首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《MABS-AUSTIN》2013,5(3):247-253
Reducing the blood supply of tumors is one modality to combat cancer. Monoclonal antibodies are now established as a key therapeutic approach for a range of diseases. Owing to the ability of antibodies to selectively target endothelial cells within the tumor vasculature, vascular targeting programs have become a mainstay in oncology drug development. However, the antitumor activity of single agent administration of conventional anti-angiogenic compounds is limited and the improvements in patient survival are most prominent in combinations with chemotherapy. Furthermore, prolonged treatment with conventional anti-angiogenic drugs is associated with toxicity and drug resistance. These circumstances provide a strong rationale for novel approaches to enhance the efficacy of mAbs targeting tumor vasculature such as antibody-drug conjugates (ADCs). Here, we review trends in the development of ADCs targeting tumor vasculature with the aim of informing future research and development of this class of therapeutics.  相似文献   

2.
抗体偶联药物(antibody-drug conjugates,ADC)因其良好的靶向性及抗癌活性目前已成为抗肿瘤抗体药物研发的新热点和重要趋势,受到越来越多的关注。ADC药物由单克隆抗体、高效应的细胞毒性物质以及连接臂三部分组成,它将抗体的靶向性与细胞毒性药物的抗肿瘤作用相结合,可以降低细胞毒性抗肿瘤药物的不良反应,提高肿瘤治疗的选择性,还能更好地应对靶向单抗的耐药性问题。与传统单抗药物相比,因其结构复杂,ADC药物质量属性分析方法的建立具有更大的难度和特殊性。对抗体偶联药物的研发现状、质量属性分析方法和挑战以及质量控制要点进行了简要介绍,为ADC药物的研究和质量控制提供参考。  相似文献   

3.
The recent decade has witnessed a vigorous prosper of antibody-drug conjugates (ADCs) in solid tumors including breast cancer. Integrating the specificity of monoclonal antibodies and potency of cytotoxic drugs, ADCs are capable of delivering cytotoxic agents directly to tumor cells and surrounding accomplices with heterogeneous antigen expression by exerting the distinctive bystander effect. Up till now, three ADCs (T-DM1, T-DXd and SG) have attained the official approval and stepped into clinical practices in breast cancer, with numerous promising products in the pipeline. As an unprecedented breast cancer subgroup identified following solidified drug benefit, the cognitive and therapeutic paradigm of HER2-low population which was previously thought lacking definite targets and efficacious regimens has been thoroughly rewritten by ADCs, and several encouraging achievements are expected in ongoing trials. Herein, we discuss the contrived knowledge, latest advancements and future perspectives of ADCs in HER2-overexpressing and HER2-low breast cancer.  相似文献   

4.
Progress has been made recently in developing antibody-drug conjugates (ADCs) that can selectively deliver cancer drugs to tumor cells. In principle, the idea is simple: by attaching drugs to tumor-seeking antibodies, target cells will be killed and nontarget cells will be spared. In practice, many parameters needed to be addressed to develop safe and effective ADCs, including the expression profiles of tumor versus normal tissues, the potency of the drug, the linker attaching the drug and placement of the drug on the antibody, and the pharmacokinetic and stability profiles of the resulting ADC. All these issues had been taken into account in developing brentuximab vedotin (Adcetris), an ADC that recently received accelerated approval by the US Food and Drug Administration for the treatment of relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma (ALCL). Research is under way to extend the applications of brentuximab vedotin and to advance the field by developing other ADCs with new linker and conjugation strategies.  相似文献   

5.
Codelivery is a promising strategy of targeted delivery of cytotoxic drugs for eradicating tumor cells. This rapidly growing method of drug delivery uses a conjugate containing drug linked to a smart carrier. Both two parts usually have therapeutic properties on the tumor cells. Monoclonal antibodies and their derivatives, such as Fab, scFv, and bsAb due to targeting high potent have now been attractive candidates as drug targeting carrier systems. The success of some therapeutic agents like small interfering RNA (siRNA), a small noncoding RNAs, with having problems such as enzymatic degradation and rapid renal filtration need to an appropriate carrier. Therefore, the aim of this study is to review the recent enhancements in development of antibody drug conjugates (ADCs), especially antibody–siRNA conjugates (SRCs), its characterizations and mechanisms in innovative cancer therapy approaches.  相似文献   

