首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Macromolecular surfaces are fundamental representations of their three-dimensional geometric shape. Accurate calculation of protein surfaces is of critical importance in the protein structural and functional studies including ligand-protein docking and virtual screening. In contrast to analytical or parametric representation of macromolecular surfaces, triangulated mesh surfaces have been proved to be easy to describe, visualize and manipulate by computer programs. Here, we develop a new algorithm of EDTSurf for generating three major macromolecular surfaces of van der Waals surface, solvent-accessible surface and molecular surface, using the technique of fast Euclidean Distance Transform (EDT). The triangulated surfaces are constructed directly from volumetric solids by a Vertex-Connected Marching Cube algorithm that forms triangles from grid points. Compared to the analytical result, the relative error of the surface calculations by EDTSurf is <2–4% depending on the grid resolution, which is 1.5–4 times lower than the methods in the literature; and yet, the algorithm is faster and costs less computer memory than the comparative methods. The improvements in both accuracy and speed of the macromolecular surface determination should make EDTSurf a useful tool for the detailed study of protein docking and structure predictions. Both source code and the executable program of EDTSurf are freely available at http://zhang.bioinformatics.ku.edu/EDTSurf.  相似文献   

2.
Using complex roots of unity and the Fast Fourier Transform, we design a new thermodynamics-based algorithm, FFTbor, that computes the Boltzmann probability that secondary structures differ by base pairs from an arbitrary initial structure of a given RNA sequence. The algorithm, which runs in quartic time and quadratic space , is used to determine the correlation between kinetic folding speed and the ruggedness of the energy landscape, and to predict the location of riboswitch expression platform candidates. A web server is available at http://bioinformatics.bc.edu/clotelab/FFTbor/.  相似文献   

3.
Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder.  相似文献   

4.
Improvements in experimental techniques increasingly provide structural data relating to protein-protein interactions. Classification of structural details of protein-protein interactions can provide valuable insights for modeling and abstracting design principles. Here, we aim to cluster protein-protein interactions by their interface structures, and to exploit these clusters to obtain and study shared and distinct protein binding sites. We find that there are 22604 unique interface structures in the PDB. These unique interfaces, which provide a rich resource of structural data of protein-protein interactions, can be used for template-based docking. We test the specificity of these non-redundant unique interface structures by finding protein pairs which have multiple binding sites. We suggest that residues with more than 40% relative accessible surface area should be considered as surface residues in template-based docking studies. This comprehensive study of protein interface structures can serve as a resource for the community. The dataset can be accessed at http://prism.ccbb.ku.edu.tr/piface.  相似文献   

5.
We describe the first dynamic programming algorithm that computes the expected degree for the network, or graph G = (V, E) of all secondary structures of a given RNA sequence a = a 1, …, a n. Here, the nodes V correspond to all secondary structures of a, while an edge exists between nodes s, t if the secondary structure t can be obtained from s by adding, removing or shifting a base pair. Since secondary structure kinetics programs implement the Gillespie algorithm, which simulates a random walk on the network of secondary structures, the expected network degree may provide a better understanding of kinetics of RNA folding when allowing defect diffusion, helix zippering, and related conformation transformations. We determine the correlation between expected network degree, contact order, conformational entropy, and expected number of native contacts for a benchmarking dataset of RNAs. Source code is available at http://bioinformatics.bc.edu/clotelab/RNAexpNumNbors.  相似文献   

6.
7.
8.
It is a significant challenge to predict RNA secondary structures including pseudoknots. Here, a new algorithm capable of predicting pseudoknots of any topology, ProbKnot, is reported. ProbKnot assembles maximum expected accuracy structures from computed base-pairing probabilities in O(N2) time, where N is the length of the sequence. The performance of ProbKnot was measured by comparing predicted structures with known structures for a large database of RNA sequences with fewer than 700 nucleotides. The percentage of known pairs correctly predicted was 69.3%. Additionally, the percentage of predicted pairs in the known structure was 61.3%. This performance is the highest of four tested algorithms that are capable of pseudoknot prediction. The program is available for download at: http://rna.urmc.rochester.edu/RNAstructure.html.  相似文献   

9.
We present Quip, a lossless compression algorithm for next-generation sequencing data in the FASTQ and SAM/BAM formats. In addition to implementing reference-based compression, we have developed, to our knowledge, the first assembly-based compressor, using a novel de novo assembly algorithm. A probabilistic data structure is used to dramatically reduce the memory required by traditional de Bruijn graph assemblers, allowing millions of reads to be assembled very efficiently. Read sequences are then stored as positions within the assembled contigs. This is combined with statistical compression of read identifiers, quality scores, alignment information and sequences, effectively collapsing very large data sets to <15% of their original size with no loss of information. Availability: Quip is freely available under the 3-clause BSD license from http://cs.washington.edu/homes/dcjones/quip.  相似文献   

