首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of molecular biology》2019,431(24):4941-4958
The coreceptor CD8αβ can greatly promote activation of T cells by strengthening T-cell receptor (TCR) binding to cognate peptide-MHC complexes (pMHC) on antigen presenting cells and by bringing p56Lck to TCR/CD3. Here, we demonstrate that CD8 can also bind to pMHC on the T cell (in cis) and that this inhibits their activation. Using molecular modeling, fluorescence resonance energy transfer experiments on living cells, biochemical and mutational analysis, we show that CD8 binding to pMHC in cis involves a different docking mode and is regulated by posttranslational modifications including a membrane-distal interchain disulfide bond and negatively charged O-linked glycans near positively charged sequences on the CD8β stalk. These modifications distort the stalk, thus favoring CD8 binding to pMHC in cis. Differential binding of CD8 to pMHC in cis or trans is a means to regulate CD8+ T-cell responses and provides new translational opportunities.  相似文献   

2.
CD4+ T cells differentiate into subsets that promote immunity or minimize damage to the host. T helper 17 cells (Th17) are effector cells that function in inflammatory responses. T regulatory cells (Tregs) maintain tolerance and prevent autoimmunity by secreting immunosuppressive cytokines and expressing check point receptors. While the functions of Th17 and Treg cells are different, both cell fate trajectories require T cell receptor (TCR) and TGF-β receptor (TGF-βR) signals, and Th17 polarization requires an additional IL-6 receptor (IL-6R) signal. Utilizing high-resolution phosphoproteomics, we identified that both synergistic and additive interactions between TCR, TGF-βR, and IL-6R shape kinase signaling networks to differentially regulate key pathways during the early phase of Treg versus Th17 induction. Quantitative biochemical analysis revealed that CD4+ T cells integrate receptor signals via SMAD3, which is a mediator of TGF-βR signaling. Treg induction potentiates the formation of the canonical SMAD3/4 trimer to activate a negative feedback loop through kinases PKA and CSK to suppress TCR signaling, phosphatidylinositol metabolism, and mTOR signaling. IL-6R signaling activates STAT3 to bind SMAD3 and block formation of the SMAD3/4 trimer during the early phase of Th17 induction, which leads to elevated TCR and PI3K signaling. These data provide a biochemical mechanism by which CD4+ T cells integrate TCR, TGF-β, and IL-6 signals via generation of alternate SMAD3 complexes that control the development of early signaling networks to potentiate the choice of Treg versus Th17 cell fate.  相似文献   

3.
T lymphocytes elicit specific responses after recognizing cognate antigen. However, antigen-experienced T cells can also respond to non-cognate stimuli, such as cytokines. CD4+ Foxp3+ regulatory T cells (Treg) exhibit an antigen-experienced-like phenotype. Treg can regulate T cell responses in an antigen-specific or bystander way, and it is still unclear as to which extent they rely on T cell receptor (TCR) signals. The study of the antigen response of Treg has been hampered by the lack of downstream readouts for TCR stimuli. Here we assess the effects of TCR signals on the expression of a classical marker of early T cell activation, CD69. Although it can be induced following cytokine exposure, CD69 is commonly used as a readout for antigen response on T cells. We established that upon in vitro TCR stimulation CD69 induction on Foxp3+ Treg cells was more dependent on signaling via soluble factors than on TCR activation. By contrast, expression of the activation marker Nur77 was only induced after TCR stimulation. Our data suggest that Treg are more sensitive to TCR-independent signals than Foxp3- cells, which could contribute to their bystander activity.  相似文献   

4.
We previously developed methods for establishing CD8 regulatory T cell (Treg) clones from normal human peripheral blood and demonstrated that these clones were capable of killing T cell receptor (TCR)-activated autologous CD4 T cells. Based on phenotypic and functional characterization of the CD8 Treg clones, we have identified a corresponding population of endogenous CD8 Treg in normal human peripheral blood. These cells appear morphologically as large lymphocytes with abundant cytoplasm and have the following unique phenotype: CD3+CD8+CD161CD56+. The majority of CD8 Treg express CD45RA and CD62L with low or negative expression of CD45RO, CD25, CD27, CD28 and CCR7. The expression of CD94 and NKG2a on CD8 Treg was elevated compared to conventional CD8 T cells. Following in vitro activation, this T cell subset is capable of killing TCR-activated CD4 T cells. These studies identify an endogenous CD8 Treg population in humans and it will now be possible to characterize these cells in a variety of clinical conditions.  相似文献   