6.
Blocking tumor angiogenesis is an important goal of cancer therapy, but clinically approved anti-angiogenic agents suffer from limited efficacy and adverse side effects, fueling the need to identify alternative angiogenesis regulators. Tumor endothelial marker 8 (TEM8) is a highly conserved cell surface receptor overexpressed on human tumor vasculature. Genetic disruption of Tem8 in mice revealed that TEM8 is important for promoting tumor angiogenesis and tumor growth but dispensable for normal development and wound healing. The induction of TEM8 in cultured endothelial cells by nutrient or growth factor deprivation suggests that TEM8 may be part of a survival response pathway that is activated by tumor microenvironmental stress. In preclinical studies, antibodies targeted against the extracellular domain of TEM8 inhibited tumor angiogenesis and blocked the growth of multiple human tumor xenografts. Anti-TEM8 antibodies augmented the activity of other anti-angiogenic agents, vascular targeting agents and conventional chemotherapeutic agents and displayed no detectable toxicity. Thus, anti-TEM8 antibodies provide a promising new tool for selective blockade of neovascularization associated with cancer and possibly other angiogenesis-dependent diseases.  相似文献   

7.
Blocking tumor angiogenesis is an important goal of cancer therapy, but clinically approved anti-angiogenic agents suffer from limited efficacy and adverse side effects, fueling the need to identify alternative angiogenesis regulators. Tumor endothelial marker 8 (TEM8) is a highly conserved cell surface receptor overexpressed on human tumor vasculature. Genetic disruption of Tem8 in mice revealed that TEM8 is important for promoting tumor angiogenesis and tumor growth but dispensable for normal development and wound healing. The induction of TEM8 in cultured endothelial cells by nutrient or growth factor deprivation suggests that TEM8 may be part of a survival response pathway that is activated by tumor microenvironmental stress. In preclinical studies, antibodies targeted against the extracellular domain of TEM8 inhibited tumor angiogenesis and blocked the growth of multiple human tumor xenografts. Anti-TEM8 antibodies augmented the activity of other anti-angiogenic agents, vascular targeting agents and conventional chemotherapeutic agents and displayed no detectable toxicity. Thus, anti-TEM8 antibodies provide a promising new tool for selective blockade of neovascularization associated with cancer and possibly other angiogenesis-dependent diseases.  相似文献   

8.
HER2-ECD (human epidermal growth factor receptor 2 – extracellular domain) is a prominent therapeutic target validated for treating HER2-positive breast and gastric cancer, but HER2-specific therapeutic options for treating advanced gastric cancer remain limited. We have developed antibody-drug conjugates (ADCs), comprising IgG1 linked via valine-citrulline to monomethyl auristatin E, with potential to treat HER2-positive gastric cancer in humans. The antibodies optimally selected from the ADC discovery platform, which was developed to discover antibody candidates suitable for immunoconjugates from synthetic antibody libraries designed using antibody-antigen interaction principles, were demonstrated to be superior immunoconjugate targeting modules in terms of efficacy and off-target toxicity. In comparison with the two control humanized antibodies (trastuzumab and H32) derived from murine antibody repertoires, the antibodies derived from the synthetic antibody libraries had enhanced receptor-mediated internalization rate, which could result in ADCs with optimal efficacies. Along with the ADCs, two other forms of immunoconjugates (scFv-PE38KDEL and IgG1-AL1-PE38KDEL) were used to test the antibodies for delivering cytotoxic payloads to xenograft tumor models in vivo and to cultured cells in vitro. The in vivo experiments with the three forms of immunoconjugates revealed minimal off-target toxicities of the selected antibodies from the synthetic antibody libraries; the off-target toxicities of the control antibodies could have resulted from the antibodies’ propensity to target the liver in the animal models. Our ADC discovery platform and the knowledge gained from our in vivo tests on xenograft models with the three forms of immunoconjugates could be useful to anyone developing optimal ADC cancer therapeutics.  相似文献   

9.
Antibody-drug conjugates (ADCs) represent a new class of cancer therapeutics. Their design involves a tumor-specific antibody, a linker and a cytotoxic payload. They were designed to allow specific targeting of highly potent cytotoxic agents to tumor cells whilst sparing normal cells. Frequent toxicities that may be driven by any of the components of an ADC have been reported. There are currently more than 50 ADCs in active clinical development, and a further ~20 that have been discontinued. For this review, the reported toxicities of ADCs were analysed, and the mechanisms for their effects are explored in detail. Methods to reduce toxicities, including dosing strategies and drug design, are discussed. The toxicities reported for active and discontinued drugs are important to drive the rational design and improve the therapeutic index of ADCs of the future.  相似文献   

