首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of three different soil DNA extraction methods on bacterial diversity was evaluated using PCR-based 16S ribosomal DNA analysis. DNA extracted directly from three soils showing contrasting physicochemical properties was subjected to amplified ribosomal DNA restriction analysis and ribosomal intergenic spacer analysis (RISA). The obtained RISA patterns revealed clearly that both the phylotype abundance and the composition of the indigenous bacterial community are dependent on the DNA recovery method used. In addition, this effect was also shown in the context of an experimental study aiming to estimate the impact on soil biodiversity of the application of farmyard manure or sewage sludge onto a monoculture of maize for 15 years.  相似文献   

2.
土壤微生物总DNA的提取和纯化   总被引:74,自引:2,他引:74  
本文建立了从土壤中提取总DNA的方法,并通过改进使适合于对革兰氏阳性菌的提取。用9种性质不同的土壤进行验证,均提取到了DNA,每克干土的DNA提取量从3.30μg~13.41μg,通过透析袋回收进行纯化,纯化回收率达到65.34%,纯化后的土壤DNA可以直接扩增出16S rDNA。9种土壤的提取率从60.51%~93.45%,可以从每g干土添加362个菌体的土壤中扩增到目的条带。  相似文献   

3.
三种土壤微生物总DNA提取方法的比较   总被引:3,自引:0,他引:3  
本文对3种常用的土壤微生物总DNA提取方法Martin法、高盐改进法及试剂盒法进行了比较,并通过DNA得率、纯度及16S rDNA V3可变区的PCR扩增结合DGGE法(denaturing gradient gel electrophoresis),分别对3种方法进行评价.结果表明,3种方法提取的DNA均能满足土壤微生物多样性分析的要求.其中试剂盒方法操作简单,提取的DNA质量较高,但DNA得率较低且成本昂贵.Martin法和高盐改进法用时较长,DNA得率较高,纯度较低,但对后续PCR扩增和DGGE分析没有明显影响,且成本低廉.  相似文献   

4.
为筛选和优化出较适宜的苎麻脱胶菌群DNA提取方法,本文分别以来自苎麻沤麻环境的6种纯培养菌等丰度混合物和苎麻自然沤麻菌群为材料,研究"溶菌酶-SDS"法、"超声波-溶菌酶-SDS"法、"蛋白酶K-SDS"法以及"冻融-蛋白酶K-SDS"法4种DNA提取方法对菌群16Sr DNA基因PCR-DGGE偏移结果的影响。结果表明,4种方法均能从2类材料中提取出了超过1600ng/μL的DNA,不同方法之间DNA产率略有差异,经过超声波处理或反复冻融处理的DNA有明显的降解,但4种方法提供的DNA模板均扩增出了450bp的16Sr DNA基因片段。4种DNA提取方法对DGGE结果有明显影响,且只有"冻融-蛋白酶K-SDS"法检测到了纯培养菌混合物中的全部6种细菌,4种方法获得的自然沤麻菌群的DGGE指纹图谱也明显不同,最多产生17条带("冻融-蛋白酶K-SDS"法),最少只有9条带("溶菌酶-SDS"法),增加超声波或冻融等物理处理可以使部分弱带变强。因此,组合应用物理、生物和化学等细胞裂解方法可以提供更有代表性的DNA,可减少PCR-DGGE结果的偏移。  相似文献   

5.
Potentially valuable sources of DNA have been extracted from human colonic tissues and are retained in biobanks throughout the world, and might be re-examined to better understand host–microbe interactions in health and disease. However, the published protocols for DNA extraction typically used by gastroenterologists have not been systematically compared in terms of their recovery of the microbial fraction associated with colonic tissue. For this reason, we examined how three different tissue DNA extraction methods (the QIAGEN AllPrep DNA/RNA kit, salting out and high molecular weight (HMW) methods of DNA extraction) employed in past clinical trials, and the repeated bead beating and column (RBB+C) method might impact the recovery of microbial DNA from colonic tissue, using a custom designed phylogenetic microarray for gut bacteria and archaea. All four methods produced very similar profiles of the microbial diversity, but there were some differences in probe signal intensities, with the HMW method producing stronger probe intensities for a subset of the Firmicutes probes including Clostridium and Streptococcus spp. Real-time PCR analysis revealed that the HMW and RBB+C extracted DNA contained significantly more DNA of Firmicutes origin and that the different DNA extraction methods also gave variable results in terms of host DNA recovery. All of the methods tested recovered DNA from the archaeal community although there were some differences in probe signal intensity. Based on these findings, we conclude that while all four methods are efficacious at releasing microbial DNA from biopsy tissue samples, the HMW and RBB+C methods of DNA extraction may release more DNA from some of the Firmicutes bacteria associated with colonic tissue. Thus, DNA archived in biobanks could be suitable for retrospective profiling analyses, provided the caveats with respect to the DNA extraction method(s) used are taken into account.  相似文献   