5.
Bone Morphogenetic Proteins (BMPs) form a group of secreted factors that belongs to the TGF-β superfamily. Among different roles in a number of immune cell types, BMPs are known to regulate T cell development within the thymus, although the role of BMP signaling in human mature T cells remains elusive. In this study, we demonstrate that canonical BMP signaling is necessary during two critical events that regulate the size and function of human naive CD4+ T cell population: activation and homeostasis. Upon stimulation via TCR, naive CD4+ T cells upregulate the expression of BMP ligands triggering canonical BMP signaling in CD25+ cells. Blockade of BMP signaling severely impairs CD4+ T cell proliferation after activation mainly through regulation of IL-2, since the addition of this cytokine recuperates normal T cell expansion after inhibition of BMP signaling. Similarly, activation of canonical BMP pathway is required for both the maintenance of cell survival and the homeostatic proliferation induced by IL-7, a key factor for T cell homeostasis. Moreover, upregulation of two critical receptors for T cell homeostasis, CXCR4 and CCR9, triggered by IL-7 is also abrogated in the absence of BMP signaling. Collectively, we describe important roles of the canonical BMP signaling in human naive CD4+ T cell activation and homeostasis that could be valuable for clinical application.  相似文献   

6.
Although the etiology of Crohn''s disease (CD) remains elusive this disease is characterized by T cell activation that leads to chronic inflammation and mucosal damage. A potential role for maladaptation between the intestinal microbiota and the mucosal immune response is suggested by the fact that mutations in the pattern recognition receptor Nod2 are associated with higher risks for developing CD. Although Nod2 deletion in CD4+ T cells has been shown to impair the induction of colitis in the murine T cell transfer model, the analysis of T cell intrinsic Nod2 function in T cell differentiation and T cell-mediated immunity is inconsistent between several studies. In addition, the role of T cell intrinsic Nod2 in regulatory T cell (Treg) development and function during colitis remain to be analyzed. In this study, we show that Nod2 expression is higher in activated/memory CD4+ T cells and its expression was inducible after T cell receptor (TCR) ligation. Nod2 stimulation with muramyl dipeptide (MDP) led to a nuclear accumulation of c-Rel NF-kB subunit. Although functionally active in CD4+ T cells, the deletion of Nod2 did not impair the induction and the prevention of colitis in the T cell transfer model. Moreover, Nod2 deletion did not affect the development of Foxp3+ Treg cells in the spleen of recipient mice and Nod2 deficient CD4 T cells expressing the OVA specific transgenic TCR were able to differentiate in Foxp3+ Treg cells after OVA feeding. In vitro, CD25+ Nod2 deficient T cells suppressed T cell proliferation as well as wild type counter parts and T cell stimulation with MDP did not affect the proliferation and the cytokine secretion of T cells. In conclusion, our data indicate that Nod2 is functional in murine CD4+ T cells but its expression is dispensable for the T cell regulation of colitis.  相似文献   

7.
Tacrolimus is a widely used T cell targeted immunosuppressive drug, known as a calcineurin inhibitor. However, the exact pharmacological effects of tacrolimus on CD4+ T cells have yet to be elucidated. This study investigated the effects of tacrolimus on CD4+ T cell subsets. Mouse or human CD4+ T cells were cultured with immobilized anti-CD3/CD28 antibodies in the presence of tacrolimus. The cell division of CD4+ T cells was analyzed using a flow cytometer according to the expression of Foxp3. The gene expression patterns of tacrolimus-exposed T cells were examined by quantitative PCR. In the case of conventional CD4+ T cells (Tconv cells), tacrolimus inhibited T cell receptor stimulation-induced cell division. In contrast, the cell division of regulatory CD4+ T cells (Treg cells) was even promoted in the presence of tacrolimus, especially in humans. Tacrolimus did not promote conversion of Tconv to Treg cells in mice. Furthermore, tacrolimus modified the expression levels of Foxp3-regulated T cell receptor signal related-genes, PTPN22 and Itk, in human Treg cells. Immunosuppressive effect of tacrolimus may be attributed to the relatively enhanced proliferation of Treg cells in association with altered gene expression levels of TCR signaling molecules.  相似文献   

8.
为探讨组蛋白去乙酰化酶3(HDAC3)在T细胞自稳中的作用,采用LoxP-cd4cre酶系统在胸腺CD4+CD8+双阳性T细胞(DP)中敲除hdac3基因.hdac3基因敲除小鼠不影响T细胞在胸腺中的发育,但导致外周T细胞显著降低,而且,hdac3基因敲除的外周T细胞主要以活化/效应/记忆表型为主.机制分析表明,hdac3基因敲除的外周T细胞凋亡增加并伴随细胞增殖加速,同时,Fas 和Fas配体阳性细胞比率以及Fas配体的表达显著增加.体外TCR活化不影响正常外周T细胞的凋亡,但导致hdac3基因敲除的外周T细胞凋亡显著增加.实验结果表明,HDAC3通过抑制活化诱导的细胞凋亡维持外周T细胞自稳.  相似文献   