10.
Cytotoxic agents streptonigrin and 17-amino-geldanamycin were linked to monoclonal antibodies (mAbs), forming antibody–drug conjugates (ADCs) for antigen-mediated targeting to cancer cells. The drugs were conjugated with a linker construct that is labile to lysosomal proteases and incorporates a valine-alanine-p-aminobenzyl (PAB)-amino linkage for direct attachment to the electron-deficient amine functional groups present in both drugs. The resulting ADCs release drug following internalization into antigen-positive cancer cells. The drug linkers were conjugated to mAbs cAC10 (anti-CD30) and h1F6 (anti-CD70) via alkylation of reduced interchain disulfides to give ADCs loaded with 4 drugs/mAb. The streptonigrin ADCs were potent and immunologically specific on a panel of cancer cell lines in vitro and in a Hodgkin lymphoma xenograft model. We conclude that streptonigrin ADCs are candidates for further research, and that the novel linker system used to make them is well-suited for the conjugation of cytotoxic agents containing electron-deficient amine functional groups.  相似文献   

11.
A beta-glucuronide-based linker for attaching cytotoxic agents to monoclonal antibodies (mAbs) was designed and evaluated. We employed the cytotoxic auristatin derivatives MMAE (1a) and MMAF (1b) and doxorubicin propyloxazoline (DPO, 2) to give the beta-glucuronide drug-linkers 9a, 9b, and 17, respectively. Cysteine-quenched derivatives of 9b and 17 were determined to be substrates for E. coli beta-glucuronidase, resulting in facile drug release. The beta-glucuronide MMAF drug-linker 9b was highly stable in rat plasma with an extrapolated half-life of 81 days. Each drug-linker when conjugated to mAbs c1F6 (anti-CD70) and cAC10 (anti-CD30) gave monomeric antibody-drug conjugates (ADCs) with as many as eight drugs per mAb and had high levels of immunologically specific cytotoxic activity on cancer cell lines. cAC10-9a displayed pronounced antitumor activity in a subcutaneous Karpas 299 lymphoma tumor model. A single dose treatment led to cures in all animals at the 0.5 mg/kg dose level and above, and the conjugate was well tolerated at 100 mg/kg. In mice with subcutaneous renal cell carcinoma xenografts, the MMAF conjugate c1F6-9b was tolerated at 25 mg/kg and efficacious at 0.75 mg/kg. These results demonstrate that the beta-glucuronide linker system is an effective strategy for targeting cytotoxic agents providing ADCs with high degrees of efficacy at well-tolerated doses.  相似文献   

12.
Over the past couple of decades, antibody–drug conjugates (ADCs) have revolutionized the field of cancer chemotherapy. Unlike conventional treatments that damage healthy tissues upon dose escalation, ADCs utilize monoclonal antibodies (mAbs) to specifically bind tumour-associated target antigens and deliver a highly potent cytotoxic agent. The synergistic combination of mAbs conjugated to small-molecule chemotherapeutics, via a stable linker, has given rise to an extremely efficacious class of anti-cancer drugs with an already large and rapidly growing clinical pipeline. The primary objective of this paper is to review current knowledge and latest developments in the field of ADCs. Upon intravenous administration, ADCs bind to their target antigens and are internalized through receptor-mediated endocytosis. This facilitates the subsequent release of the cytotoxin, which eventually leads to apoptotic cell death of the cancer cell. The three components of ADCs (mAb, linker and cytotoxin) affect the efficacy and toxicity of the conjugate. Optimizing each one, while enhancing the functionality of the ADC as a whole, has been one of the major considerations of ADC design and development. In addition to these, the choice of clinically relevant targets and the position and number of linkages have also been the key determinants of ADC efficacy. The only marketed ADCs, brentuximab vedotin and trastuzumab emtansine (T-DM1), have demonstrated their use against both haematological and solid malignancies respectively. The success of future ADCs relies on improving target selection, increasing cytotoxin potency, developing innovative linkers and overcoming drug resistance. As more research is conducted to tackle these issues, ADCs are likely to become part of the future of targeted cancer therapeutics.  相似文献   

