首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ofatumumab     
《MABS-AUSTIN》2013,5(4):326-331
Ofatumumab is an anti-CD20 IgG1κ human monoclonal antibody that is being considered by the US Food and Drug Administration and the European Medicines Agency for marketing approval as a treatment for chronic lymphocytic leukemia. The mAb is also being studied as a treatment for lymphoma, rheumatoid arthritis and multiple sclerosis. The candidate targets the same antigen as rituximab, but ofatumumab binds a novel, membrane-proximal epitope, and dissociates from its target at a slower rate compared to rituximab. Ofatumumab might be approved in the US by August 2009.  相似文献   

2.
Ofatumumab is the first human anti-CD20 monoclonal antibody to be approved for patients in the United States and the European Union. Ofatumumab received accelerated approval from the U.S. Food and Drug Administration in October 2009 and was granted a conditional marketing authorization by the European Medicines Agency in April 2010 for the treatment of patients with chronic lymphocytic leukemia (CLL) refractory to fludarabine and alemtuzumab, based on interim results of a pivotal phase 2 trial. Preliminary positive results for ofatumumab in combination with chemotherapy in patients with CLL are currently being confirmed in larger randomized trials in both the frontline setting and the relapsed/refractory setting. Ofatumumab has also shown potential in treating B cell non-Hodgkin's lymphoma, such as follicular lymphoma (FL), diffuse large B cell lymphoma (DLBCL), and Waldenstr?m's macroglobulinemia. Additional trials are ongoing to confirm activity of ofatumumab as monotherapy and in combination with chemotherapy in patients with FL or DLBCL.  相似文献   

3.
4.
The chimeric anti-CD20 monoclonal antibody rituximab has been used extensively in the treatment of B cell malignancies, and more recently it has emerged as a potential treatment for rheumatoid arthritis (RA), via selective B lymphocyte depletion. Experience in oncology shows that rituximab is well tolerated in a variety of settings, with mild-to-moderate infusion related reactions following the first infusion being the most common adverse event. Current data suggest that the safety profile of rituximab in patients with RA is similar to that in oncology, but that the adverse events are less frequent and less severe in patients with RA.  相似文献   

5.
The CD20 cell marker appears early in the process of B cell development. In this review we focus on the results of attempts to utilize B cell depletion based on the use of a chimeric monoclonal antibody (MAb) specific for human CD20, rituximab, for the treatment of patients with autoimmune diseases. In 1997, rituximab was approved for the treatment of low-grade B cell non-Hodgkin's lymphoma. Following these encouraging results, rituximab started to be used experimentally in other diseases presumed to be due to B cell pathology. The first autoimmune disease to be treated effectively was chronic idiopathic thrombocytopaenia. More recent success has been demonstrated in patients with rheumatoid arthritis and systemic lupus erythematosus.  相似文献   

6.
Immune system dysfunction is common to rheumatic disorders, with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) being classic examples. Altered development and function of B cells may play a prominent role. B-cell abnormalities also occur in other rheumatic diseases, eg, Sjogren's syndrome, Behcet's disease, antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis, and dermatomyositis. Hence, B-cell depletion has been investigated as a therapeutic option. Clinical trials in RA and SLE have shown that rituximab, an anti-CD20 monoclonal antibody, can profoundly reduce disease activity and is generally well tolerated. Reports of rituximab treatment for ANCA-associated vasculitis and dermatomyositis are also promising. These encouraging results validate the strategy of B-cell depletion in various rheumatic diseases. B-cell depletion with rituximab is under study in larger clinical trials for the purposes of regulatory approval to define more closely its place in RA and SLE treatment paradigms, and smaller clinical trials are ongoing or planned in associated inflammatory diseases.  相似文献   

7.
《MABS-AUSTIN》2013,5(2):137-147
Certolizumab pegol (Cimzia®) is currently the only PEGylated anti-TNFα biologic approved for the treatment of rheumatoid arthritis and Crohn disease. The product, developed by UCB, is a humanized antigen-binding fragment (Fab′) of a monoclonal antibody that has been conjugated to polyethylene glycol. Certolizumab pegol was approved as a treatment for rheumatoid arthritis in the EU, US and Canada in 2009, and as a treatment for Crohn disease in Switzerland in 2007 and the US in 2008. Certolizumab pegol is entering into an increasingly competitive marketplace, especially in rheumatoid arthritis, but clinical data demonstrate benefits across a range of clinical, radiographic and patient reported outcomes.  相似文献   

