首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copy Number Control of Tn5 Transposition   总被引:11,自引:1,他引:11  
Transposition of Tn5 in Escherichia coli strains containing one or multiple copies of the transposable element was investigated. It was found that the overall frequency of transposition within a cell remained constant regardless of the number of copies of Tn5 present in that cell. Experiments measuring the transposition frequency of differentially marked Tn5s confirmed that the frequency of transposition of an individual Tn5 decreased proportionally with the total number of copies of the element present in a cell. The IS50R -encoded function, protein 2, which has previously been shown to be an inhibitor of transposition, is sufficient to mediate this inhibitory effect. The concentration of protein 2 in a cell appears to modulate the transposition of individual Tn5 elements in such a way that the overall transposition of Tn5 in a cell remains constant.  相似文献   

2.
The kinetics of accumulation of resident transposon copies in a dividing population has been defined using a special experimental system. Analysis of the kinetics made it possible to estimate the probability of transposition for Tn5 as 2.5 X 10(-4) and for Tn10 as 2.3 X 10(-6) per cell per generation. Transposition of the composite elements does not depend on RecBC or RecF pathways of recombination. The fraction of the bacterial population with tandem duplications in the proA region of the genome is permanent for Escherichia coli. It is independent of the recombination pathways (RecBC of RecF) and the integrity of DNA polymerase I.  相似文献   

3.
Tn5 transposase (Tnp) overproduction is lethal to Escherichia coli. The overproduction causes cell filamentation and abnormal chromosome segregation. Here we present three lines of evidence strongly suggesting that Tnp overproduction killing is due to titration of topoisomerase I. First, a suppressor mutation of transposase overproduction killing, stkD10, is localized in topA (the gene for topoisomerase I). The stkD10 mutant has the following characteristics: first, it has an increased abundance of topoisomerase I protein, the topoisomerase I is defective for the DNA relaxation activity, and DNA gyrase activity is reduced; second, the suppressor phenotype of a second mutation localized in rpoH, stkA14 (H. Yigit and W. S. Reznikoff, J. Bacteriol. 179:1704–1713, 1997), can be explained by an increase in topA expression; and third, overexpression of wild-type topA partially suppresses the killing. Finally, topoisomerase I was found to enhance Tn5 transposition up to 30-fold in vivo.  相似文献   

4.
Summary Tn5-trp hybrid transposons have been constructed by insertion of a trpPOED Hind III fragment into an in vivo Tn5 internal deletion mutant or by substitution of trp for the internal Tn5 Hind III fragment. These hybrids are called, respectively, Tn409 and Tn410. Both Tn409 and Tn410 will transpose into in the presence of a complementing Tn5 element. In the absence of a wild Tn5, lysogens carrying R1162::Tn409 and R1162::Tn410 plasmids will yield trp phages at less than six per cent of the complemented frequency. This reduction indicates that Tn409 and Tn410 lack a diffusible transposition function provided by wild Tn5 elements. However, the formation of trp phages without complementation is real. Most of these transducing particles contain Tn409 and Tn410 still linked to the carrier R1162 plasmid. This observation suggests that uncomplemented Tn409 and Tn410 elements mediate the formation of -transposon-plasmid cointegrate structures. Thus, the missing transposition function may be involved in resolving these cointegrate structures to the final ::Tn409 or ::Tn410 product.Abbreviations p.f.u. plaque-forming units - MIC minimal inhibitory concentration - LFT low frequency transducing - HFT high frequency transducing  相似文献   

5.
ABSTRACT

Tn10 is a bacterial transposon that transposes through a non-replicative mechanism. This mode of DNA transposition is widely used in bacteria and is also used by “DNA-based” transposons in eukaryotes. Tn10 has served as a paradigm for this mode of transposition and continues to provide novel insights into how steps in transposition reactions occur and how these steps are regulated. A common feature of transposition reactions is that they require the formation of a higher order protein-DNA complex called a transpososome. A major objective in the last few years has been to better understand the dynamics of transpososome assembly and progression through the course of transposition reactions. This problem is particularly interesting in the Tn10 system because two important host proteins, IHF and H-NS, have been implicated in regulating transpososome assembly and/or function. Interestingly, H-NS is an integral part of stress response pathways in bacteria, and its function is known to be sensitive to changes in environmental conditions. Consequently, H-NS may provide a means of allowing Tn10 to responed to changing environmental conditions. The current review focuses on the roles of both IHF and H-NS on Tn10 transposition.  相似文献   

