首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Assembly of the tubulin-like cytoskeletal protein FtsZ into a ring structure at midcell establishes the location of the nascent division sites in prokaryotes. However, it is not yet known how the assembly and contraction of the Z ring are regulated, especially in cyanobacteria, the environmentally crucial organisms for which only one FtsZ partner protein, ZipN, has been described so far. Here, we characterized SepF and Ftn6, two novel septal proteins, in the spherical-celled strain Synechocystis PCC 6803. Both proteins were found to be indispensable to Synechocystis sp. strain PCC 6803. The depletion of both SepF and Ftn6 resulted in delayed cytokinesis and the generation of giant cells but did not prevent FtsZ polymerization, as shown by the visualization of green fluorescent protein (GFP)-tagged FtsZ polymers. These GFP-tagged Z-ring-like structures often appeared to be abnormal, because these reporter cells respond to the depletion of either SepF or Ftn6 with an increased abundance of total, natural, and GFP-tagged FtsZ proteins. In agreement with their septal localization, we found that both SepF and Ftn6 interact physically with FtsZ. Finally, we showed that SepF, but not Ftn6, stimulates the formation and/or stability of FtsZ polymers in vitro.Binary fission of a mother cell to form two daughter cells is a widely conserved cell proliferation mechanism. In nearly all bacteria, cell division is initiated by the polymerization into a ring-like structure at midcell of the tubulin homolog GTPase protein FtsZ, which is also found in some archae, as well as in plastids and some mitochondria (for reviews, see references 7, 21, and 33). The Z-ring is subsequently used as a scaffold for recruitment of downstream factors that execute the synthesis of the division septum. The assembly of this complex, also referred to as the divisome, has been thoroughly investigated in studies of the rod-shaped model organisms Escherichia coli and Bacillus subtilis) (for reviews, see references 3, 4, 7, 9, 11, 19, and 21). In E. coli, more than 10 different proteins are required for the progression and completion of cell division. They are designated Fts proteins because their depletion leads to filamentation of the bacteria, and they are recruited to the division site in the following sequential order: FtsZ→FtsA/ZipA/ZapB→FtsK→FtsQ and FtsL/FtsB→FtsW→FtsI and FtsN.The stability of the FtsZ protofilaments is thought to be important for assembly of the septal Z ring. Four FtsZ-interacting proteins have been shown to promote FtsZ polymerization and/or Z-ring stabilization, namely, ZapA and ZipA (found only in gammaproteobacteria), FtsA (an actin-like protein), and SepF (not found in gammaproteobacteria) (10, 31). Both FtsA and ZipA assemble at the Z-ring early and participate in its anchorage to the inner face of the cytoplasmic membrane of the cell. They also participate in the recruitment of the downstream cytokinetic factor FtsK. Subsequently, the recruitment of FtsQ and the FtsB/FtsL complex allow the progressive assembly of downstream factors (FtsW, FtsI, and FtsN) involved in synthesis of the septal cell wall (7).By contrast, the negative regulatory proteins MinCDE, DivIVA, EzrA, SulA, and Noc operate in the destabilization and positioning of the Z-ring at midcell (7, 21, 30), sometimes through a direct interaction with FtsZ (SulA, MinC, and ErzA).Little is known concerning cell division in cyanobacteria, in spite of their crucial importance to the biosphere (5, 27, 34) and their interest for biotechnologists (1, 6, 32). Cyanobacteria are also attractive because many species (such as E. coli and B. subtilis) exhibit a cylindrical morphology with a well-defined middle, whereas many others have a spherical shape (29) and thus possess an infinite number of potential division planes at the point of greatest cell diameter. Furthermore, as the progenitor of the chloroplasts (8), cyanobacteria can be of help for deciphering the stromal chloroplastic division machinery (33). Interestingly, several cell division factors occurring in E. coli and B. subtilis have been shown (FtsZ, MinCDE, and SulA) or proposed (FtsE, FtsI, FtsQ, and FtsW) to be conserved in cyanobacteria (23, 26) and chloroplasts (which lack MinC) (33). In contrast, ftsA, ftsB, zipA, ftsK, ftsL, ftsN, and zapA have not been detected in cyanobacteria.So far, cyanobacterial cytokinesis has mainly been investigated using the two unicellular species Synechococcus sp. strain PCC 7942 (rod shaped; hereafter S. elongatus) and Synechocystis sp. strain PCC 6803 (spherical-celled; hereafter Synechocystis sp.) and the filamentous strain Anabaena PCC 7120, all of which possess a fully sequenced genome (http://genome.kazusa.or.jp/cyanobase/) that is easily manipulated (16). Both FtsZ and ZipN/Ftn2/Arc6, a protein occurring only in cyanobacteria (ZipN [alternative name, Ftn2]) and plant chloroplasts (Arc6), were found to be crucial for cytokinesis (17, 23, 26) and to physically interact with each other (20, 23). We also reported that the MinCDE system participates in determining the correct positioning of the septal Z ring at midcell (23). In addition, it has recently been shown in studies of Synechococcus sp. that inactivation of both the cdv2 gene (an orthologue of the gene encoding B.subtilis sepF) and the ftn6 gene (present in only some cyanobacteria) promotes filamentation, though their role in cell division has yet to be characterized (16, 26).In a continuous effort to characterize the divisome machine of Synechocystis sp., we have used a combination of in vivo and in vitro techniques for thorough analysis of the SepF and Ftn6 proteins. We report here that both SepF and Ftn6 are crucial cytokinetic proteins that localize at the division site at midcell and whose depletion leads to the formation of giant cells that remain spherical. In agreement with their septal localization, both SepF and Ftn6 were found to interact physically with FtsZ; also, SepF, but not Ftn6, was found to stimulate the formation and/or stability of FtsZ polymers.  相似文献   

