首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Dickeya dadantii is a pectinolytic phytopathogen enterobacterium that causes soft rot disease on a wide range of plant species. The virulence of D. dadantii involves several factors, including the osmoregulated periplasmic glucans (OPGs) that are general constituents of the envelope of proteobacteria. In addition to the loss of virulence, opg-negative mutants display a pleiotropic phenotype, including decreased motility and increased exopolysaccharide synthesis. A nitrosoguanidine-induced mutagenesis was performed on the opgG strain, and restoration of motility was used as a screen. The phenotype of the opg mutant echoes that of the Rcs system: high level activation of the RcsCD-RcsB phosphorelay is needed to activate exopolysaccharide synthesis and to repress motility, while low level activation is required for virulence in enterobacteria. Here, we show that mutations in the RcsCDB phosphorelay system restored virulence and motility in a D. dadantii opg-negative strain, indicating a relationship between the Rcs phosphorelay and OPGs.Osmoregulated periplasmic glucans (OPGs) are general periplasmic constituents of the envelope of most proteobacteria. Their common features are that glucose is the sole constituent sugar, and their abundance in the periplasm increases as the osmolarity of the medium decreases. In Enterobacteriaceae and related bacteria, the glucose backbone synthesis is catalyzed by both products of the opgGH operon (5). Studies of several bacterial pathogens, including Dickeya dadantii, showed the importance of OPGs for virulence (4, 5, 18, 25, 26).Dickeya dadantii is a member of the pectinolytic erwiniae causing soft rot disease in a wide range of plant species (33). The virulence of D. dadantii is associated with the synthesis and the secretion of a set of plant cell wall-degrading enzymes (pectinases, cellulases, and proteases) causing maceration of the plant tissues (22). D. dadantii synthesize OPGs containing 5 to 12 glucose units joined by β,1-2 linkages and branched by β,1-6 linkages that are substituted with succinyl and acetyl residues (11). The opgG or opgH mutants unable to synthesize OPGs show a pleiotropic phenotype. They are nonvirulent on chicory leaves and potato tubers, and synthesis and secretion of pectate-lyases, cellulases, and proteases are reduced (32). Motility is severely reduced, while exopolysaccharide secretion is increased (mucoid phenotype) (32). Data suggest that the opg mutants are impaired in perception of the environment, which prevents D. dadantii from recognizing host cells, suggesting a possible dysfunction of phosphorelay signaling pathways, major systems required for environmental perception in bacteria (6). In these systems, upon stimuli, a kinase/phosphatase sensor autophosphorylates and transfers the phosphate group to a cytoplasmic regulator which modulates expression of target genes.Here, we show that mutations in the rcsC and rcsB genes, encoding, respectively, the sensor and the cognate regulator of the RcsCD-RcsB phosphorelay, suppress several phenotypes of an opgG mutant, including the nonvirulent phenotype on potato tubers. This suggests interactions between the RcsCD-RcsB phosphorelay and OPG molecules and constitutes a first hint at the molecular role of these ubiquitous glycans in virulence.  相似文献   

4.
Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum. The pathogenicity of D. dadantii was tested on the pea aphid Acyrthosiphon pisum, and the bacterium was shown to be highly virulent for this insect, either by septic injury or by oral infection. The lethal inoculum dose was calculated to be as low as 10 ingested bacterial cells. A D. dadantii mutant with the four cytotoxin genes deleted showed a reduced per os virulence for A. pisum, highlighting the potential role of at least one of these genes in pathogenicity. Since only one bacterial pathogen of aphids has been previously described (Erwinia aphidicola), other species from the same bacterial group were tested. The pathogenic trait for aphids was shown to be widespread, albeit variable, within the phytopathogens, with no link to phylogenetic positioning in the Enterobacteriaceae. Previously characterized gut symbionts from thrips (Erwinia/Pantoea group) were also highly pathogenic to the aphid, whereas the potent entomopathogen Photorhabdus luminescens was not. D. dadantii is not a generalist insect pathogen, since it has low pathogenicity for three other insect species (Drosophila melanogaster, Sitophilus oryzae, and Spodoptera littoralis). D. dadantii was one of the most virulent aphid pathogens in our screening, and it was active on most aphid instars, except for the first one, probably due to anatomical filtering. The observed difference in virulence toward apterous and winged aphids may have an ecological impact, and this deserves specific attention in future research.  相似文献   

