首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The motivation to start or terminate a meal involves the continual updating of information on current body status by central gustatory and reward systems. Previous electrophysiological and neuroimaging investigations revealed region-specific decreases in activity as the subject's state transitions from hunger to satiety. By implanting bundles of microelectrodes in the lateral hypothalamus, orbitofrontal cortex, insular cortex, and amygdala of hungry rats that voluntarily eat to satiety, we have measured the behavior of neuronal populations through the different phases of a complete feeding cycle (hunger-satiety-hunger). Our data show that while most satiety-sensitive units preferentially responded to a unique hunger phase within a cycle, neuronal populations integrated single-unit information in order to reflect the animal's motivational state across the entire cycle, with higher activity levels during the hunger phases. This distributed population code might constitute a neural mechanism underlying meal initiation under different metabolic states.  相似文献   

2.
Complementary neurophysiological recordings in macaques and functional neuroimaging in humans show that the primary taste cortex in the rostral insula and adjoining frontal operculum provides separate and combined representations of the taste, temperature, and texture (including viscosity and fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by learning with olfactory and visual inputs. Different neurons respond to different combinations, providing a rich representation of the sensory properties of food. The representation of taste and other food-related stimuli in the orbitofrontal cortex of macaques is found from its lateral border throughout area 13 to within 7 mm of the midline, and in humans the representation of food-related and other pleasant stimuli is found particularly in the medial orbitofrontal cortex. In the orbitofrontal cortex, feeding to satiety with one food decreases the responses of these neurons to that food, but not to other foods, showing that sensory-specific satiety is computed in the primate (including human) orbitofrontal cortex. Consistently, activation of parts of the human orbitofrontal cortex correlates with subjective ratings of the pleasantness of the taste and smell of food. Cognitive factors, such as a word label presented with an odour, influence the pleasantness of the odour, and the activation produced by the odour in the orbitofrontal cortex. Food intake is thus controlled by building a multimodal representation of the sensory properties of food in the orbitofrontal cortex, and gating this representation by satiety signals to produce a representation of the pleasantness or reward value of food which drives food intake. A neuronal representation of taste is also found in the pregenual cingulate cortex, which receives inputs from the orbitofrontal cortex, and in humans many pleasant stimuli activate the pregenual cingulate cortex, pointing towards this as an important area in motivation and emotion.  相似文献   

3.
Ghrelin modulates brain activity in areas that control appetitive behavior   总被引:1,自引:0,他引:1  
Feeding behavior is often separated into homeostatic and hedonic components. Hedonic feeding, which can be triggered by visual or olfactory food cues, involves brain regions that play a role in reward and motivation, while homeostatic feeding is thought to be under the control of circulating hormones acting primarily on the hypothalamus. Ghrelin is a peptide hormone secreted by the gut that causes hunger and food consumption. Here, we show that ghrelin administered intravenously to healthy volunteers during functional magnetic resonance imaging increased the neural response to food pictures in regions of the brain, including the amygdala, orbitofrontal cortex, anterior insula, and striatum, implicated in encoding the incentive value of food cues. The effects of ghrelin on the amygdala and OFC response were correlated with self-rated hunger ratings. This demonstrates that metabolic signals such as ghrelin may favor food consumption by enhancing the hedonic and incentive responses to food-related cues.  相似文献   

4.
Objective: Prader‐Willi syndrome (PWS) is a genetic disorder associated with developmental delay, obesity, and obsessive behavior related to food consumption. The most striking symptom of PWS is hyperphagia; as such, PWS may provide important insights into factors leading to overeating and obesity in the general population. We used functional magnetic resonance imaging to study the neural mechanisms underlying responses to visual food stimuli, before and after eating, in individuals with PWS and a healthy weight control (HWC) group. Research Methods and Procedures: Participants were scanned once before (pre‐meal) and once after (post‐meal) eating a standardized meal. Pictures of food, animals, and blurred control images were presented in a block design format during acquisition of functional magnetic resonance imaging data. Results: Statistical contrasts in the HWC group showed greater activation to food pictures in the pre‐meal condition compared with the post‐meal condition in the amygdala, orbitofrontal cortex, medial prefrontal cortex (medial PFC), and frontal operculum. In comparison, the PWS group exhibited greater activation to food pictures in the post‐meal condition compared with the pre‐meal condition in the orbitofrontal cortex, medial PFC, insula, hippocampus, and parahippocampal gyrus. Between‐group contrasts in the pre‐ and post‐meal conditions confirmed group differences, with the PWS group showing greater activation than the HWC group after the meal in food motivation networks. Discussion: Results point to distinct neural mechanisms associated with hyperphagia in PWS. After eating a meal, the PWS group showed hyperfunction in limbic and paralimbic regions that drive eating behavior (e.g., the amygdala) and in regions that suppress food intake (e.g., the medial PFC).  相似文献   