13.
Antibody drug conjugates (ADCs) are highly cytotoxic drugs covalently attached via conditionally stable linkers to monoclonal antibodies (mAbs) and are among the most promising next-generation empowered biologics for cancer treatment. ADCs are more complex than naked mAbs, as the heterogeneity of the conjugates adds to the inherent microvariability of the biomolecules. The development and optimization of ADCs rely on improving their analytical and bioanalytical characterization by assessing several critical quality attributes, namely the distribution and position of the drug, the amount of naked antibody, the average drug to antibody ratio, and the residual drug-linker and related product proportions. Here brentuximab vedotin (Adcetris®) and trastuzumab emtansine (Kadcyla®), the first and gold-standard hinge-cysteine and lysine drug conjugates, respectively, were chosen to develop new mass spectrometry (MS) methods and to improve multiple-level structural assessment protocols.  相似文献   

14.
The use of antibody-drug conjugates (ADCs) as a therapeutic platform to treat cancer has recently gained substantial momentum. This therapeutic modality has the potential to increase the efficacy and reduce the systemic toxicity associated with current therapeutic regimens. The efficacy of ADCs, however, relies on the proper exploitation of intracellular sorting dynamics of the antigen as well as the specificity, selectivity and pharmacokinetic properties of the antibody itself. Our understanding of endocytosis and endosomal trafficking of receptors has appreciably increased in recent years, as improvements in the assays used to study these events have resolved many of the molecular mechanisms regulating these processes. As a result, we now have the knowledge necessary to exploit these pathways efficiently to improve the efficacy of antibody-based therapy. This review discusses some recent studies that have explored how endo/lysosomal dynamics can affect the efficacy of engineered therapeutic antibodies, including ADCs.  相似文献   

15.
《MABS-AUSTIN》2013,5(5):562-570
The 2nd Annual Antibodies for Cancer Therapy symposium, organized again by Cambridge Healthtech Institute as part of the Protein Engineering Summit, was held in Boston, USA from April 30th to May 1st, 2012. Since the approval of the first cancer antibody therapeutic, rituximab, fifteen years ago, eleven have been approved for cancer therapy, although one, gemtuzumab ozogamicin, was withdrawn from the market. The first day of the symposium started with a historical review of early work for lymphomas and leukemias and the evolution from murine to human antibodies. The symposium discussed the current status and future perspectives of therapeutic antibodies in the biology of immunoglobulin, emerging research on biosimilars and biobetters, and engineering bispecific antibodies and antibody-drug conjugates. The tumor penetration session was focused on the understanding of antibody therapy using ex vivo tumor spheroids and the development of novel agents targeting epithelial junctions in solid tumors. The second day of the symposium discussed the development of new generation recombinant immunotoxins with low immunogenicity, construction of chimeric antigen receptors, and the proof-of-concept of ‘photoimmunotherapy’. The preclinical and clinical session presented antibodies targeting Notch signaling and chemokine receptors. Finally, the symposium discussed emerging technologies and platforms for therapeutic antibody discovery.  相似文献   

16.
Most strategies used to prepare homogeneous site-specific antibody-drug conjugates (ADCs) result in ADCs with a drug-to-antibody ratio (DAR) of two. Here, we report a disulfide re-bridging strategy to prepare homogeneous ADCs with DAR of one using a dual-maleimide pyrrolobenzodiazepine (PBD) dimer (SG3710) and an engineered antibody (Flexmab), which has only one intrachain disulfide bridge at the hinge. We demonstrate that SG3710 efficiently re-bridge a Flexmab targeting human epidermal growth factor receptor 2 (HER2), and the resulting ADC was highly resistant to payload loss in serum and exhibited potent anti-tumor activity in a HER2-positive gastric carcinoma xenograft model. Moreover, this ADC was tolerated in rats at twice the dose compared to a site-specific ADC with DAR of two prepared using a single-maleimide PBD dimer (SG3249). Flexmab technologies, in combination with SG3710, provide a platform for generating site-specific homogenous PBD-based ADCs with DAR of one, which have improved biophysical properties and tolerability compared to conventional site-specific PBD-based ADCs with DAR of two.  相似文献   