10.
Detection of remote sequence homology is essential for the accurate inference of protein structure, function and evolution. The most sensitive detection methods involve the comparison of evolutionary patterns reflected in multiple sequence alignments (MSAs) of protein families. We present PROCAIN, a new method for MSA comparison based on the combination of ‘vertical’ MSA context (substitution constraints at individual sequence positions) and ‘horizontal’ context (patterns of residue content at multiple positions). Based on a simple and tractable profile methodology and primitive measures for the similarity of horizontal MSA patterns, the method achieves the quality of homology detection comparable to a more complex advanced method employing hidden Markov models (HMMs) and secondary structure (SS) prediction. Adding SS information further improves PROCAIN performance beyond the capabilities of current state-of-the-art tools. The potential value of the method for structure/function predictions is illustrated by the detection of subtle homology between evolutionary distant yet structurally similar protein domains. ProCAIn, relevant databases and tools can be downloaded from: http://prodata.swmed.edu/procain/download. The web server can be accessed at http://prodata.swmed.edu/procain/procain.php.  相似文献   

11.
High-throughput sequencing for microRNA (miRNA) profiling has revealed a vast complexity of miRNA processing variants, but these are difficult to discern for those without bioinformatics expertise and large computing capability. In this article, we present miRNA Sequence Profiling (miRspring) (http://mirspring.victorchang.edu.au), a software solution that creates a small portable research document that visualizes, calculates and reports on the complexities of miRNA processing. We designed an index-compression algorithm that allows the miRspring document to reproduce a complete miRNA sequence data set while retaining a small file size (typically <3 MB). Through analysis of 73 public data sets, we demonstrate miRspring’s features in assessing quality parameters, miRNA cluster expression levels and miRNA processing. Additionally, we report on a new class of miRNA variants, which we term seed-isomiRs, identified through the novel visualization tools of the miRspring document. Further investigation identified that ∼30% of human miRBase entries are likely to have a seed-isomiR. We believe that miRspring will be a highly useful research tool that will enhance the analysis of miRNA data sets and thus increase our understanding of miRNA biology.  相似文献   