5.
Complementary neurophysiological recordings in macaques and functional neuroimaging in humans show that the primary taste cortex in the rostral insula and adjoining frontal operculum provides separate and combined representations of the taste, temperature and texture (including viscosity and fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by learning with olfactory and visual inputs. Different neurons respond to different combinations, providing a rich representation of the sensory properties of food. In the orbitofrontal cortex, feeding to satiety with one food decreases the responses of these neurons to that food, but not to other foods, showing that sensory-specific satiety is computed in the primate (including human) orbitofrontal cortex. Consistently, activation of parts of the human orbitofrontal cortex correlates with subjective ratings of the pleasantness of the taste and smell of food. Cognitive factors, such as a word label presented with an odour, influence the pleasantness of the odour and the activation produced by the odour in the orbitofrontal cortex. These findings provide a basis for understanding how what is in the mouth is represented by independent information channels in the brain; how the information from these channels is combined; and how and where the reward and subjective affective value of food is represented and is influenced by satiety signals. Activation of these representations in the orbitofrontal cortex may provide the goal for eating, and understanding them helps to provide a basis for understanding appetite and its disorders.  相似文献   

6.
E T Rolls 《Chemical senses》2001,26(5):595-604
Approximately 35% of neurons in the orbitofrontal cortex taste and olfactory areas with olfactory responses provide a representation of odour that depends on the taste with which the odour has been associated previously. This representation is produced by a slowly acting learning mechanism that learns associations between odour and taste. Other neurons in the orbitofrontal cortex respond to both the odour and to the mouth feel of fat. The representation of odour thus moves for at least some neurons in the orbitofrontal cortex beyond the domain of physico-chemical properties of the odours to a domain where the ingestion-related significance of the odour determines the representation provided. Olfactory neurons in the primate orbitofrontal cortex decrease their responses to a food eaten to satiety, but remain responsive to other foods, thus contributing to a mechanism for olfactory sensory-specific satiety. It has been shown in neuroimaging studies that the human orbitofrontal cortex provides a representation of the pleasantness of odour, in that the activation produced by the odour of a food eaten to satiety decreases relative to another food-related odour not eaten in the meal. In the same general area there is a representation of the pleasantness of the smell, taste and texture of a whole food, in that activation in this area decreases to a food eaten to satiety, but not to a food that has not been eaten in the meal.  相似文献   

7.
Objective: To explore neuroanatomical sites of eating behavior, we have developed a simple functional magnetic resonance imaging (fMRI) paradigm to image hunger vs. satiety using visual stimulation. Methods and Procedures: Twelve healthy, lean, nonsmoking male subjects participated in this study. Pairs of food‐neutral and food‐related pictures were presented in a block design, after a 14‐h fast and 1 h after ad libitum ingestion of a mixed meal. Statistically, a general linear model for serially autocorrelated observations with a P level <0.001 was used. Results: During the hunger condition, significantly enhanced brain activity was found in the left striate and extrastriate cortex, the inferior parietal lobe, and the orbitofrontal cortices. Stimulation with food images was associated with increased activity in both insulae, the left striate and extrastriate cortex, and the anterior midprefrontal cortex. Nonfood images were associated with enhanced activity in the right parietal lobe and the left and right middle temporal gyrus. A significant interaction in activation pattern between the states of hunger and satiety and stimulation with food and nonfood images was found for the left anterior cingulate cortex, the superior occipital sulcus, and in the vicinity of the right amygdala. Discussion: These preliminary data from a homogenous healthy male cohort suggest that central nervous system (CNS) activation is not only altered with hunger and satiety but that food and nonfood images have also specific effects on regional brain activity if exposure takes place in different states of satiety. Wider use of our or a similar approach would help to establish a uniform paradigm to map hunger and satiety to be used for further experiments.  相似文献   

8.
Perception of the smell of a food precedes its ingestion and perception of its flavor. The neurobiological underpinnings of this association are not well understood. Of central interest is whether the same neural circuits code for anticipatory and consummatory phases. Here, we show that the amygdala and mediodorsal thalamus respond preferentially to food odors that predict immediate arrival of their associated drink (FO+) compared to food odors that predict delivery of a tasteless solution (FO-) and compared to the receipt of the drink. In contrast, the left insula/operculum responds preferentially to the drink, whereas the right insula/operculum and left orbitofrontal cortex respond to FO+ and drink. These findings indicate separable and overlapping representation of anticipatory and consummatory chemosensation. Moreover, since ratings of perceived pleasantness of FO+, FO-, and drink were similar, the response in the amygdala and thalamus cannot reflect acquired affective value but rather predictive meaning or biological relevance.  相似文献   