5.
A dynamic mathematical model has been developed and validated to describe the synthesis of pectate lyases (Pels), the major virulence factors in Dickeya dadantii. This work focuses on the simultaneous modeling of the metabolic degradation of pectin by Pel enzymes and the genetic regulation of pel genes by 2-keto-3-deoxygluconate (KDG), a catabolite product of pectin that inactivates KdgR, one of the main repressors of pel genes. This modeling scheme takes into account the fact that the system is composed of two time-varying compartments: the extracellular medium, where Pel enzymes cleave pectin into oligomers, and the bacterial cytoplasm where, after internalization, oligomers are converted to KDG. Using the quasi-stationary state approximations, the model consists of some nonlinear differential equations for which most of the parameters could be estimated from the literature or from independent experiments. The few remaining unknown parameters were obtained by fitting the model equations against a set of Pel activity data. Model predictions were verified by measuring the time courses of bacterial growth, Pel production, pel mRNA accumulation, and pectin consumption under various growth conditions. This work reveals that pectin is almost totally consumed before the burst of Pel production. This paradoxical behavior can be interpreted as an evolutionary strategy to control the diffusion process so that as soon as a small amount of pectin is detected by the bacteria in its surroundings, it anticipates more pectin to come. The model also predicts the possibility of bistable steady states in the presence of constant pectin compounds.  相似文献   

6.
7.
Chemotaxis enables bacteria to move towards an optimal environment in response to chemical signals. In the case of plant‐pathogenic bacteria, chemotaxis allows pathogens to explore the plant surface for potential entry sites with the ultimate aim to prosper inside plant tissues and to cause disease. Chemoreceptors, which constitute the sensory core of the chemotaxis system, are usually transmembrane proteins which change their conformation when sensing chemicals in the periplasm and transduce the signal through a kinase pathway to the flagellar motor. In the particular case of the soft‐rot pathogen Dickeya dadantii 3937, jasmonic acid released in a plant wound has been found to be a strong chemoattractant which drives pathogen entry into the plant apoplast. In order to identify candidate chemoreceptors sensing wound‐derived plant compounds, we carried out a bioinformatics search of candidate chemoreceptors in the genome of Dickeya dadantii 3937. The study of the chemotactic response to several compounds and the analysis of the entry process to Arabidopsis leaves of 10 selected mutants in chemoreceptors allowed us to determine the implications of at least two of them (ABF‐0020167 and ABF‐0046680) in the chemotaxis‐driven entry process through plant wounds. Our data suggest that ABF‐0020167 and ABF‐0046680 may be candidate receptors of jasmonic acid and xylose, respectively.  相似文献   

8.
Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum. The pathogenicity of D. dadantii was tested on the pea aphid Acyrthosiphon pisum, and the bacterium was shown to be highly virulent for this insect, either by septic injury or by oral infection. The lethal inoculum dose was calculated to be as low as 10 ingested bacterial cells. A D. dadantii mutant with the four cytotoxin genes deleted showed a reduced per os virulence for A. pisum, highlighting the potential role of at least one of these genes in pathogenicity. Since only one bacterial pathogen of aphids has been previously described (Erwinia aphidicola), other species from the same bacterial group were tested. The pathogenic trait for aphids was shown to be widespread, albeit variable, within the phytopathogens, with no link to phylogenetic positioning in the Enterobacteriaceae. Previously characterized gut symbionts from thrips (Erwinia/Pantoea group) were also highly pathogenic to the aphid, whereas the potent entomopathogen Photorhabdus luminescens was not. D. dadantii is not a generalist insect pathogen, since it has low pathogenicity for three other insect species (Drosophila melanogaster, Sitophilus oryzae, and Spodoptera littoralis). D. dadantii was one of the most virulent aphid pathogens in our screening, and it was active on most aphid instars, except for the first one, probably due to anatomical filtering. The observed difference in virulence toward apterous and winged aphids may have an ecological impact, and this deserves specific attention in future research.  相似文献   