2.
We pursued the characterization of the divisome of the spherical-celled cyanobacterium Synechocystis PCC6803, through deletion, site-directed mutagenesis, GFP tagging, two-hybrid and co-immunoprecipitation assays. We presently report that the DivIVA-like protein Cdv3 is essential to both cell growth and division, whereas the AmiC, AmpH, FtsE, FtsN, SpoIID, YlmD, YlmE and YlmG proteins are dispensable. With the exception of the self-interacting protein YlmD, none of these dispensable factors appeared to interact with ZipN, the crucial cytokinetic factor we previously characterized. By contrast, we found that ZipN interacts with itself and the self-interacting protein Cdv3, as well as with all other crucial cytokinetic factors we previously characterized, namely: FtsZ, FtsI, FtsQ, SepF and ZipS. We also identified ZipN amino acids selectively involved in ZipN interaction with one of its following partners, Cdv3, FtsQ or SepF. Finally, we found no direct interaction between Cdv3, SepF and ZipS. Collectively, these results indicate that ZipN is a central player of divisome assembly in cyanobacteria, similarly to the FtsA protein of E. coli that is absent in cyanobacteria and chloroplast.  相似文献   

3.
Band 7 proteins, which encompass members of the stomatin, prohibitin, flotillin, and HflK/C protein families, are integral membrane proteins that play important physiological roles in eukaryotes but are poorly characterized in bacteria. We have studied the band 7 proteins encoded by the cyanobacterium Synechocystis sp. strain PCC 6803, with emphasis on their structure and proposed role in the assembly and maintenance of the photosynthetic apparatus. Mutagenesis revealed that none of the five band 7 proteins (Slr1106, Slr1128, Slr1768, Sll0815, and Sll1021) was essential for growth under a range of conditions (including high light, salt, oxidative, and temperature stresses), although motility was compromised in an Slr1768 inactivation mutant. Accumulation of the major photosynthetic complexes in the thylakoid membrane and repair of the photosystem II complex following light damage were similar in the wild type and a quadruple mutant. Cellular fractionation experiments indicated that three of the band 7 proteins (Slr1106, Slr1768, and Slr1128) were associated with the cytoplasmic membrane, whereas Slr1106, a prohibitin homologue, was also found in the thylakoid membrane fraction. Blue native gel electrophoresis indicated that these three proteins, plus Sll0815, formed large (>669-kDa) independent complexes. Slr1128, a stomatin homologue, has a ring-like structure with an approximate diameter of 16 nm when visualized by negative stain electron microscopy. No evidence for band 7/FtsH supercomplexes was found. Overall, our results indicate that the band 7 proteins form large homo-oligomeric complexes but do not play a crucial role in the biogenesis of the photosynthetic apparatus in Synechocystis sp. strain PCC 6803.Members of the band 7 superfamily of proteins are found throughout nature and are defined by a characteristic sequence motif, termed the SPFH domain, after the initials of the various subfamilies: the stomatins, the prohibitins, the flotillins (also known as “reggies”), and the HflK/C proteins (12, 49). The stomatins and prohibitins and to a lesser extent flotillins are highly conserved protein families and are found in a variety of organisms ranging from prokaryotes to higher eukaryotes (29, 34, 49), whereas HflK and HflC homologues are only present in bacteria.In eukaryotes band 7 proteins are linked with a variety of disease states consistent with important cellular functions (6). In general the eukaryotic band 7 proteins tend to be oligomeric and are involved in membrane-associated processes: for example, prohibitins are involved in modulating the activity of a membrane-bound FtsH protease (17, 46) and the assembly of mitochondrial respiratory complexes (30), stomatins are involved in ion channel function (47), and flotillins are involved in signal transduction and vesicle trafficking (25).In the case of prokaryotes, most work so far has focused on the roles of the