6.
从土壤中提取DNA方法比较   总被引:8,自引:0,他引:8  
设计并比较了3种直接从土壤中提取DNA的方法。试验结果表明:3种方法都可以从土壤中提取到分子量大于23.13 kb的DNA的片段,每克干土DNA的提取量为2.5~31μg,不同方法间在DNA产量、纯度等方面存在较大差异。  相似文献   

7.
土壤样品中DNA提取方法的比较   总被引:7,自引:0,他引:7  
陈敏 《微生物学杂志》2005,25(3):101-104
对土壤样品中提取DNA方法的有效性进行了比较研究。如果以细胞有效裂解和DNA产率为标准,用冻融进行预处理再结合SDS和溶菌酶的化学裂解方法,是效果最佳的DNA抽提方法,细胞裂解率为82%,DNA产率达20.8μg/g。为了去除PCR抑制物,将DNA样品进一步用柱纯化,回收率为80%。纯化后的DNA样品可用于16SrDNA扩增及其他分子操作。  相似文献   

8.
为土壤微生物多样性研究选取理想的DNA提取方法,该文比较了直接法和间接法从土壤中提取微生物总DNA的效果。结果表明:直接法提取量大,每克土壤提取到DNA约10.26μg,而间接法仅提取到0.55μg,直接法DNA提取量约为间接法的19倍。直接法得到的DNA包含细菌种群较间接法丰富,DGGE分析结果显示,二者的条带数分别为35条和28条,占检测条带总数的92.1%和78.9%。间接法提取到DNA纯度较直接法高,不需纯化即可用于PCR扩增和BamHⅠ酶切反应。  相似文献   

9.
In recent years, several protocols based on the extraction of nucleic acids directly from the soil matrix after lysis treatment have been developed for the detection of microorganisms in soil. Extraction efficiency has often been evaluated based on the recovery of a specific gene sequence from an organism inoculated into the soil. The aim of the present investigation was to improve the extraction, purification, and quantification of DNA derived from as large a portion of the soil microbial community as possible, with special emphasis placed on obtaining DNA from gram-positive bacteria, which form structures that are difficult to disrupt. Furthermore, we wanted to identify and minimize the biases related to each step in the procedure. Six soils, covering a range of pHs, clay contents, and organic matter contents, were studied. Lysis was carried out by soil grinding, sonication, thermal shocks, and chemical treatments. DNA was extracted from the indigenous microflora as well as from inoculated bacterial cells, spores, and hyphae, and the quality and quantity of the DNA were determined by gel electrophoresis and dot blot hybridization. Lysis efficiency was also estimated by microscopy and viable cell counts. Grinding increased the extracellular DNA yield compared with the yield obtained without any lysis treatment, but none of the subsequent treatments clearly increased the DNA yield. Phage λ DNA was inoculated into the soils to mimic the fate of extracellular DNA. No more than 6% of this DNA could be recovered from the different soils. The clay content strongly influenced the recovery of DNA. The adsorption of DNA to clay particles decreased when the soil was pretreated with RNA in order to saturate the adsorption sites. We also investigated different purification techniques and optimized the PCR methods in order to develop a protocol based on hybridization of the PCR products and quantification by phosphorimaging.  相似文献   

10.
目的:探讨适用于微生物多样性研究的棉田土壤微生物总DNA提取方法。方法:采用4种方法提取不同连作和轮作处理的棉田土壤微生物总DNA,比较其纯度、产率、片段大小,并应用ARDRA技术验证其质量。结果:其中3种方法均可获得23kb的DNA片段,但不同方法提取的DNA的产率和纯度上有明显差异。改良CTAB-SDS法提取的DNA完整性好,得率为24.20μg.g-1干土,纯化后A260/A280和A260/A230为分别为1.80和1.70,纯化回收率可达70.1%,完全适用于后续的PCR分析。结论:采用该法提取棉田土壤总DNA简便而高效。对该法提取获得的棉田土壤微生物总DNA进行ARDRA和DGGE分析,所得图谱能较全面地反映不同处理间微生物多样性及群落结构的差别,为不同栽培体系下棉田土壤微生物的分子生态学研究提供了基础。  相似文献   