9.
The hypersensitive response and pathogenicity (hrp) genes of Dickeya dadantii 3937 encode a type III secretion system (T3SS) which is essential for its full virulence. Previous studies of the T3SS regulation in D. dadantii 3937 revealed that the expression of the hrp genes is regulated by a master regulator, HrpL, through the HrpX-HrpY-HrpS-HrpL and GacS-GacA-rsmB-RsmA pathways. In this work, we identified a novel regulator of the SlyA/MarR family, SlyA, which regulates hrp genes of the HrpL regulon in parallel with HrpL in D. dadantii. SlyA regulates the T3SS in a two-tier manner. It negatively regulates the expression of hrpL by downregulating hrpS and upregulating rsmA. Interestingly, concomitant with its downregulation of the hrpL, SlyA positively regulates the expression of hrpA and hrpN, two hrp genes located in the HrpL regulon. In contrast to Pectobacterium carotovorum, the expression of slyA is not controlled by ExpR and ExpI in D. dadantii 3937. We further show that SlyA is involved in controlling swimming motility and pellicle formation in D. dadantii 3937.  相似文献   

10.
11.
12.
Dickeya dadantii 3937 is a gram-negative phytopathogenic bacterium that expresses genes encoding a type III secretion system (T3SS) in a bistable pattern when cultured in a homogeneous minimal media. In this work, we further characterized the bistable gene expression of T3SS at the single-cell level. We demonstrated that bistable expression of the HrpL-regulon genes, such as hrpA and hrpN, is controlled by the same regulatory mechanism. We also showed that the expression level of the T3SS master regulatory gene hrpL plays an important role in the development of the bistable expression of hrpA. A high expression level of hrpL is required but unable to guarantee the high-state expression of hrpA in a cell. In addition, bistable expression patterns of T3SS genes in other gram-negative pathogens of the Enterobacteriaceae and Pseudomonadaceae families were also described in this study. This suggests that the T3SS bistability might be a conserved population behavior in several gram-negative bacterial pathogens.  相似文献   

13.
14.
15.
16.
The plant-pathogenic bacterium Dickeya dadantii (formerly Erwinia chrysanthemi) produces a large array of plant cell wall-degrading enzymes. Using an in situ detection test, we showed that it produces two feruloyl esterases, FaeD and FaeT. These enzymes cleave the ester link between ferulate and the pectic or xylan chains. FaeD and FaeT belong to the carbohydrate esterase family CE10, and they are the first two feruloyl esterases to be identified in this family. Cleavage of synthetic substrates revealed strong activation of FaeD and FaeT by ferulic acid. The gene faeT appeared to be weakly expressed, and its product, FaeT, is a cytoplasmic protein. In contrast, the gene faeD is strongly induced in the presence of ferulic acid, and FaeD is an extracellular protein secreted by the Out system, responsible for pectinase secretion. The product of the adjacent gene faeR is involved in the positive control of faeD in response to ferulic acid. Moreover, ferulic acid acts in synergy with polygalacturonate to induce pectate lyases, the main virulence determinant of soft rot disease. Feruloyl esterases dissociate internal cross-links in the polysaccharide network of the plant cell wall, suppress the polysaccharide esterifications, and liberate ferulic acid, which contributes to the induction of pectate lyases. Together, these effects of feruloyl esterases could facilitate soft rot disease caused by pectinolytic bacteria.  相似文献   

17.
18.
19.
20.
Bacteria use signal transduction systems to sense and respond to their external environment. The two‐component system CpxA/CpxR senses misfolded envelope protein stress and responds by up‐regulating envelope protein factors and down‐regulating virulence factors in several animal pathogens. Dickeya dadantii is a phytopathogen equipped with a type III secretion system (T3SS) for manipulating the host immune response. We found that deletion of cpxR enhanced the expression of the T3SS marker gene hrpA in a designated T3SS‐inducing minimal medium (MM). In the ∆cpxR mutant, multiple T3SS and c‐di‐GMP regulators were also up‐regulated. Subsequent analysis revealed that deletion of the phosphodiesterase gene egcpB in ∆cpxR abolished the enhanced T3SS expression. This suggested that CpxR suppresses EGcpB levels, causing low T3SS expression in MM. Furthermore, we found that the ∆cpxR mutant displayed low c‐di‐GMP phenotypes in biofilm formation and swimming. Increased production of cellular c‐di‐GMP by in trans expression of the diguanylate cyclase gene gcpA was negated in the ∆cpxR mutant. Here, we propose that CpxA/CpxR regulates T3SS expression by manipulating the c‐di‐GMP network, in turn modifying the multiple physiological activities involved in the response to environmental stresses in D. dadantii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号