9.
Regulatory T cells (Tregs) are essential to provide immune tolerance to self as well as to certain foreign antigens. Tregs can be generated from naive CD4 T cells in vitro with TCR- and co-stimulation in the presence of TGFβ and IL-2. This bears enormous potential for future therapies, however, the molecules and signaling pathways that control differentiation are largely unknown.Primary T cells can be manipulated through ectopic gene expression, but common methods fail to target the most important naive state of the T cell prior to primary antigen recognition. Here, we provide a protocol to express ectopic genes in naive CD4 T cells in vitro before inducing Treg differentiation. It applies transduction with the replication-deficient adenovirus and explains its generation and production. The adenovirus can take up large inserts (up to 7 kb) and can be equipped with promoters to achieve high and transient overexpression in T cells. It effectively transduces naive mouse T cells if they express a transgenic Coxsackie adenovirus receptor (CAR). Importantly, after infection the T cells remain naive (CD44low, CD62Lhigh) and resting (CD25-, CD69-) and can be activated and differentiated into Tregs similar to non-infected cells. Thus, this method enables manipulation of CD4 T cell differentiation from its very beginning. It ensures that ectopic gene expression is already in place when early signaling events of the initial TCR stimulation induces cellular changes that eventually lead into Treg differentiation.  相似文献   

10.
11.
In addition to its positive signaling function in the antigen presentation process, CD4 acts as the primary receptor for HIV-1. Contact between CD4 and the viral envelope leads to virus entry, but can also trigger apoptosis of uninfected CD4+ T-cells through a mechanism that is poorly understood. We show that Siva-1, a death domain-containing proapoptotic protein, associates with the cytoplasmic domain of CD4. This interaction is mediated by the cysteine-rich region found in the C-terminal part of the Siva-1 protein. Expression of Siva-1 specifically increases the susceptibility of both T-cell lines and unstimulated human primary CD4+ T-lymphocytes to CD4-mediated apoptosis triggered by the HIV-1 envelope, and results in activation of a caspase-dependent mitochondrial pathway. The same susceptibility is observed in T-cells expressing a truncated form of CD4 that is able to recruit Siva-1 but fails to associate with p56Lck, indicating that Siva-1 participates in a pathway independent of the p56Lck kinase activity. Altogether, these results suggest that Siva-1 might participate in the CD4-initiated signaling apoptotic pathway induced by the HIV-1 envelope in T-lymphoid cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
The highly conserved cellular degradation pathway, macroautophagy, regulates the homeostasis of organelles and promotes the survival of T lymphocytes. Previous results indicate that Atg3-, Atg5-, or Pik3c3/Vps34-deficient T cells cannot proliferate efficiently. Here we demonstrate that the proliferation of Atg7-deficient T cells is defective. By using an adoptive transfer and Listeria monocytogenes (LM) mouse infection model, we found that the primary immune response against LM is intrinsically impaired in autophagy-deficient CD8+ T cells because the cell population cannot expand after infection. Autophagy-deficient T cells fail to enter into S-phase after TCR stimulation. The major negative regulator of the cell cycle in T lymphocytes, CDKN1B, is accumulated in autophagy-deficient naïve T cells and CDKN1B cannot be degraded after TCR stimulation. Furthermore, our results indicate that genetic deletion of one allele of CDKN1B in autophagy-deficient T cells restores proliferative capability and the cells can enter into S-phase after TCR stimulation. Finally, we found that natural CDKN1B forms polymers and is physiologically associated with the autophagy receptor protein SQSTM1/p62 (sequestosome 1). Collectively, autophagy is required for maintaining the expression level of CDKN1B in naïve T cells and selectively degrades CDKN1B after TCR stimulation.  相似文献   

14.
15.
16.
The infusion of ex vivo-expanded autologous T regulatory (Treg) cells is potentially an effective immunotherapeutic strategy against graft-versus-host disease (GvHD) and several autoimmune diseases, such as type 1 diabetes (T1D). However, in vitro differentiation of antigen-specific T cells into functional and stable Treg (iTreg) cells has proved challenging. As insulin is the major autoantigen leading to T1D, we tested the capacity of insulin-specific T-cell receptor (TCR) transgenic CD4+ T cells of the BDC12-4.1 clone to convert into Foxp3+ iTreg cells. We found that in vitro polarization toward Foxp3+ iTreg was effective with a majority (>70%) of expanded cells expressing Foxp3. However, adoptive transfer of Foxp3+ BDC12-4.1 cells did not prevent diabetes onset in immunocompetent NOD mice. Thus, in vitro polarization of insulin-specific BDC12-4.1 TCR transgenic CD4+ T cells toward Foxp3+ cells did not provide dominant tolerance in recipient mice. These results highlight the disconnect between an in vitro acquired Foxp3+ cell phenotype and its associated in vivo regulatory potential.  相似文献   

17.