8.
Certolizumab pegol (Cimzia®) is currently the only PEGylated anti-TNFα biologic approved for the treatment of rheumatoid arthritis and Crohn disease. The product, developed by UCB, is a humanized antigen-binding fragment (Fab’) of a monoclonal antibody that has been conjugated to polyethylene glycol. Certolizumab pegol was approved as a treatment for rheumatoid arthritis in the EU, US and Canada in 2009, and as a treatment for Crohn disease in Switzerland in 2007 and the US in 2008. Certolizumab pegol is entering into an increasingly competitive marketplace, especially in rheumatoid arthritis, but clinical data demonstrate benefits across a range of clinical, radiographic and patient reported outcomes.Key words: certolizumab pegol, rheumatoid arthritis, Crohn disease, TNFα, PEGylated, methotrexate  相似文献   

9.
Complement plays an important role in the immunotherapeutic action of the anti-CD20 mAb rituximab, and therefore we investigated whether complement might be the limiting factor in rituximab therapy. Our in vitro studies indicate that at high cell densities, binding of rituximab to human CD20(+) cells leads to loss of complement activity and consumption of component C2. Infusion of rituximab in chronic lymphocytic leukemia patients also depletes complement; sera of treated patients have reduced capacity to C3b opsonize and kill CD20(+) cells unless supplemented with normal serum or component C2. Initiation of rituximab infusion in chronic lymphocytic leukemia patients leads to rapid clearance of CD20(+) cells. However, substantial numbers of B cells, with significantly reduced levels of CD20, return to the bloodstream immediately after rituximab infusion. In addition, a mAb specific for the Fc region of rituximab does not bind to these recirculating cells, suggesting that the rituximab-opsonized cells were temporarily sequestered by the mononuclear phagocytic system, and then released back into the circulation after the rituximab-CD20 complexes were removed by phagocytic cells. Western blots provide additional evidence for this escape mechanism that appears to occur as a consequence of CD20 loss. Treatment paradigms to prevent this escape, such as use of engineered or alternative anti-CD20 mAbs, may allow for more effective immunotherapy of chronic lymphocytic leukemia.  相似文献   

10.
Canakinumab     
Canakinumab (ACZ885, Ilaris) is a human anti-IL-1β monoclonal antibody developed by Novartis. its mode of action is based on the neutralization of 1β signaling, resulting in suppression of inflammation in patients with disorders of autoimmune origin. In June 2009 the drug was approved by the US Food and Drug Administration for the treatment of familial cold auto-inflammatory syndrome and Muckle-wells syndrome, which are inflammatory diseases related to cryopyrin-associated periodic syndromes. The drug is currently being evaluated for its potential in the treatment of rheumatoid arthritis, systemic-onset juvenile idiopathic arthritis, chronic obstructive pulmonary disease, type 1 and 2 diabetes and ocular diseases. Reports from clinical trials suggest that canakinumab is well-tolerated in most patients, and no serious adverse effects have been reported. The drug provides significant advantages over existing competitive therapies, including bimonthly administration and approved use in children.Key words: canakinumab, Ilaris, trials, CAPS, rheumatoid arthritis, IL-1β  相似文献   

11.
Tocilizumab     
Roche is co-developing tocilizumab (Actemra, RoActemra), a humanized anti-interleukin-6 receptor (IL-6R) monoclonal antibody, with Chugai Pharmaceutical. Tocilizumab is marketed in Japan for Castleman disease and several types of arthritis. The product is approved in the European Union for treatment of moderate-to-severe rheumatoid arthritis, and is currently undergoing review by the US Food and Drug Administration for this condition. Tocilizumab has also been studied for potential use in the treatment of other IL-6 related disorders including Crohn disease.Key words: rheumatoid arthritis, Crohn disease, Castleman disease, IL-6 receptor, tocilizumab, interleukins for rheumatoid arthritis  相似文献   