11.
Abstract Recent emphasis on residue management in sustainable agriculture highlights the importance of elucidating the mechanisms of microbial degradation of cellulose. Cellulose decomposition and its associated microbial dynamics in soil were investigated in incubation experiments. Population dynamics of actinomycetes, bacteria, and fungi were monitored by direct counts. Populations of oligotrophic bacteria in cellulose-amended soil were determined by plate count using a low C medium containing 4 mg C liter−1 agar, and copiotrophs using a high C medium. Cumulative 14CO2 evolution from 14C-labeled cellulose was best described by a multiphasic curve in a 28-day incubation experiment. The initial phase of decomposition was attributed mainly to the activity of bacterial populations with a low oligotroph-to-copiotroph ratio, and the second phase mainly to fungal populations. An increase in oligotroph-to-copiotroph ratio coincided with the emergence of a rapid 14CO2 evolution stage. Streptomycin reduced 14CO2 evolution during the first phase and prompted earlier emergence of the second phase, compared to the control. Cycloheximide initially promoted 14CO2 evolution but subsequently had a lasting negative effect on 14CO2 evolution. Cycloheximide addition significantly increased bacterial biomass and resulted in substantially stronger oscillation of active bacterial populations, whereas it initially reduced, and then stimulated, active fungal biomass. The observed changes in 14CO2 evolution could not be explained by observed shifts in fungal and bacterial biomass, probably because functional groups of fungi and bacteria could not be distinguished. However, it was suggested that oligotrophic bacteria prompted activation of cellulolytic enzumes in fungi and played an important role in leading to fungal dominance of cellulose decomposition. Received: 2 October 1995; Accepted: 10 February 1996  相似文献   

12.
镇江香醋固态发酵醋醅中微生物总DNA提取方法比较   总被引:4,自引:0,他引:4  
【目的】为了更加全面地分析我国传统固态发酵过程中微生物群落的多样性和演替情况,本文以镇江香醋固态发酵为例,对比研究了11种不同的总DNA提取法对醋醅中总DNA提取的影响。【方法】使用紫外分光光度计法和荧光定量PCR(Realtime Quantitative PCR)测定了不同提取方法得到的醋醅样品总DNA的产量与纯度,采用变性梯度凝胶电泳(DGGE)法对固态发酵中细菌和真菌的多样性进行了分析。【结果】醋醅总DNA得率最高可达93.2±1.5μg/g干醅,细菌总数最高达到1.73×1013 copies.(g干醅)-1,真菌总数最高达到6.49×1012 copies.(g干醅)-1。不同的提取方法对DGGE结果有明显的影响,6种基于SDS裂解的方法所获得的条带较多。【结论】结果表明,液氮研磨+溶菌酶+SDS高盐抽提法(方法3)为最优的醋醅总DNA提取方法。  相似文献   

13.
湿地土壤微生物DNA提取及其脱腐技术   总被引:2,自引:0,他引:2  
DNA分子生物学技术的广泛应用,为全面了解微生物群落提供了有力的工具。本文建立了一种新的从湿地土壤中提取微生物总DNA的方法,即氯化钙-SDS-酶法。在直接提取DNA过程中采用氯化钙去除腐殖酸,DNA提取缓冲液中不使用EDTA螯合剂,提取过程用时4h左右。与其他两种方法相比,该方法高效去除湿地土壤腐殖酸,纯度较高,满足PCR扩增,为微生物生态学研究提供了一种高效的湿地土壤微生物总DNA提取和纯化技术。  相似文献   

14.
This study is one of the first to show that invasive plant-induced changes in the soil microbial community can negatively impact native plant performance. This greenhouse experiment tested whether soil microbial communities specific to the rhizospheres of an invasive grass (Aegilops triuncialis) and two native plants (Lasthenia californica and Plantago erecta) affected invasive and/or native plant performance. Each of these species were grown in separate pots for 2 months to prime the soils with plant-specific rhizosphere microbial communities. Each plant species was then planted in native- and invasive-primed soil, and effects on plant performance were monitored. At 5 months, differences in microbial biomarker fatty acids between invaded and native soils mirrored previous differences found in field-collected soil. L. californica performance was significantly reduced when grown in invaded soil compared to native soil (flowering date was delayed, aboveground biomass decreased, specific root length increased, and root mass ratio increased). In contrast, P. erecta and A. triuncialis performance were unaffected when grown in invaded vs native soil. These results suggest that in some cases, invasion-induced changes in the soil microbial community may contribute to a positive feedback loop, leading to the increased dominance of invasive species in an ecosystem.  相似文献   