HflK/C and YbbK (also known as QmcA, a stomatin homologue) band 7 proteins of Escherichia coli (7, 16, 17, 36) and the structure of a stomatin homologue in the archaeon Pyrococcus horikoshii (57). Much less is known about the structure, function, and physiological importance of band 7 proteins in other prokaryotes, especially the cyanobacteria (12).The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 is a widely used model organism for studying various aspects of cyanobacterial physiology and, in particular, oxygenic photosynthesis. One of the main areas of our research is to understand the mechanism by which the oxygen-evolving photosystem II (PSII) complex found in the thylakoid membrane of Synechocystis sp. strain PCC 6803 is repaired following light damage. Recent work has identified an important role for FtsH proteases in PSII repair (19, 41). Given that FtsH is known to form large supercomplexes with HflK/C in E. coli (36) and with prohibitins in Saccharomyces cerevisiae mitochondria (46), we hypothesized that one or more band 7 proteins might interact with FtsH in cyanobacteria and play a role in the selective turnover of the D1 reaction center polypeptide during PSII repair and so provide resistance to high light stress (40). This idea was given early support by the detection of both FtsH and Slr1106, a prohibitin homologue, in a His-tagged PSII preparation isolated from Synechocystis sp. strain PCC 6803 (40) and the detection of Slr1128 (a stomatin homologue), Sll1021 (a possible flotillin homologue), and FtsH in a His-tagged preparation of ScpD, a small chlorophyll a/b-like-binding protein that associates with PSII (56). Recent mutagenesis experiments have also suggested a role for Slr1128 in maintaining growth at high light intensities (53).In this paper we have used targeted gene disruption mutagenesis and various biochemical approaches to investigate the structure and function of band 7 proteins in Synechocystis sp. strain PCC 6803, with particular emphasis on PSII function. We provide evidence that four predicted band 7 proteins in Synechocystis sp. strain PCC 6803 (Slr1106, Slr1768, Slr1128, and Sll8015) form large independent complexes, which in the case of Slr1128 forms a ring-like structure. No evidence was found for the formation of supercomplexes with FtsH. Importantly, single and multiple insertion mutants lacking up to four of the five band 7 proteins are able to grow as well as the wild type (WT) under a range of growth conditions, including high light stress. Our results suggest that band 7 proteins are not essential in Synechocystis sp. strain PCC 6803 and are not required for efficient PSII repair. Possible functions of the cyanobacterial band 7 proteins are discussed in the light of recent results from other systems.  相似文献   

4.
Synechocystis sp. PCC 6803 is the most popular cyanobacterial strain, serving as a standard in the research fields of photosynthesis, stress response, metabolism and so on. A glucose-tolerant (GT) derivative of this strain was used for genome sequencing at Kazusa DNA Research Institute in 1996, which established a hallmark in the study of cyanobacteria. However, apparent differences in sequences deviating from the database have been noticed among different strain stocks. For this reason, we analysed the genomic sequence of another GT strain (GT-S) by 454 and partial Sanger sequencing. We found 22 putative single nucleotide polymorphisms (SNPs) in comparison to the published sequence of the Kazusa strain. However, Sanger sequencing of 36 direct PCR products of the Kazusa strains stored in small aliquots resulted in their identity with the GT-S sequence at 21 of the 22 sites, excluding the possibility of their being SNPs. In addition, we were able to combine five split open reading frames present in the database sequence, and to remove the C-terminus of an ORF. Aside from these, two of the Insertion Sequence elements were not present in the GT-S strain. We have thus become able to provide an accurate genomic sequence of Synechocystis sp. PCC 6803 for future studies on this important cyanobacterial strain.  相似文献   