Background

The immunosuppressive drug rapamycin (RAPA) promotes the expansion of CD4+ CD25highFoxp3+ regulatory T cells via mechanisms that remain unknown. Here, we studied expansion, IL-2R-γ chain signaling, survival pathways and resistance to apoptosis in human Treg responding to RAPA.

Methodology/Principal Findings

CD4+CD25+ and CD4+CD25neg T cells were isolated from PBMC of normal controls (n = 21) using AutoMACS. These T cell subsets were cultured in the presence of anti-CD3/CD28 antibodies and 1000 IU/mL IL-2 for 3 to 6 weeks. RAPA (1–100 nM) was added to half of the cultures. After harvest, the cell phenotype, signaling via the PI3K/mTOR and STAT pathways, expression of survival proteins and Annexin V binding were determined and compared to values obtained with freshly-separated CD4+CD25high and CD4+CD25neg T cells. Suppressor function was tested in co-cultures with autologous CFSE-labeled CD4+CD25neg or CD8+CD25neg T-cell responders. The frequency and suppressor activity of Treg were increased after culture of CD4+CD25+ T cells in the presence of 1–100 nM RAPA (p<0.001). RAPA-expanded Treg were largely CD4+CD25highFoxp3+ cells and were resistant to apoptosis, while CD4+CD25neg T cells were sensitive. Only Treg upregulated anti-apoptotic and down-regulated pro-apoptotic proteins. Treg expressed higher levels of the PTEN protein than CD4+CD25neg cells. Activated Treg±RAPA preferentially phosphorylated STAT5 and STAT3 and did not utilize the PI3K/mTOR pathway.

Conclusions/Significance

RAPA favors Treg expansion and survival by differentially regulating signaling, proliferation and sensitivity to apoptosis of human effector T cells and Treg after TCR/IL-2 activation.  相似文献   

18.
Our laboratory reported previously that TNF receptor associated factor 3 (TRAF3) is a positive regulator of TCR signaling and T cell function. In the current study, we present new findings that reveal differential roles for TRAF3 in the regulation of CD4+ and CD8+ T cells. In response to TCR stimulation in vitro, TRAF3 has greater impact in CD4+ T cells than in CD8+ T cells. However, T cell-specific TRAF3 deficient mice (CD4Cre TRAF3fl°x/fl°x; T-TRAF3−/−) have a greater number of CD4+CD44hi effector/memory T cells than littermate control (LMC) mice, possibly due to an inefficient suppressive effect of TRAF3 deficient Foxp3+ regulatory T cells. In contrast, CD8+CD44hiCD62Lhi central memory (Tcm) cells are markedly reduced in T-TRAF3−/− mice in comparison to LMC mice, although CD8+CD44hiCD62Ll°w effector memory T (Tem) cells and naïve T cells (CD8+CD44l°wCD62Lhi) do not show significant differences in number. Importantly, TRAF3-deficient Tcm cells exhibit defective homeostasis due to impaired IL-15 signaling. These results indicate that the involvement of TRAF3 in IL-15 mediated signaling to T cells plays a previously unappreciated and critical role in CD8+ Tcm cell regulation and maintenance.  相似文献   

19.
20.
Cbl family ubiquitin ligases act as key negative regulators of TCR signaling. Knockout mice lacking Cbl-b and c-Cbl show augmented T cell activation and CD28-independent IL-2 production. In order to study Cbl function directly in post-thymic T cells, a DN Cbl adenovirus was generated for transduction of T cells from Coxsackie/adenovirus receptor (CAR) transgenic (Tg) mice. We show that dominant negative (DN) Cbl-transduced CD4+ T cells exhibited enhanced IL-2 production upon TCR/CD28 engagement compared with empty adenoviral vector-transduced cells. This augmentation was reflected at both IL-2 mRNA and protein level, and correlated with increased protein phosphorylation of Vav, Akt, ERK, and p38MAPK. Our results indicate that introduction of dominant negative Cbl can potentiate activation of post-thymic CD4+ T cells, which argues for development of strategies to interfere with Cbl function as a method of immunopotentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号