6.
Transposition of Tn917 in Bacillus megaterium.   总被引:4,自引:1,他引:4  
Transposon Tn917, carried on plasmid pTV1, was introduced into Bacillus megaterium and transposed efficiently and apparently randomly. Insertional mutations included at least eight different auxotrophic loci, two carbon source loci, and sporulation loci. One trp::Tn917 mutation was further verified as an insertion by both reversion and transduction.  相似文献   

7.
Genetic analysis of Porphyromonas gingivalis, an obligately anaerobic gram-negative bacterium, has been hindered by the apparent lack of naturally occurring bacteriophages, transposable elements, and plasmids. Plasmid R751::*omega 4 has previously been used as a suicide vector to demonstrate transposition of Tn4351 in B. uniformis. The erythromycin resistance gene on Tn4351 functions in Bacteroides and Porphyromonas. Erythromycin-resistant transconjugants were obtained at a mean frequency of 1.6 x 10(-7) from matings between Escherichia coli HB101 containing R751::*omega 4 and P. gingivalis 33277. Southern blot hybridization analysis indicated that about half of the erythromycin-resistant P. gingivalis transconjugants contained simple insertions of Tn4351 and half contained both Tn4351 and R751 sequences. The presence of R751 sequences in some P. gingivalis transconjugants most likely occurred from Tn4351-mediated cointegration of R751, since we were unable to detect autonomous plasmid in these P. gingivalis transconjugants. The P. gingivalis-Tn4351 DNA junction fragments from different transconjugants varied in size. These results are consistent with transposition of Tn4351 and with insertion at several different locations in the P. gingivalis chromosome. Tn4351 may be useful as a mutagen to isolate well-defined mutants of P. gingivalis.  相似文献   

8.
9.
10.
Transposition of Tn4560 of Streptomyces fradiae in Mycobacterium smegmatis   总被引:1,自引:0,他引:1  
Tn4560 (8.6 kb) was derived from Tn4556, a Tn3-like element from Streptomyces fradiae. It contains a viomycin resistance gene that has not been used previously for selection in mycobacteria. Tn4560, cloned in a Streptomyces plasmid, was introduced by electroporation into Mycobacterium smegmatis mc(2)155. Tn4560 transposed into the host genome: there was no obvious target sequence preference, and insertions were in or near several conserved open reading frames. The insertions were located far apart on different AseI macrorestriction fragments. Unexpectedly, the transposon delivery plasmid, pUC1169, derived from the Streptomyces multicopy plasmid pIJ101, replicated partially in M. smegmatis, but was lost spontaneously during subculture. Replication of pUC1169 probably contributed to the relatively high efficiency of Tn4560 delivery: up to 28% of the potential M. smegmatis transformants acquired a stable transposon insertion. The data indicated that Tn4560 may be useful for random mutagenesis of M. smegmatis.  相似文献   

11.
Conjugal crosses with Pseudomonas aeruginosa donors carrying the CAM-OCT and RP4::Tn7 plasmids result in transfer of the Tn7 trimethoprim resistance (Tp(r)) determinant independently of RP4 markers. All Tp(r) exconjugants which lack RP4 markers have CAM-OCT genes and therefore must have received CAM-OCT::Tn7 plasmids formed by transposition of Tn7 from RP4::Tn7 to CAM-OCT. Most crosses yield exconjugants carrying mutant CAM-OCT plasmids which no longer determine either camphor or alkane utilization and thus appear to carry Tn7 inserts in the cam or alk loci, respectively. Transduction and reversion experiments indicated that at least 13 alkane-negative, camphor-positive, Tp(r) CAM-OCT::Tn7 plasmids carry an alk::Tn7 mutation. Determination of linkage between the alk mutation and the Tp(r) determinant of Tn7 on these plasmids is complicated by the presence of multiple copies of the Tn7 element in the genome. Generalized transduction will remove Tn7 from a CAM-OCT alk::Tn7 plasmid to yield alk(+) cells which carry no Tp(r) determinant on the CAM-OCT plasmid (as shown by transfer of the plasmid to a second strain). But the transduction to alk(+) does not remove all Tp(r) determinants from the genome of the recipient cell because the alkane-positive transductants remain trimethoprim resistant. Thus, it appears that copies of Tn7 can accumulate in the genome of P. aeruginosa (CAM-OCT alk::Tn7) strains without leaving their original site. This result is consistent with transposition models that involve replication of the transposable element without excision from the original site.  相似文献   