15.
Methods for the extraction of PCR-quality DNA from environmental soil samples by using pairs of commercially available kits were evaluated. Coxiella burnetii DNA was detected in spiked soil samples at <1,000 genome equivalents per gram of soil and in 12 (16.4%) of 73 environmental soil samples.The detection of pathogenic organisms in the environment often relies on PCR analysis of DNA purified from environmental soil (6). For effective detection, a reliable method to obtain PCR-quality DNA from soil is necessary. Although a variety of complex techniques have been effective for specific soil samples (1-3, 7, 8), it is not clear which methods would be the best for the wide variety of samples encountered in a large-scale environmental sampling study. In addition, many published techniques would be difficult to use on a large number of samples (1-3, 7, 8).This study evaluates the abilities of commercially available DNA extraction kits to provide DNA from environmental soil samples that are suitable for PCR detection of Coxiella burnetii. C. burnetii is an obligate intracellular, Gram-negative, zoonotic pathogen and the causative agent of Q fever (5). It is classified as a category B agent of bioterrorism by the CDC.Three commercially available DNA purification kits were evaluated. Twenty different soil samples obtained from diverse locations in the southeastern United States were used for testing. These samples consisted of light sandy soil and were all initially processed through one of three DNA purification kits, the UltraClean soil DNA isolation kit (MoBio Laboratories, Carlsbad CA), the QIAamp DNA minikit (Qiagen, Valencia, CA), or the QIAamp DNA stool minikit (Qiagen), or through a combination of two of the kits used sequentially. Thus, all 20 samples were each processed through nine extraction protocols. To process soil samples, five grams of soil was mixed with 10 to 30 ml of phosphate-buffered saline (PBS) to create a homogenized slurry. Samples were mixed for 1 h at room temperature and then centrifuged for 5 min at 123 × g. The supernatant was removed and centrifuged at 20,000 × g for 15 min. The supernatant was then carefully discarded and the pellet resuspended in 1 ml of PBS.For the UltraClean soil kit, 700 μl of the resuspended soil extraction pellet was processed by the manufacturer''s alternative protocol (for maximum yields). For preps done using the QIAamp DNA minikit (tissue protocol) and the QIAamp stool kit (stool protocol), 700 μl (high volume) of the soil extract was processed according to the instructions for the particular kit. For 17 of the samples the tissue protocol and stool protocol were applied using only 200 μl of the soil extract (low volume). For all of the kits, the final elutions were performed with 55 μl of water.To further purify the products of the commercial DNA isolation kits, eluates were passed through a second round of extraction. When the MoBio UltraClean kit was used for the second round of extraction, eluates were added to the bead-containing tubes and mixed with 60 μl of solution 1 and 200 μl of the MoBio inhibitor removal solution (IRS). The manufacturer''s protocol was then followed. When the QIAamp tissue protocol was utilized for the second round of extraction, eluates were diluted to 200 μl with water and then mixed with 200 μl of buffer ATL plus 200 μl of buffer AL and then incubated at 70°C for 10 min. Following this step, the manufacturer''s protocol was followed. When the QIAamp stool protocol was used for the second round of extraction, eluates were mixed with 1.2 ml of the ASL buffer, followed by addition of the InhibitEX tablet. The manufacturer''s protocol was then followed.PCR inhibition in all of the DNA samples was then evaluated by running a quantitative PCR that detects the IS1111 gene from C. burnetii (4). PCRs were run on 200 genome equivalents of C. burnetii (strain Nine Mile Phase 1) DNA. Reaction mixtures spiked with 1-μl aliquots of the environmental DNA samples were compared to reaction mixtures spiked with 1 μl of water. Inhibition was considered present if the DNA sample caused an increase of 1 in the threshold cycle value.Use of the MoBio UltraClean procedure by itself resulted in removal of inhibitors from 35% of the samples, whereas after use of the Qiagen tissue protocol (high volume) only 4% of the samples were free of inhibition (Fig. (Fig.1).1). The Qiagen stool kit (high volume) resulted in 96% of the samples showing lack of inhibition with a low volume of soil eluate and 62.5% of the samples when the high volume was used. The DNA extracted from these three kits was then used as starting material for a subsequent DNA extraction step using the same set of three commercial kits. The MoBio UltraClean kit followed by the Qiagen stool kit eliminated inhibition in all samples, as did these two kits when used in the reverse order, even if the Qiagen stool kit was loaded with 700 μl of material (high volume). When a low volume of starting material was used, combinations of the two Qiagen kits also removed inhibitors from 100% of the samples when either the Qiagen tissue protocol was used first or the Qiagen stool protocol was used first (Fig. (Fig.1).1). The raw data for all of the inhibition assays are included as supplemental data (see Table S1 in the supplemental material).Open in a separate windowFIG. 1.Twenty environmental soil samples were used for the isolation of DNA with the indicated protocols. The samples were then tested for the ability to inhibit an IS1111 PCR with C. burnetii Nine Mile DNA as template. The percentages of samples that did not show any inhibition are indicated.To determine the yield of DNA obtained by the various protocols, nine aliquots (5 g each) of a single rich organic soil sample were each mixed with 5 ml PBS, spiked with 1 × 106 Nine Mile Phase 2 C. burnetii organisms, and then processed by the nine (high-volume) extraction protocols described above. An additional 1 × 106 Nine Mile Phase 2 C. burnetii organisms were used directly in the Qiagen tissue protocol to prepare DNA for the purpose of determining the exact amount of C. burnetii input into the assays. The quantitative IS1111 PCR assay (4) was used to determine the yield of C. burnetii DNA by using the various methods for processing soil. The yield was calculated by dividing the number of genome equivalents of C. burnetii DNA obtained from the spiked soil samples by the number of genome equivalents obtained when C. burnetii was included directly in the Qiagen tissue protocol. A common feature of all of the protocols was that they all produced a low yield of C. burnetii DNA when purified from a complex soil mixture (Fig. (Fig.2).2). The yields ranged from 0.02% to 4.3% and were variable. Although the 4.3% yield obtained when the stool kit was used alone was the highest on average, the high variability observed with these extractions suggests that most of these protocols provide similar yields. The stool kit followed by the MoBio kit clearly resulted in the lowest yield.Open in a separate windowFIG. 2.Five-gram aliquots of a single soil sample were all spiked with approximately 1 × 106 C. burnetii Phase 2 Nine Mile strain cells. The samples were then subjected to the indicated extraction protocol(s). The resulting DNA was tested for inhibition, and then the genome equivalents of C. burnetii DNA were determined by quantitative IS1111 PCR. The exact input amount of C. burnetii was determined by running an aliquot directly through the QIAamp tissue protocol followed by IS1111 PCR. Yield was calculated as genome equivalents obtained from the spiked soil samples divided by the genome equivalents obtained from the direct extraction through the QIAamp tissue protocol. Values represent the mean ± standard deviation of five experiments. Statistically significant differences (Student''s t test) were found between stool versus MoBio plus stool kits (P = 0.05), stool plus tissue versus MoBio plus stool kits (P = 0.01), and stool plus tissue versus tissue plus MoBio kits (P = 0.03). For the protocol using the stool kit followed by the MoBio kit the yield was significantly different from stool, stool plus tissue, MoBio plus tissue, and MoBio protocols (P < 0.05).Although these yields are low, the IS1111 PCR assay used to detect C. burnetii DNA amplifies a multicopy gene, and the assay can detect a single genome equivalent (4). This suggests that these protocols are adequate for the detection of C. burnetii in soil samples with 500 to 2,000 organisms per gram of soil. To test this, a 5-g sample of organic soil was spiked with 800 C. burnetii organisms per gram, and the DNA was extracted using the MoBio UltraClean kit followed by the QIAamp stool protocol. C. burnetii DNA was detected after 38 cycles using the IS1111 PCR assay.While these results are focused on soil samples, the procedures described also work well on vacuum samples and sponge wipe samples (data not shown). Based on removal of inhibitors and yield, our data suggest that the QIAamp tissue protocol (high volume) followed by the QIAamp stool protocol and the MoBio UltraClean kit followed by the QIAamp stool protocol are both suitable for extraction of DNA from environmental soil samples. To test the application of the latter method to a larger number of samples, 73 bulk soil samples from the southeastern United States were processed according to this method. Inhibition was removed from all 73 samples, and 12 of the samples were positive in the C. burnetii IS1111 PCR assay. This suggests that this practical method for extraction of PCR-quality DNA can be successfully used to detect DNA from C. burnetii and other pathogens in large numbers of environmental samples.   相似文献   