5.
6.
The degree of retention of whole cells of Synechocystis strain PCC 6803 on DEAE-cellulose columns was shown to depend on their content of exopolysaccharides, which are at least in part responsible for the external negative charge of the cells. This feature was used for the isolation of mutants modified in the apparent viscosity caused by these macromolecular constituents. When a wild-type suspension was loaded onto a DE52 column, the cells eluting in the two extreme fractions of a 0 to 5 M NaCl step gradient represented 10−9 to 10−7 of the total eluted population. The accuracy of the procedure was established through the analysis of four clones: Suc(0)32 and Suc(0)65 (0 M) and Suc(5)64A and Suc(5)61 (5 M). The decreased viscosity of the exopolymers of the two 0 M clones, which appeared identical, could be related to the production of molecules less charged in uronic acids and more readily liberated from the cells. The two 5 M clones exhibited a lower sedimentation velocity, correlating with either a 60% increase in uronic acid and a doubling of the specific viscosity of the exopolysaccharides [clone Suc(5)64A] or a doubling of the per-cell production of polymers otherwise identical to those from wild-type cells [clone Suc(5)61].  相似文献   

7.
The cph1 gene from the unicellular cyanobacterium Synechoycstis sp. PCC 6803 encodes a protein with the characteristics of plant phytochromes and histidine kinases of two-component phospho-relay systems. Spectral and biochemical properties of Cph1 have been intensely studied in vitro using protein from recombinant systems, but virtually nothing is known about the situation in the natural host. In the present study, His6-tagged Cph1 was isolated from Synechocystis cells. The cph1-his gene was expressed either under the control of the natural cph1 promoter or over-expressed using the strong promoter of the psbA2 gene. Upon purification with nickel affinity chromatography, the presence of Cph1 in extracts was confirmed by immunoblotting and Zn2+-induced fluorescence. The Cph1 extracts exhibited a red/far-red photoactivity characteristic of phytochromes. Difference spectra were identical with those of the phycocyanobilin adduct of recombinant Cph1, implying that phycocyanobilin is the chromophore of Cph1 in Synechocystis.  相似文献   

8.
9.
10.
Glutaminase is widely distributed among microorganisms and mammals with important functions. Lit-tle is known regarding the biochemical properties and functions of the deamidating enzyme glutami-nase in cyanobacteria. In this study a putative glutaminase encoded by gene slr2079 in Synechocystis sp. PCC 6803 was investigated. The slr2079 was expressed as histidine-tagged fusion protein in Es-cherichia coli. The purified protein possessed glutaminase activity, validating the functional assign-ment of the genomic annotation. The apparent Km value of the recombinant protein for glutamine was 26.6 ± 0.9 mmol/L, which was comparable to that for some of other microbial glutaminases. Analysis of the purified protein revealed a two-fold increase in catalytic activity in the presence of 1 mol/L Na . Moreover, the Km value was decreased to 12.2 ± 1.9 mmol/L in the presence of Na . These data demon-strate that the recombinant protein Slr2079 is a glutaminase which is regulated by Na through in-creasing its affinity for substrate glutamine. The slr2079 gene was successfully disrupted in Synecho-cystis by targeted mutagenesis and the △slr2079 mutant strain was analyzed. No differences in cell growth and oxygen evolution rate were observed between △slr2079 and the wild type under standard growth conditions, demonstrating slr2079 is not essential in Synechocystis. Under high salt stress condition, however, △slr2079 cells grew 1.25-fold faster than wild-type cells. Moreover, the photosyn-thetic oxygen evolution rate of △slr2079 cells was higher than that of the wild-type. To further charac-terize this phenotype, a number of salt stress-related genes were analyzed by semi-quantitative RT-PCR. Expression of gdhB and prc was enhanced and expression of desD and guaA was repressed in △slr2079 compared to the wild type. In addition, expression of two key enzymes of ammonium assimi-lation in cyanobacteria, glutamine synthetase (GS) and glutamate synthase (GOGAT) was examined by semi-quantitative RT-PCR. Expression of GOGAT was enhanced in △slr2079 compared to the wild type while GS expression was unchanged. The results indicate that slr2079 functions in the salt stress re-sponse by regulating the expression of salt stress related genes and might not play a major role in glutamine breakdown in Synechocystis.  相似文献   