12.
Homologous recombination at the bacterial transposon Tn7 donor site is stimulated 10-fold when Tn7 is activated to transpose at high frequency in RecD(-) Escherichia coli, where recombination is focused near the ends of double-chain breaks. This is observed as an increase in recombination between two lacZ heteroalleles when one copy of lacZ carries within it a Tn7 that is transposing at high frequency. This stimulation of recombination is dependent upon the presence of homology with the donor site, is independent of SOS induction, and is not due to a global stimulation of recombination. When stimulated by Tn7 transposition, the conversion events giving rise to Lac(+) recombinants occur preferentially at the site of Tn7, suggesting that transposition is stimulating gene conversion at the donor site. These results support the model that Tn7 transposition occurs by a ``cut and paste' mechanism, leaving a double-chain break at the donor site that is repaired by the host homologous recombination machinery; normally, repair would use homology in a sister chromosome to regenerate a copy of the transposon. This proposed series of events allows transposition that is nonreplicative, per se, to be effectively replicative.  相似文献   

13.
14.
J. C. Way  N. Kleckner 《Genetics》1985,111(4):705-713
The transposition frequencies of Tn10 elements from the bacterial chromosome to an F epitome decrease 40% for every kilobase increase in transposon length. The basis for this relationship is not known. We have now examined complemented transposition of defective Tn10 elements off small multicopy plasmids. We find that length dependence in this situation is either reduced or absent, depending on the specific class of transposition events involved. These observations can be interpreted as evidence against the model that chromosomal length dependence occurs because of decay of a transposition-associated replicative complex. This interpretation is consistent with unrelated experiments suggesting that Tn10 transposition is normally nonreplicative. Alternative explanations of length dependence phenomena are discussed.  相似文献   

15.
The streptococcal transposon Tn917 was demonstrated to transpose in Escherichia coli from the Bacillus subtilis-E. coli shuttle plasmid pHK1207 into an F' plasmid derivative. Subsequently, a second round of transposition from the F' plasmid into pACYC184 could be readily demonstrated. These results represent the initial demonstration of the transposition of a gram-positive transposon in a gram-negative bacterium at a relatively high frequency.  相似文献   