16.
Soil DNA extraction has become a critical step in describing microbial biodiversity. Historically, ascertaining overarching microbial ecological theories has been hindered as independent studies have used numerous custom and commercial DNA extraction procedures. For that reason, a standardized soil DNA extraction method (ISO-11063) was previously published. However, although this ISO method is suited for molecular tools such as quantitative PCR and community fingerprinting techniques, it has only been optimized for examining soil bacteria. Therefore, the aim of this study was to assess an appropriate soil DNA extraction procedure for examining bacterial, archaeal and fungal diversity in soils of contrasting land-use and physico-chemical properties. Three different procedures were tested: the ISO-11063 standard; a custom procedure (GnS-GII); and a modified ISO procedure (ISOm) which includes a different mechanical lysis step (a FastPrep ®-24 lysis step instead of the recommended bead-beating). The efficacy of each method was first assessed by estimating microbial biomass through total DNA quantification. Then, the abundances and community structure of bacteria, archaea and fungi were determined using real-time PCR and terminal restriction fragment length polymorphism approaches. Results showed that DNA yield was improved with the GnS-GII and ISOm procedures, and fungal community patterns were found to be strongly dependent on the extraction method. The main methodological factor responsible for differences between extraction procedure efficiencies was found to be the soil homogenization step. For integrative studies which aim to examine bacteria, archaea and fungi simultaneously, the ISOm procedure results in higher DNA recovery and better represents microbial communities.  相似文献   