9.
Reappraisal is a well-known emotion regulation strategy. Recent neuroimaging studies suggest that reappraisal recruits both medial and lateral prefrontal brain regions. However, few studies have investigated neural representation of reappraisals associated with anticipatory anxiety, and the specific nature of the brain activity underlying this process remains unclear. We used functional magnetic resonance imaging (fMRI) to investigate neural activity associated with reappraisals of transient anticipatory anxiety. Although transient anxiety activated mainly subcortical regions, reappraisals targeting the anxiety were associated with increased activity in the medial and lateral prefrontal regions (including the orbitofrontal and anterior cingulate cortices). Reappraisal decreased fear circuit activity (including the amygdala and thalamus). Correlational analysis demonstrated that reductions in subjective anxiety associated with reappraisal were correlated with orbitofrontal and anterior cingulate cortex activation. Reappraisal recruits medial and lateral prefrontal regions; particularly the orbitofrontal and anterior cingulate cortices are associated with successful use of this emotion regulation strategy.  相似文献   

10.
O'Doherty J 《Neuron》2003,39(5):731-733
Basolateral amygdala and orbitofrontal cortex are implicated in cue-outcome learning. In this issue of Neuron, Schoenbaum et al. show that, following basolateral amygdala lesions, cue-selective neurons in orbitofrontal cortex are more sensory driven and less sensitive to the motivational value of an outcome, suggesting that predictive value coding in orbitofrontal cortex is dependent on input from basolateral amygdala.  相似文献   

11.
Smith AP  Stephan KE  Rugg MD  Dolan RJ 《Neuron》2006,49(4):631-638
The ability to remember emotional events is crucial for adapting to biologically and socially significant situations. Little is known, however, about the nature of the neural interactions supporting the integration of mnemonic and emotional information. Using fMRI and dynamic models of effective connectivity, we examined regional neural activity and specific interactions between brain regions during a contextual memory retrieval task. We independently manipulated emotional context and relevance of retrieved emotional information to task demands. We show that retrieval of emotionally valenced contextual information is associated with enhanced connectivity from hippocampus to amygdala, structures crucially involved with encoding of emotional events. When retrieval of emotional information is relevant to current behavior, amygdala-hippocampal connectivity increases bidirectionally, under modulatory influences from orbitofrontal cortex, a region implicated in representation of affective value and behavioral guidance. Our findings demonstrate that both memory content and behavioral context impact upon large scale neuronal dynamics underlying emotional retrieval.  相似文献   

12.
眶额叶皮质与中脑边缘多巴胺奖赏系统有着复杂的相互纤维联系。先前的研究探讨了药物成瘾过程中眶额叶皮质的脑电活动。在本实验中,将探讨食物奖赏和渴求过程中该皮质的脑电活动。实验采用了两个环境:对照环境和食物刺激相关的环境。首先,训练大鼠在食物刺激相关的环境中吃巧克力花生豆,而后在该环境中设置两种不同的刺激方式:能看到和闻到但不能吃到(渴求实验),或者仍旧可以吃到巧克力花生豆(奖赏实验);同时进行左侧眶额叶皮质的脑电记录。结果发现,在食物刺激相关的环境中大鼠 Delta 频段(2-4 Hz)的脑电活动与食物刺激显著相关,此外,与在对照环境中相比,其相对功率在食物渴求时下降而在食物奖赏时升高。本实验表明,食物相关的奖励可以改变大鼠眶额叶皮质的脑电活动,而且,Delta 频段的脑电活动能够作为监测该奖励的一个指标。  相似文献   

13.
Food allocation in many asynchronously hatching bird species favours large, competitively superior chicks. In contrast, food is usually distributed equally within broods of crimson rosellas, Platycercus elegans, implying that parents do not simply feed the most competitive chick. We used two temporary removal experiments to manipulate hunger of: (1) individual first- or last-hatched chicks, or (2) the whole brood. When only a single chick was hungry, parents compensated fully and chicks gained the same mass over the day as during controls. Mothers and fathers, however, responded in different ways to chick hunger. Mothers did not strongly alter their food allocation when a single chick was hungry, and controlled the distribution of food by refusing to feed first-hatched chicks when they were hungry and by moving more during feeds. In contrast, fathers allocated more food to hungry last-hatched chicks. When the whole brood was hungry, parents were unable to compensate chicks and all chicks lost mass over the day. In these conditions, mothers preferentially fed first-hatched chicks, while fathers fed all chicks equally. Our results show that both mothers and fathers were able to discriminate and selectively feed chicks, but that parents responded differently to changes in chick hunger within the brood. Fathers responded more strongly to variation in chick hunger within the brood, suggesting they reallocate food based on short-term changes in hunger. Mothers distributed food preferentially to last-hatched chicks except when the whole brood was hungry, when they switched to favouring first-hatched chicks. This pattern is consistent with a strategy of adaptive brood reduction when food is scarce. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

