are four different procyclin genes, each subject to elaborate levels of regulation. To determine if procyclins are essential for survival and transmission of T. brucei, all four genes were deleted and parasite fitness was compared in vitro and in vivo. When co-cultured in vitro, the null mutant and wild type trypanosomes (tagged with cyan fluorescent protein) maintained a near-constant equilibrium. In contrast, when flies were infected with the same mixture, the null mutant was rapidly overgrown in the midgut, reflecting a reduction in fitness in vivo. Although the null mutant is patently defective in competition with procyclin-positive parasites, on its own it can complete the life cycle and generate infectious metacyclic forms. The procyclic form of T. brucei thus differs strikingly from the bloodstream form, which does not tolerate any perturbation of its variant surface glycoprotein coat, and from other parasites such as Plasmodium berghei, which requires the circumsporozoite protein for successful transmission to a new host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号