17.
The 2nd Annual Antibodies for Cancer Therapy symposium, organized again by Cambridge Healthtech Institute as part of the Protein Engineering Summit, was held in Boston, USA from April 30th to May 1st, 2012. Since the approval of the first cancer antibody therapeutic, rituximab, fifteen years ago, eleven have been approved for cancer therapy, although one, gemtuzumab ozogamicin, was withdrawn from the market.  The first day of the symposium started with a historical review of early work for lymphomas and leukemias and the evolution from murine to human antibodies. The symposium discussed the current status and future perspectives of therapeutic antibodies in the biology of immunoglobulin, emerging research on biosimilars and biobetters, and engineering bispecific antibodies and antibody-drug conjugates. The tumor penetration session was focused on the understanding of antibody therapy using ex vivo tumor spheroids and the development of novel agents targeting epithelial junctions in solid tumors. The second day of the symposium discussed the development of new generation recombinant immunotoxins with low immunogenicity, construction of chimeric antigen receptors, and the proof-of-concept of ‘photoimmunotherapy’. The preclinical and clinical session presented antibodies targeting Notch signaling and chemokine receptors.  Finally, the symposium discussed emerging technologies and platforms for therapeutic antibody discovery.  相似文献   

18.
The World Antibody Drug Conjugate Summit Europe, organized by Biorbis/Hanson Wade was held in Frankfurt, Germany February 21–23, 2011. Antibody drug conjugates (ADCs), also called immunoconjugates, are becoming an increasingly important class of therapeutics as demonstrated by the attendance of nearly 100 delegates at this highly focused meeting. Updates on three ADCs that are in late-stage clinical development, trastuzumab emtansine (T-DM1), brentuximab vedotin (SGN-35) and inotuzumab ozogamicin (CMC-544), were presented by speakers from ImmunoGen, Genentech, Roche, Seattle Genetics and Pfizer. These ADCs have shown encouraging therapeutic effects against solid tumors (T-DM1) and hematological malignancies (SGN-35, CMC-544). The key feature of the new generation of ADCs is the effective combination of the cytotoxicity of natural or synthetic highly potent antineoplastic agents, tumor selective monoclonal antibodies and blood-stable optimized linkers. Early clinical data for ADCs were showcased by Progenics Pharmaceuticals (PSMA ADC), Celldex (CDX-011) and Biotest (BT-062). Takeda, MedImmune and sanofi-aventis outlined their strategies for process development and analytical characterization. In addition, presentations on duocarmycin based-ADCs, α emitting immunoconjugates and antibody-conjugated nanoparticles were given by representatives from Syntarga, Algeta and the University of Stuttgart, respectively.Key words: antibody drug conjugates, immunoconjugates, trastuzumab emtansine, brentuximab vedotin, inotuzumab ozogamicin, oncology, cancer  相似文献   

19.
Antibody-drug conjugates (ADCs) are of great interest as targeted cancer therapeutics. Preparation of ADCs for early stage screening is constrained by purification and biochemical analysis techniques that necessitate burdensome quantities of antibody. Here we describe a method, developed for the maytansinoid class of ADCs, enabling parallel conjugation of antibodies in 96-well format. The method utilizes ~100 µg of antibody per well and requires <5 µg of ADC for characterization. We demonstrate the capabilities of this system using model antibodies. We also provide multiple examples applying this method to early-stage screening of maytansinoid ADCs. The method can greatly increase the throughput with which candidate ADCs can be screened in cell-based assays, and may be more generally applicable to high-throughput preparation and screening of different types of protein conjugates.  相似文献   

20.
Antibody-drug conjugates enhance the antitumor effects of antibodies and reduce adverse systemic effects of potent cytotoxic drugs. However, conventional drug conjugation strategies yield heterogenous conjugates with relatively narrow therapeutic index (maximum tolerated dose/curative dose). Using leads from our previously described phage display-based method to predict suitable conjugation sites, we engineered cysteine substitutions at positions on light and heavy chains that provide reactive thiol groups and do not perturb immunoglobulin folding and assembly, or alter antigen binding. When conjugated to monomethyl auristatin E, an antibody against the ovarian cancer antigen MUC16 is as efficacious as a conventional conjugate in mouse xenograft models. Moreover, it is tolerated at higher doses in rats and cynomolgus monkeys than the same conjugate prepared by conventional approaches. The favorable in vivo properties of the near-homogenous composition of this conjugate suggest that our strategy offers a general approach to retaining the antitumor efficacy of antibody-drug conjugates, while minimizing their systemic toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号