17.
红树林土壤总DNA不同提取方法比较研究   总被引:17,自引:0,他引:17  
杨建  洪葵 《生物技术通报》2006,(Z1):366-371
获得高浓度、大片段、无偏好的土壤微生物总DNA是土壤微生物分子生态学研究和宏基因组文库构建的基础。本研究采用了5种方法从红树林土壤中提取DNA,并对5种方法提取出的DNA的质量和产量进行比较评价。结果表明,5种方法均可从土壤中提取到DNA,但不同方法提取到DNA的产量和质量存在明显差异。Bio101FastPrep?SPINKit(forSoil)抽提到的DNA得率最高,适合分子生态学研究;SDS-GITC-PEG法提取的DNA纯度最高,所得到的DNA片段较大(>48kb),有利于构建宏基因组文库。  相似文献   

18.
Problems associated with the use of sodium or potassium azide as an inhibitor of microbial activity in soil include erroneous CO2 evolution readings, shifts in inhibitor concentration, rise in soil pH, and explosion hazard.  相似文献   

19.
Techniques are described for the extraction and enumeration of cysts and contained eggs from soil samples. The average recovery of cysts from seeded soil samples of differing soil texture was 82.7 ± 2.1%. Recovery from sandy clay soil samples seeded at 1 cyst/100 g soil was 63.4 ± 5.5%; at 4.2 cysts/100 g soil recovery was 89.6 ± 1.8%. Recovery of cysts from naturally infested clay soil was 88.3 ± 2.05%. Egg extraction efficiency for seeded samples was calculated as 78%, and for naturally infested soil was estimated as 83%.  相似文献   

20.
Our understanding of the effects of elevated atmospheric CO2, singly and In combination with other environmental changes,on plant-soil interactions is incomplete. Elevated CO2 effects on C4 plants, though smaller than on C3 species, are mediated mostly via decreased stomatal conductance and thus water loss. Therefore, we characterized the interactive effect of elevated CO2 and drought on soil microbial communities associated with a dominant C4 prairie grass, Andropogon gerardii Vitman. Elevated CO2 and drought both affected resources available to the soil microbial community. For example, elevated CO2 increased the soil C:N ratio and water content during drought, whereas drought alone decreased both. Drought significantly decreased soil microbial biomass. In contrast, elevated COz increased biomass while ameliorating biomass decreases that were induced under drought. Total and active direct bacterial counts and carbon substrate use (overall use and number of used sources) increased significantly under elevated CO2. Denaturing gradient gel electrophoresis analysis revealed that drought and elevated CO2, singly and combined, did not affect the soil bacteria community structure.We conclude that elevated CO2 alone increased bacterial abundance and microbial activity and carbon use, probably in response to increased root exudation. Elevated CO2 also limited drought-related impacts on microbial activity and biomass,which likely resulted from decreased plant water use under elevated CO2. These are among the first results showing that elevated CO2 and drought work in opposition to modulate plant-associated soil-bacteria responses,which should then Influence soil resources and plant and ecosystem function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号