12.
Treatment with the chimerical monoclonal antibody rituximab results in CD20-directed B cell depletion. Although this depletion is almost complete in the peripheral blood of nearly all patients with rheumatoid arthritis, a proportion of patients does not exhibit a clinical response. The paper by Nakou and colleagues suggests that a decrease in CD19+CD27+ memory B cells in both peripheral blood and bone marrow precedes the clinical response to rituximab. This finding adds to the emerging evidence that lack of response to rituximab is associated with persistence of B lineage cells in specific body compartments.  相似文献   

13.
Canakinumab     
《MABS-AUSTIN》2013,5(1):3-13
Canakinumab (ACZ885, Ilaris) is a human anti-IL-1β monoclonal antibody developed by Novartis. Its mode of action is based on the neutralization of IL-1β signaling, resulting in suppression of inflammation in patients with disorders of autoimmune origin. In June 2009 the drug was approved by the US Food and Drug Administration for the treatment of familial cold auto-inflammatory syndrome and Muckle-Wells syndrome, which are inflammatory diseases related to cryopyrin-associated periodic syndromes. The drug is currently being evaluated for its potential in the treatment of rheumatoid arthritis, systemic-onset juvenile idiopathic arthritis, chronic obstructive pulmonary disease, type 1 and 2 diabetes and ocular diseases. Reports from clinical trials suggest that canakinumab is well-tolerated in most patients, and no serious adverse effects have been reported. The drug provides significant advantages over existing competitive therapies, including bimonthly administration and approved use in children.  相似文献   

14.
Denosumab     
Denosumab is an anti-receptor activator of nuclear factor (NF)-kappaB (RANK) ligand human monoclonal antibody studied as a treatment for postmenopausal osteoporosis (PMO) and bone destruction due to rheumatoid arthritis (RA) or metastatic cancers. As of February 2009, the candidate was undergoing US Food and Drug Administration review, and might be approved by October 2009. Late phase clinical trials demonstrated that denosumab possesses a similar safety profile to bisphosphonates and that it can be either equally or more effective than bisphosphonates at preventing bone loss due to PMO, RA or cancer treatment and metastases.Key Words: monoclonal antibody, RANKL, bone loss, osteoporosis, breast cancer, rheumatoid arthritis  相似文献   

15.
Golimumab     
Golimumab, a human anti-TNFα IgG1. monoclonal antibody, was approved in the US and Canada in April 2009 as a treatment for rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis, and is undergoing regulatory review in the EU for these indications. The product was developed by Centocor and Janssen Pharmaceutical KK (Johnson & Johnson subsidiaries), in collaboration with Schering-Plough and Mitsubishi Tanabe Pharma. Golimumab faces numerous protein therapeutic competitors on the market, but, as the first patient-administered, once-monthly dosed anti-TNFα drug, it will likely be an attractive option for patients.Key words: golimumab, monoclonal antibody, immunomodulator, anti-TNF, arthritis  相似文献   

16.
Golimumab     
《MABS-AUSTIN》2013,5(5):422-431
Golimumab, a human anti-TNFα IgG1κ monoclonal antibody, was approved in the US and Canada in April 2009 as a treatment for rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis, and is undergoing regulatory review in the EU for these indications. The product was developed by Centocor and Janssen Pharmaceutical KK (Johnson & Johnson subsidiaries), in collaboration with Schering-Plough and Mitsubishi Tanabe Pharma. Golimumab faces numerous protein therapeutic competitors on the market, but, as the first patient-administered, once-monthly dosed anti-TNFα drug, it will likely be an attractive option for patients.  相似文献   