14.
Twelve healthy adults were studied, singly or in groups of up to four, in an Isolation Unit before (control days) and for 3 days after a simulated time-zone transition to the east across 8 time zones (the clock being changed from 15:00 to 23:00 h). Subjects were free to choose how to pass their waking hours (though naps were forbidden), and to eat what and when they wanted. A wide selection of food was provided, though the subjects had to prepare it. Subjects completed food intake questionnaire on waking and at 3 h intervals during the waking day. This questionnaire assessed the reasons for choosing not to eat a meal or, if a meal was eaten, the reasons for doing so, the type of meal chosen and the reasons for this choice, and subjective responses to the meal (hunger before, enjoyment during, and satiety afterwards). Subjects also recorded the incidence and degree of indigestion and jet lag at 3 h intervals after the time-zone transition. Following the time-zone transition, the subjects experienced significant amounts of jet lag and recorded a significant increase in the incidence of indigestion. They also showed significant changes in their pattern of food intake, but, whereas the patterns of food intake were no longer significantly different from control days by the third post-shift day, the symptoms of jet lag and indigestion were still present then. The distribution of daytime meals was significantly affected on the first post-shift day, with a redistribution of the times that the main, hot meals were eaten; these times indicated some influence of an unadjusted body clock. On this day also, the reasons for determining food intake continued to be dominated by hunger and appetite (hunger even increasing in the frequency with which it was cited), and the reason for not eating a meal, by a lack of hunger. On both control and post-shift days, there was a marked effect of meal type upon the responses to food intake, with cold food being rated least and large hot meals most when appetite before the meal, enjoyment during it, and satiety afterward were considered. However, evidence suggested that the degree to which larger hot meals were preferred to cold meals was significantly less marked after the time-zone transition. On control days, sleep was unbroken; whereas, after the time-zone transition, all subjects woke on at least one of the 3 nights studied. During the first post-shift night, about half of the subjects ate a meal, the reason given being that they were “hungry.” On those occasions when subjects woke but did not eat a meal, the reason cited was because they “could not be bothered” as frequently as because they were “not hungry.”. A simulated time-zone transition is associated with significant changes to the incidence of indigestion, pattern of food intake, and subjective responses to food. However, these changes are generally transient and are only weakly linked to the sensation of jet lag.  相似文献   

15.
Much work in behavioral ecology has shown that animals fight over resources such as food, and that they make strategic decisions about when to engage in such fights. Here, we examine the evolution of one, heretofore unexamined, component of that strategic decision about whether to fight for a resource. We present the results of a computer simulation that examined the evolution of over- or underestimating the value of a resource (food) as a function of an individual's current hunger level. In our model, animals fought for food when they perceived their current food level to be below the mean for the environment. We considered seven strategies for estimating food value: 1) always underestimate food value, 2) always overestimate food value, 3) never over- or underestimate food value, 4) overestimate food value when hungry, 5) underestimate food value when hungry, 6) overestimate food value when relatively satiated, and 7) underestimate food value when relatively satiated. We first competed all seven strategies against each other when they began at approximately equal frequencies. In such a competition, two strategies--"always overestimate food value," and "overestimate food value when hungry"--were very successful. We next competed each of these strategies against the default strategy of "never over- or underestimate," when the default strategy was set at 99% of the population. Again, the strategies of "always overestimate food value" and "overestimate food value when hungry" fared well. Our results suggest that overestimating food value when deciding whether to fight should be favored by natural selection.  相似文献   

16.
Neurons in a small number of brain structures detect rewards and reward-predicting stimuli and are active during the expectation of predictable food and liquid rewards. These neurons code the reward information according to basic terms of various behavioural theories that seek to explain reward-directed learning, approach behaviour and decision-making. The involved brain structures include groups of dopamine neurons, the striatum including the nucleus accumbens, the orbitofrontal cortex and the amygdala. The reward information is fed to brain structures involved in decision-making and organisation of behaviour, such as the dorsolateral prefrontal cortex and possibly the parietal cortex. The neural coding of basic reward terms derived from formal theories puts the neurophysiological investigation of reward mechanisms on firm conceptual grounds and provides neural correlates for the function of rewards in learning, approach behaviour and decision-making.  相似文献   