11.
Glutaminase is widely distributed among microorganisms and mammals with important functions. Little is known regarding the biochemical properties and functions of the deamidating enzyme glutaminase in cyanobacteria. In this study a putative glutaminase encoded by gene slr2079 in Synechocystis sp. PCC 6803 was investigated. The slr2079 was expressed as histidine-tagged fusion protein in Escherichia coli. The purified protein possessed glutaminase activity, validating the functional assignment of the genomic annotation. The apparent K m value of the recombinant protein for glutamine was 26.6 ± 0.9 mmol/L, which was comparable to that for some of other microbial glutaminases. Analysis of the purified protein revealed a two-fold increase in catalytic activity in the presence of 1 mol/L Na+. Moreover, the K m value was decreased to 12.2 ± 1.9 mmol/L in the presence of Na+. These data demonstrate that the recombinant protein Slr2079 is a glutaminase which is regulated by Na+ through increasing its affinity for substrate glutamine. The slr2079 gene was successfully disrupted in Synechocystis by targeted mutagenesis and the Δslr2079 mutant strain was analyzed. No differences in cell growth and oxygen evolution rate were observed between Δslr2079 and the wild type under standard growth conditions, demonstrating slr2079 is not essential in Synechocystis. Under high salt stress condition, however, Δslr2079 cells grew 1.25-fold faster than wild-type cells. Moreover, the photosynthetic oxygen evolution rate of Δslr2079 cells was higher than that of the wild-type. To further characterize this phenotype, a number of salt stress-related genes were analyzed by semi-quantitative RT-PCR. Expression of gdhB and prc was enhanced and expression of desD and guaA was repressed in Δslr2079 compared to the wild type. In addition, expression of two key enzymes of ammonium assimilation in cyanobacteria, glutamine synthetase (GS) and glutamate synthase (GOGAT) was examined by semi-quantitative RT-PCR. Expression of GOGAT was enhanced in Δslr2079 compared to the wild type while GS expression was unchanged. The results indicate that slr2079 functions in the salt stress response by regulating the expression of salt stress related genes and might not play a major role in glutamine breakdown in Synechocystis. Supported by the National Natural Sciences Foundation of China (Grant No. 30500108) and Hundred Talents Program of Chinese Academy of Sciences.  相似文献   

12.
A mutant of Synechocystis sp. strain PCC 6803 disrupted for sll1878 exhibited greatly reduced Fe(3+) transport activity. The K(m) value of sll1878-dependent Fe(3+) transport in cells grown in iron-replete medium was 0.5 microM. Both the maximal rate and K(m) value were increased in iron-starved cells.  相似文献   

13.
14.
Ivleva  N. B.  Sidoruk  K. V.  Pakrasi  H. B.  Shestakov  S. V. 《Microbiology》2002,71(4):433-437
To understand the functional role of CtpB and CtpC proteins, which are similar to the C-terminal processing CtpA peptidase, the effect of the insertional inactivation of the ctpB and ctpCgenes on the phenotypic characteristics of Synechocystis sp. PCC 6803 was studied. The inactivation of the ctpC gene was found to be lethal to the cyanobacterium, which indicates a vital role of the CtpC protein. The mutant with the inactivated ctpB gene had the same photosynthetic characteristics as the wild-type strain. The double mutant ctpActpB with the two deleted genes was identical, in the phenotypic characteristics, to the mutant with a knock-out mutation in the ctpAgene, which was unable to grow photoautotrophically. The data obtained suggest that, in spite of the high similarity of the Ctp proteins, they serve different functions in Synechocystis sp. PCC 6803 cells and cannot compensate for each other.  相似文献   