17.
A murine hybridoma-derived monoclonal antibody, PM-81, was obtained from a fusion of cells of the NS-1 myeloma cell line with cells from a mouse immunized with the HL-60 promyelocytic leukemia cell line. This cytotoxic IgM monoclonal antibody was specific for myeloid cells. Employing indirect immunofluorescence and flow cytometry, we determined that this antibody reacts strongly with normal human granulocytes, eosinophils, and monocytes but not lymphocytes (including phytohemagglutinin-activated lymphocytes), null cells, red blood cells, or platelets. Moreover, the PM-81 antibody reacts with leukemia cells from 19 of 22 patients with acute myelocytic leukemia of all FAB subclasses, three of three patients with common acute lymphocytic leukemia, four of four patients with chronic myelocytic leukemia (CML) in myeloid blast crisis (terminal transferase (TdT)-negative) but did not react with cells from two patients with CML in lymphoid blast crisis (TdT-positive) or five patients with chronic lymphocytic leukemia. The myeloid cell lines HL-60, K562, KG-1, and U937 were all reactive with PM-81. The lymphoid lines CCRF-CEM and Daudi did not express PM-81 but HSB-2 was positive. The PM-81 antigen was absent on myeloid and erythroid progenitor cells as determined by their insusceptibility to complement-dependent lysis. In addition, only PM-81-unreactive cells were capable of colony formation. Furthermore, the PM-81 antibody does not appear to induce modulation of the antigen to which it binds. Thus, this monoclonal antibody appears to fulfill several criteria for clinical utility in the diagnosis and treatment of both acute myelocytic and acute lymphocytic leukemia.  相似文献   

18.
Tocilizumab     
《MABS-AUSTIN》2013,5(5):432-438
Roche is co-developing tocilizumab (Actemra, RoActemra), a humanized anti-interleukin-6 receptor (IL-6R) monoclonal antibody, with Chugai Pharmaceutical. Tocilizumab is marketed in Japan for Castleman disease and several types of arthritis. The product is approved in the European Union for treatment of moderate-to-severe rheumatoid arthritis, and is currently undergoing review by the US Food and Drug Administration for this condition. Tocilizumab has also been studied for potential use in the treatment of other IL-6 related disorders including Crohn disease.  相似文献   

19.
Cytokines in rheumatoid arthritis: trials and tribulations   总被引:5,自引:0,他引:5  
Biological agents that inhibit the activity of proinflammatory cytokines are being investigated for use in the treatment of rheumatoid arthritis. Thus far, two of these agents, both of which neutralize tumor necrosis factor alpha (TNF-alpha), have received US Food and Drug Administration approval for the treatment of the disease. Etanercept is a bioengineered fusion protein of the p75 soluble TNF receptor, and infliximab is a chimeric monoclonal antibody to TNF-alpha. Other agents that target proinflammatory cytokines are also being developed. By allowing earlier treatment and better-tolerated long-term therapy, biologics might help slow or prevent disease progression and joint destruction.  相似文献   

20.
Therapeutic approaches to multiple sclerosis (MS) are based on altering the functions of the immune system, either by using broad immunosuppressive drugs used for transplantation rejection and rheumatology, or by modulating them more discreetly with beta interferon and synthetic amino-acid copolymers. These strategies are only partially successful, have important safety and tolerability limitations, and have shown to be mostly effective in earlier stages of the disease, in which acute relapses dominate the clinical picture. For progressive phenotypes of MS there are currently no effective therapeutic options. As very specific and potent immunosuppressive agents, monoclonal antibodies (mAbs) may offer considerable advantages over other therapies for MS. During the last decade, anti-a4 integrin natalizumab became the first approved mAb for treatment of relapsing MS, after convincingly demonstrating clinically significant effects on two large Phase 3 trials. Moreover, the concept of disease remission was introduced for the first time to describe patients who show no signs of clinical or imaging markers of disease activity during therapy with natalizumab. Of the mAbs under development for MS, alemtuzumab and rituximab have also shown promising evidence of effectiveness and potentially expanded the therapeutic horizon to reversal of disease progression in early relapsing patients and progressive patients who previously had not been studied. However, the appearance of progressive multifocal leukoencephalopathy (PML) in natalizumab-treated MS patients, as well as in patients with lymphoma, lupus and rheumatoid arthritis, treated with rituximab and autoimmune-type complications in alemtuzumab-treated MS patients underlines the fact that extended efficacy comes with significant clinical risks. The challenge is then how best to utilize therapies that have evidently superior efficacy in a chronic disease of young adults to obtain the best benefit-risk ratio and how to monitor and prevent emergent safety concerns.Key words: monoclonal, antibody, multiple sclerosis, therapy, natalizumab, rituximab, alemtuzumab  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号