12.
Aggregatibacter actinomycetemcomitans is a major etiological agent of periodontitis. Here we report the complete genome sequence of serotype c strain D11S-1, which was recovered from the subgingival plaque of a patient diagnosed with generalized aggressive periodontitis.Aggregatibacter actinomycetemcomitans is a major etiologic agent of human periodontal disease, in particular aggressive periodontitis (12). The natural population of A. actinomycetemcomitans is clonal (7). Six A. actinomycetemcomitans serotypes are distinguished based on the structural and serological characteristics of the O antigen of LPS (6, 7). Three of the serotypes (a, b, and c) comprise >80% of all strains, and each serotype represents a distinct clonal lineage (1, 6, 7). Serotype c strain D11S-1 was cultured from a subgingival plaque sample of a patient diagnosed with generalized aggressive periodontitis. The complete genome sequencing of the strain was determined by 454 pyrosequencing (10), which achieved 25× coverage. Assembly was performed using the Newbler assembler (454, Branford, CT) and generated 199 large contigs, with 99.3% of the bases having a quality score of 40 and above. The contigs were aligned with the genome of the sequenced serotype b strain HK1651 (http://www.genome.ou.edu/act.html) using software written in house. The putative contig gaps were then closed by primer walking and sequencing of PCR products over the gaps. The final genome assembly was further confirmed by comparison of an in silico NcoI restriction map to the experimental map generated by optical mapping (8). The genome structure of the D11S-1 strain was compared to that of the sequenced strain HK1651 using the program MAUVE (2, 3). The automated annotation was done using a protocol similar to the annotation engine service at The Institute for Genomic Research/J. Craig Venter Institute with some local modifications. Briefly, protein-coding genes were identified using Glimmer3 (4). Each protein sequence was then annotated by comparing to the GenBank nonredundant protein database. BLAST-Extend-Repraze was applied to the predicted genes to identify genes that might have been truncated due to a frameshift mutation or premature stop codon. tRNA and rRNA genes were identified by using tRNAScan-SE (9) and a similarity search to our in-house RNA database, respectively.The D11S-1 circular genome contains 2,105,764 nucleotides, a GC content of 44.55%, 2,134 predicted coding sequences, and 54 tRNA and 19 rRNA genes (see additional data at http://expression.washington.edu/bumgarnerlab/publications.php). The distribution of predicted genes based on functional categories was similar between D11S-1 and HK1651 (http://expression.washington.edu/bumgarnerlab/publications.php). One hundred six and 86 coding sequences were unique to strain D11S-1 and HK1651, respectively (http://expression.washington.edu/bumgarnerlab/publications.php). Genomic islands were identified based on annotations for strain HK1651 and based on manual inspection of contiguous D11S-1 specific DNA regions with G+C bias (http://expression.washington.edu/bumgarnerlab/publications.php). Among 12 identified genomics islands, 5 (B, C, D, E and G; cytolethal distending toxin gene cluster, tight adherence gene cluster, O-antigen biosynthesis and transport gene cluster, leukotoxin gene cluster, and lipoligosaccharide biosynthesis enzyme gene, respectively) correspond to islands 2 to 5 and 8 of strain HK1651 (http://www.oralgen.lanl.gov/) (5). Island F (∼5 kb) is homologous to a portion of the 12.5-kb island 7 in HK1651. Five genomic islands (H to L) were unique to strain D11S-1. The remaining island (A) is a fusion of genomic islands 1 and 6, in strain HK1651. The genome of D11S-1 is largely in synteny with the genome of the sequenced serotype b strain HK1651 but contained several large-scale genomic rearrangements.Strain D11S-1 harbors a 43-kb bacteriophage and two plasmids of 31 and 23 kb (http://expression.washington.edu/bumgarnerlab/publications.php). Excluding an ∼9-kb region of low homology, the phage showed >90% nucleotide sequence identity with AaΦ23 (11). A 49-bp attB site (11) was identified at coordinates 2,024,825 to 2,024,873. The location of the inserted phage was identified in the optical map of strain D11S-1 and further confirmed by PCR amplification and sequencing of the regions flanking the insertion site. A closed circular form of the phage was also detected in strain D11S-1 by PCR analysis of the phage ends. The 23-kb plasmid is homologous to pVT745 (92% nucleotide identities). The 31-kb plasmid is a novel plasmid. It has significant homologies in short regions (<2 kb) to Haemophilus influenzae biotype aegyptius plasmid pF1947 and other plasmids.  相似文献   

13.
Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner’99 and Turner’04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http://bioinformatics.bc.edu/clotelab/RNAentropy, including source code and ancillary programs.  相似文献   

14.
15.
The rapidly growing amount of publicly available information from biomedical research is readily accessible on the Internet, providing a powerful resource for predictive biomolecular modeling. The accumulated data on experimentally determined structures transformed structure prediction of proteins and protein complexes. Instead of exploring the enormous search space, predictive tools can simply proceed to the solution based on similarity to the existing, previously determined structures. A similar major paradigm shift is emerging due to the rapidly expanding amount of information, other than experimentally determined structures, which still can be used as constraints in biomolecular structure prediction. Automated text mining has been widely used in recreating protein interaction networks, as well as in detecting small ligand binding sites on protein structures. Combining and expanding these two well-developed areas of research, we applied the text mining to structural modeling of protein-protein complexes (protein docking). Protein docking can be significantly improved when constraints on the docking mode are available. We developed a procedure that retrieves published abstracts on a specific protein-protein interaction and extracts information relevant to docking. The procedure was assessed on protein complexes from Dockground (http://dockground.compbio.ku.edu). The results show that correct information on binding residues can be extracted for about half of the complexes. The amount of irrelevant information was reduced by conceptual analysis of a subset of the retrieved abstracts, based on the bag-of-words (features) approach. Support Vector Machine models were trained and validated on the subset. The remaining abstracts were filtered by the best-performing models, which decreased the irrelevant information for ~ 25% complexes in the dataset. The extracted constraints were incorporated in the docking protocol and tested on the Dockground unbound benchmark set, significantly increasing the docking success rate.  相似文献   

16.
Soybean cyst nematode (Heterodera glycines, SCN) is the most destructive pathogen of soybean around the world. Crop rotation and resistant cultivars are used to mitigate the damage of SCN, but these approaches are not completely successful because of the varied SCN populations. Thus, the limitations of these practices with soybean dictate investigation of other avenues of protection of soybean against SCN, perhaps through genetically engineering of broad resistance to SCN. For better understanding of the consequences of genetic manipulation, elucidation of SCN protein composition at the subunit level is necessary. We have conducted studies to determine the composition of SCN proteins using a proteomics approach in our laboratory using twodimensional polyacrylamide gel electrophoresis (2D-PAGE) to separate SCN proteins and to characterize the proteins further using mass spectrometry. Our analysis resulted in the identification of several hundred proteins. In this investigation, we developed a web based database (SCNProDB) containing protein information obtained from our previous published studies. This database will be useful to scientists who wish to develop SCN resistant soybean varieties through genetic manipulation and breeding efforts. The database is freely accessible from: http://bioinformatics.towson.edu/Soybean_SCN_proteins_2D_Gel_DB/Gel1.aspx  相似文献   