15.
16.
17.
The properties of Slr1944 protein encoded by the slr1944 gene and participating in the metabolism of lipophilic compounds in a cyanobacterium Synechocystis were under study. Located in the periplasm, this protein comprises a conserved pentapeptide G-X-S-X-G characteristic of lipases, acetylcholinesterases, and thioesterases. An attempt to delete the gene from the cyanobacterial genome failed; this fact presumes an essential function of Slr1944 protein under the optimum growth conditions. Expression of the slr1944 gene in Escherichia coli cells demonstrated a high affinity of the product for lipophilic compounds. An enhanced slr1944 expression deprived Synechocystis cells of the ability to restore the activity of the photosynthetic electron-transport chain following photoinactivation. The authors believe that Slr1944 participates in the biogenesis of the lipophilic components of photosynthetic complexes.  相似文献   

18.
So AK  John-McKay M  Espie GS 《Planta》2002,214(3):456-467
A fully-segregated mutant (ccaA::kanR) defective in the ccaA gene, encoding a carboxysome-associated beta-carbonic anhydrase (CA), was generated in the cyanobacterium Synechocystis sp. PCC6803 by insertional mutagenesis. Immunoblot analysis indicated that the CcaA polypeptide was absent from the carboxysome-enriched fraction obtained from ccaA::kanR, but was present in wild-type (WT) cells. The carboxysome-enriched fraction isolated from WT cells catalyzed 18O exchange between 13C18O2 and H2O, indicative of CA activity, while ccaA::kanR carboxysomes did not. Transmission and immunogold electron microscopy revealed that carboxysomes of WT and ccaA::kanR were of similar size, shape and cellular distribution, and contained most of the cellular complement of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The ccaA::kanR cells were substantially smaller than WT and were unable to grow autotrophically at air levels of CO2. However, cell division occurred at near-WT rates when ccaA::kanR was supplied with 5% CO2 (v/v) in air. The apparent photosynthetic affinity of the mutant for inorganic carbon (Ci) was 500-fold lower than that of WT cells although intracellular Ci accumulation was comparable to WT measurements. Mass spectrometric analysis revealed that the CA-like activity associated with the active CO2 transport system was retained by ccaA::kanR cells and was inhibited by H2S, indicating that CO2 transport was distinct from the CcaA-mediated dehydration of intracellular HCO3-. The data suggest that the ccaA mutant was unable to efficiently utilize the internal Ci pool for carbon fixation and that the high-CO2-requiring phenotype of ccaA::kanR was due primarily to an inability to generate enough CO2 in the carboxysomes to sustain normal rates of photosynthesis.  相似文献   

19.
20.
Martin DD  Xu MQ  Evans TC 《Biochemistry》2001,40(5):1393-1402
A naturally occurring trans-splicing intein from the dnaE gene of Synechocystis sp. PCC6803 (Ssp DnaE intein) was used to characterize the intein-catalyzed splicing reaction. Trans-splicing/cleavage reactions were initiated by combining the N-terminal splicing domain of the Ssp DnaE intein containing five native N-extein residues and maltose binding protein as the N-extein with the C-terminal Ssp DnaE intein splicing domain (E(C)) with or without thioredoxin fused in-frame to its carboxy terminus. Observed rate constants (k(obs)) for dithiothreitol-induced N-terminal cleavage, C-terminal cleavage, and trans-splicing were (1.0 +/- 0.5) x 10(-3), (1.9 +/- 0.9) x 10(-4), and (6.6 +/- 1.3) x 10(-5) s(-1), respectively. Preincubation of the intein fragments showed no change in k(obs), indicating association of the two splicing domains is rapid relative to the subsequent steps. Interestingly, when E(C) concentrations were substoichiometric with respect to the N-terminal splicing domain, the levels of N-terminal cleavage were equivalent to the amount of E(C), even over a 24 h period. Activation energies for N-terminal cleavage and trans-splicing were determined by Arrhenius plots to be 12.5 and 8.9 kcal/mol, respectively. Trans-splicing occurred maximally at pH 7.0, while a slight increase in the extent of N-terminal cleavage was observed at higher pH values. This work describes an in-depth kinetic analysis of the splicing and cleavage activity of an intein, and provides insight for the use of the split intein as an affinity domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号