16.
17.
18.
In this study, we report on the transposition behavior of the mercury(II) resistance transposons Tn502 and Tn512, which are members of the Tn5053 family. These transposons exhibit targeted and oriented insertion in the par region of plasmid RP1, since par-encoded components, namely, the ParA resolvase and its cognate res region, are essential for such transposition. Tn502 and, under some circumstances, Tn512 can transpose when par is absent, providing evidence for an alternative, par-independent pathway of transposition. We show that the alternative pathway proceeds by a two-step replicative process involving random target selection and orientation of insertion, leading to the formation of cointegrates as the predominant product of the first stage of transposition. Cointegrates remain unresolved because the transposon-encoded (TniR) recombination system is relatively inefficient, as is the host-encoded (RecA) system. In the presence of the res-ParA recombination system, TniR-mediated (and RecA-mediated) cointegrate resolution is highly efficient, enabling resolution both of cointegrates involving functional transposons (Tn502 and Tn512) and of defective elements (In0 and In2). These findings implicate the target-encoded accessory functions in the second stage of transposition as well as in the first. We also show that the par-independent pathway enables the formation of deletions in the target molecule.It is widely recognized that mobile genetic elements contribute to genome plasticity and have been a driving force in the emergence and spread of resistance determinants within and between bacterial species; their impact is ongoing (10, 51). Significant among these elements are various classes of plasmids, transposons, and integrons which may lack resistance determinants or carry one or multiple determinants. Resistance determinants that have become globally dispersed in environmental and clinically significant bacteria include mercury(II) resistance (2, 17), evident even in ancient bacteria (27), and antibiotic resistance, which has increased in dominance since the advent of the antibiotic era (23, 40).This paper concerns the mercury resistance (mer) transposons Tn502 and Tn512, whose sequence organization and transpositional behavior show that they are new members of a family of elements exemplified by the mer transposon Tn5053 (22). These elements are closely related to those in the Tn402 family, which contain an integron (intI) recombination system (14, 36). Members of the two families differ in the positions of the mer or intI determinants (modules) near one end of the transposition (tni) module. The latter module contains four genes (tniABQR), and the entire transposon is bounded by 25-bp inverted-repeat termini (IRi and IRt). TniA, TniB, and TniQ are required to form the transpositional cointegrate, which is then resolved by the action of TniR (a serine resolvase) on a resolution (res) sequence located between tniR and tniQ (22). The transposon in its new location is flanked by 5-bp direct repeats (DRs) (20, 22). TniA, which contains a D,D(35)E transposase catalytic motif, is thought to function cooperatively with TniB, a putative nucleotide-binding protein, as the active TniAB transposase (21, 36). Studies of TniA conducted in vitro show binding to the IRs and to additional 19-bp repeat sequences that make up the complex termini of the transposon (21). The precise role of TniQ is unknown.An unexpected and unique feature of Tn5053 and Tn402 is that they depend on externally coded accessory functions for efficient transposition, namely, a res site served by a cognate resolvase (25). As a consequence, these transposons exhibit a strong transpositional bias for some target res sites (20, 25, 26) and have aptly been described as “res site hunters” (25). One such efficient interaction involves the res-ParA multimer resolution system of plasmid RP1 (IncPα); other plasmid- or transposon-encoded systems are less efficient or are refractory. Although the role of the external resolvase remains obscure, its capacity to bind to its cognate res is an essential requirement whereas its catalytic activity is not (20). For each interaction system, the target sites typically cluster in a single part of res but not necessarily within the same subregion and, on occasion, can lie in the vicinity of res. Typically, the transposon is in a single orientation with IRi closest to the resolvase gene. In one study, Tn402 clustered at two target sites, one within res and one nearby, and the orientations were different at the two sites (20).The experimentally observed target preference described above also occurs in natural associations of Tn5053/Tn402-like elements and became evident on sequencing class 1 integrons, which were often found positioned close to different res-resolvase gene regions (6, 20, 25). Most Tn402 family elements are comprised of an intI module that is flanked on the left by IRi and on the right by a 3′ conserved sequence (3′-CS) (13). In others, a remnant tni gene cluster may be present instead of the 3′-CS, and IRt occurs at the right flank. The structure of the latter category of integrons strongly indicated that they are defective transposons that were presumably capable of relocation provided that tni functions were supplied in trans (6, 32). The movement of In33 (Tn2521) from a chromosomal to a plasmid location appears to have been such an in trans event (30, 42), and others involving In0 and In2 are demonstrated in this study. In contrast, the integrons that lack the IRt end appear to be nonmobile remnants of Tn402-like transposons; they belong to several lineages, including those in which the incurred deletions are attributable to acquired insertion sequences (6). More recently, intact Tn5053/Tn402-like transposons and class 1 integrons have increasingly been detected in the res-parA region of IncP plasmids (39), which are arguably the most promiscuous of known plasmids (50). These various experimental and natural interactions provide insight into the dispersal pathways possible for Tn5053/Tn402-like elements.The res-hunting attribute is a striking feature that is experimentally supported by studies of four family members (namely, Tn5053 [22, 25], Tn402 [20, 26], and in this study, Tn502 [48] and Tn512). Another facet of the transposition of Tn502 is explored here. It concerns the observation that loss of the preferred par target region in RP1 does not abolish transposition of Tn502 (48), contrary to the finding with Tn5053 (25, 26) and, in this study, Tn512. The continued, low-frequency transposition of Tn502 involved at least three dispersed locations (48); however, nothing is known about the nature of these sites or about the features and requirements of the transposition process. Here we address these issues and uncover the existence of an alternative, par-independent pathway that is employed by Tn502 and is available to Tn512 under some circumstances. The study also provides information on the roles of the TniR and host (RecA) recombination systems in the resolution of transpositional cointegrates and on the ability of the par-independent transposition pathway to generate plasmid deletions.  相似文献   

19.
The study of transposition, as the references to the work of Kuenne and Spence in this paper indicate, has long been a favorite testing ground for S-R theories of learning and mental development. The addition of modern eye-movement recording technology gives this paper very much in common with the recent work of Vinpillot (Journal of Experimental Child Psychology, 1968, 6, 632-650), although the results of the two studies seem difficult to reconcile. Vinpillot's data indicate that young children do less sampling of the attributes of stimuli being compared.  相似文献   

20.
When Tn5 insertions were obtained in thehha gene ofEscherichia coli HB101 harboring the hemolytic multicopy plasmid pANN202-312, most of thehha mutants obtained that produced larger amounts of hemolysin than the wild-type cells segregated into 10 percent of clones, which did not further produce hemolysin. We demonstrate here that a secondary transposition of Tn5 intohlyA, the structural gene for hemolysin, was responsible for such phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号