17.
18.
Recent studies have shown that RNA structural motifs play essential roles in RNA folding and interaction with other molecules. Computational identification and analysis of RNA structural motifs remains a challenging task. Existing motif identification methods based on 3D structure may not properly compare motifs with high structural variations. Other structural motif identification methods consider only nested canonical base-pairing structures and cannot be used to identify complex RNA structural motifs that often consist of various non-canonical base pairs due to uncommon hydrogen bond interactions. In this article, we present a novel RNA structural alignment method for RNA structural motif identification, RNAMotifScan, which takes into consideration the isosteric (both canonical and non-canonical) base pairs and multi-pairings in RNA structural motifs. The utility and accuracy of RNAMotifScan is demonstrated by searching for kink-turn, C-loop, sarcin-ricin, reverse kink-turn and E-loop motifs against a 23S rRNA (PDBid: 1S72), which is well characterized for the occurrences of these motifs. Finally, we search these motifs against the RNA structures in the entire Protein Data Bank and the abundances of them are estimated. RNAMotifScan is freely available at our supplementary website (http://genome.ucf.edu/RNAMotifScan).  相似文献   

19.

Backgroud

Type III secretion systems (T3SSs) are central to the pathogenesis and specifically deliver their secreted substrates (type III secreted proteins, T3SPs) into host cells. Since T3SPs play a crucial role in pathogen-host interactions, identifying them is crucial to our understanding of the pathogenic mechanisms of T3SSs. This study reports a novel and effective method for identifying the distinctive residues which are conserved different from other SPs for T3SPs prediction. Moreover, the importance of several sequence features was evaluated and further, a promising prediction model was constructed.

Results

Based on the conservation profiles constructed by a position-specific scoring matrix (PSSM), 52 distinctive residues were identified. To our knowledge, this is the first attempt to identify the distinct residues of T3SPs. Of the 52 distinct residues, the first 30 amino acid residues are all included, which is consistent with previous studies reporting that the secretion signal generally occurs within the first 30 residue positions. However, the remaining 22 positions span residues 30–100 were also proven by our method to contain important signal information for T3SP secretion because the translocation of many effectors also depends on the chaperone-binding residues that follow the secretion signal. For further feature optimisation and compression, permutation importance analysis was conducted to select 62 optimal sequence features. A prediction model across 16 species was developed using random forest to classify T3SPs and non-T3 SPs, with high receiver operating curve of 0.93 in the 10-fold cross validation and an accuracy of 94.29% for the test set. Moreover, when performing on a common independent dataset, the results demonstrate that our method outperforms all the others published to date. Finally, the novel, experimentally confirmed T3 effectors were used to further demonstrate the model’s correct application. The model and all data used in this paper are freely available at http://cic.scu.edu.cn/bioinformatics/T3SPs.zip.  相似文献   

20.

Background

Computing the long term behavior of regulatory and signaling networks is critical in understanding how biological functions take place in organisms. Steady states of these networks determine the activity levels of individual entities in the long run. Identifying all the steady states of these networks is difficult due to the state space explosion problem.

Methodology

In this paper, we propose a method for identifying all the steady states of Boolean regulatory and signaling networks accurately and efficiently. We build a mathematical model that allows pruning a large portion of the state space quickly without causing any false dismissals. For the remaining state space, which is typically very small compared to the whole state space, we develop a randomized traversal method that extracts the steady states. We estimate the number of steady states, and the expected behavior of individual genes and gene pairs in steady states in an online fashion. Also, we formulate a stopping criterion that terminates the traversal as soon as user supplied percentage of the results are returned with high confidence.

Conclusions

This method identifies the observed steady states of boolean biological networks computationally. Our algorithm successfully reported the G1 phases of both budding and fission yeast cell cycles. Besides, the experiments suggest that this method is useful in identifying co-expressed genes as well. By analyzing the steady state profile of Hedgehog network, we were able to find the highly co-expressed gene pair GL1-SMO together with other such pairs.

Availability

Source code of this work is available at http://bioinformatics.cise.ufl.edu/palSteady.html twocolumnfalse]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号