17.
The responses of 3687 neurons in the macaque primary taste cortex in the insula/frontal operculum, orbitofrontal cortex (OFC) and amygdala to oral sensory stimuli reveals principles of representation in these areas. Information about the taste, texture of what is in the mouth (viscosity, fat texture and grittiness, which reflect somatosensory inputs), temperature and capsaicin is represented in all three areas. In the primary taste cortex, taste and viscosity are more likely to activate different neurons, with more convergence onto single neurons particularly in the OFC and amygdala. The different responses of different OFC neurons to different combinations of these oral sensory stimuli potentially provides a basis for different behavioral responses. Consistently, the mean correlations between the representations of the different stimuli provided by the population of OFC neurons were lower (0.71) than for the insula (0.81) and amygdala (0.89). Further, the encoding was more sparse in the OFC (0.67) than in the insula (0.74) and amygdala (0.79). The insular neurons did not respond to olfactory and visual stimuli, with convergence occurring in the OFC and amygdala. Human psychophysics showed that the sensory spaces revealed by multidimensional scaling were similar to those provided by the neurons.  相似文献   

18.
Small DM  Gerber JC  Mak YE  Hummel T 《Neuron》2005,47(4):593-605
Odors perceived through the mouth (retronasally) as flavor are referred to the oral cavity, whereas odors perceived through the nose (orthonasally) are referred to the external world. We delivered vaporized odorants via the orthonasal and retronasal routes and measured brain response with fMRI. Comparison of retronasal versus orthonasal delivery produced preferential activity in the mouth area at the base of the central sulcus, possibly reflecting olfactory referral to the mouth, associated with retronasal olfaction. Routes of delivery produced differential activation in the insula/operculum, thalamus, hippocampus, amygdala, and caudolateral orbitofrontal cortex in orthonasal > retronasal and in the perigenual cingulate and medial orbitofrontal cortex in retronasal > orthonasal in response to chocolate, but not lavender, butanol, or farnesol, so that an interaction of route and odorant may be inferred. These findings demonstrate differential neural recruitment depending upon the route of odorant administration and suggest that its effect is influenced by whether an odorant represents a food.  相似文献   

19.
Objective: The purpose of this study was to demonstrate the utility of food‐reinforced operant task performance in modeling binge‐eating disorder (BED). We hypothesized that food reinforcement after a caloric preload would be related to BED status, but not hunger. Methods and Procedures: We investigated the association between reports of hunger, binge tendency, and food reinforcement in a sample of 18 women (12 non‐BED, 7 lean, 5 obese, and 6 obese BED). Participants completed two sessions of operant task performance after consuming 600 ml of flavored water or 600 ml of a 1 kcal/ml liquid meal. Results: Under the water condition, food reinforcement did not differ between the non‐BED and BED groups, and was positively correlated with hunger ratings across all participants (r = 0.55, P = 0.023). Under the liquid meal condition, food reinforcement was significantly decreased compared with the water condition in the non‐BED group (t = ?2.6, P = 0.026). There was also a significant difference between the non‐BED and BED groups in the fed condition (41 ± 40, 117 ± 60, F = 10.3, P = 0.005, non‐BED vs. BED, respectively, mean ± s.d.). The correlation between food reinforcement and hunger remained significant only in the non‐BED group (r = 0.69, P = 0.011). Discussion: Our results support the hypothesis that food reinforcement measured after a caloric preload is related to BED status but not hunger in those subjects with BED. The data also suggest that operant task performance can be useful in modeling BED criteria such as “eating when not physically hungry.”  相似文献   

20.
In this paper we study the simultaneous problems of food waste and hunger in the context of food (waste) rescue and redistribution as a means for mitigating hunger. To this end, we develop an empirical model that can be used in Monte Carlo simulations to study the dynamics of the underlying problem. Our model''s parameters are derived from a data set provided by a large food bank and food rescue organization in north central Colorado. We find that food supply is a non-parametric heavy-tailed process that is well modeled with an extreme value peaks over threshold model. Although the underlying process is stochastic, the basic approach of food rescue and redistribution to meet hunger demand appears to be feasible. The ultimate sustainability of this model is intimately tied to the rate at which food expires and hence the ability to preserve and quickly transport and redistribute food. The cost of the redistribution is related to the number and density of participating suppliers. The results show that costs can be reduced (and supply increased) simply by recruiting additional donors to participate. With sufficient funding and manpower, a significant amount of food can be rescued from the waste stream and used to feed the hungry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号