首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anthrax is a zoonotic disease caused by the gram-positive spore-forming bacterium Bacillus anthracis. Human infection occurs after the ingestion, inhalation, or cutaneous inoculation of B. anthracis spores. The subsequent progression of the disease is largely mediated by two native virulence plasmids, pXO1 and pXO2, and is characterized by septicemia, toxemia, and meningitis. In order to produce meningitis, blood-borne bacteria must interact with and breach the blood-brain barrier (BBB) that is composed of a specialized layer of brain microvascular endothelial cells (BMEC). We have recently shown that B. anthracis Sterne is capable of penetrating the BBB in vitro and in vivo, establishing the classic signs of meningitis; however, the molecular mechanisms underlying the central nervous system (CNS) tropism are not known. Here, we show that attachment to and invasion of human BMEC by B. anthracis Sterne is mediated by the pXO1 plasmid and an encoded envelope factor, BslA. The results of studies using complementation analysis, recombinant BslA protein, and heterologous expression demonstrate that BslA is both necessary and sufficient to promote adherence to brain endothelium. Furthermore, mice injected with the BslA-deficient strain exhibited a significant decrease in the frequency of brain infection compared to mice injected with the parental strain. In addition, BslA contributed to BBB breakdown by disrupting tight junction protein ZO-1. Our results identify the pXO1-encoded BslA adhesin as a critical mediator of CNS entry and offer new insights into the pathogenesis of anthrax meningitis.Bacillus anthracis, the etiologic agent of anthrax, is a gram-positive spore-forming bacterium that is commonly found in soil (29). The bacterium can infect animals and humans by ingestion, inhalation, or cutaneous inoculation of B. anthracis spores (8). Spores are taken up by resident macrophages that migrate to the lymph nodes (15). Here, the spores germinate into vegetative bacteria, multiply, and then disseminate throughout the host, causing septicemia and toxemia (8). Systemic disease can be complicated by the onset of a fulminant and rapidly fatal hemorrhagic meningitis and meningoencephalitis (27). Anthrax meningitis is associated with a high mortality rate despite intensive antibiotic therapy (24). Biopsy studies after an outbreak of inhalational anthrax and experimental studies of inhalational infection in rhesus monkeys demonstrated the presence of bacilli in the central nervous system (CNS) and pathologies consistent with suppurative and hemorrhagic meningitis in the majority of cases (1, 12). The intentional release of B. anthracis spores (19) during the 2001 bioterrorism event resulted in a case of meningitis (19), necessitating a need for a better understanding of the pathogenesis of anthrax meningitis and CNS infection.To cause meningitis, blood-borne bacteria must interact with and breach the blood-brain barrier (BBB). The majority of the BBB is anatomically represented by the cerebral microvascular endothelium; brain microvascular endothelial cells (BMEC) are joined by tight junctions and display a paucity of pinocytosis, thereby effectively limiting the passage of substances and maintaining the CNS microenvironment (4, 5). Despite its highly restrictive nature, certain bacterial pathogens are still able to penetrate the BBB and gain entry into the CNS. The presence of bacilli in the brains of patients (1, 24) and in experimental models of anthrax infection (42, 44) suggests that vegetative B. anthracis cells are able to cross the BBB to initiate meningeal inflammation and the classic pathology associated with meningitis.B. anthracis harbors two large virulence plasmids, pXO1 and pXO2 (8), which are required for full virulence, as strains lacking these plasmids are attenuated in animal models of infection (29). B. anthracis Sterne (pXO1+ pXO2) has been utilized as a vaccine strain (41) but is still widely used in both in vitro and in vivo studies of anthrax infection since it causes lethal disease in mouse models of infection (46). Despite the crucial roles of pXO1 and pXO2 in anthrax disease pathogenesis, very few plasmid-encoded factors have been characterized. The best described are the antiphagocytic polyglutamyl capsule, encoded by biosynthetic enzymes on pXO2, and the anthrax toxin complex comprised of protective antigen, lethal factor (LF), and edema factor (EF), encoded by pXO1 (8, 29). Sequence analysis of the pXO1 plasmid revealed that the majority of plasmid-encoded factors, ∼70%, were of unknown function (31). More recently, in silico analysis identified novel pXO1-encoded proteins with immunogenic potential and relevance for pathogenesis. These included factors with putative adherent and invasive properties (2). Interestingly, two of the immunoreactive proteins were predicted surface layer (S-layer) proteins (2), one of which, B. anthracis S-layer protein A (BslA, pXO1-90), has recently been described and shown to mediate adherence of the vegetative form to host cells (20).Using in vitro and in vivo model systems, we have recently shown that B. anthracis Sterne adheres to and invades brain endothelium (44). This interaction was partially dependent on the pXO1-encoded anthrax toxins; however, the molecular mechanisms that contribute to B. anthracis penetration of the BBB are currently unknown. In this study, we investigate the role of pXO1 in B. anthracis Sterne''s interaction with brain endothelium and identify the encoded BslA adhesin as a critical mediator for BBB attachment and penetration during the pathogenesis of anthrax meningitis.  相似文献   

2.
3.
Magnetosome biomineralization and magnetotaxis in magnetotactic bacteria are controlled by numerous, mostly unknown gene functions that are predominantly encoded by several operons located within the genomic magnetosome island (MAI). Genetic analysis of magnetotactic bacteria has remained difficult and requires the development of novel tools. We established a Cre-lox-based deletion method which allows the excision of large genomic fragments in Magnetospirillum gryphiswaldense. Two conjugative suicide plasmids harboring lox sites that flanked the target region were subsequently inserted into the chromosome by homologous recombination, requiring only one single-crossover event, respectively, and resulting in a double cointegrate. Excision of the targeted chromosomal segment that included the inserted plasmids and their resistance markers was induced by trans expression of Cre recombinase, which leaves behind a scar of only a single loxP site. The Cre helper plasmid was then cured from the deletant strain by relief of antibiotic selection. We have used this method for the deletion of 16.3-kb, 61-kb, and 67.3-kb fragments from the genomic MAI, either in a single round or in subsequent rounds of deletion, covering a region of approximately 87 kb that comprises the mamAB, mms6, and mamGFDC operons. As expected, all mutants were Mag and some were Mot; otherwise, they showed normal growth patterns, which indicates that the deleted region is not essential for viability in the laboratory. The method will facilitate future functional analysis of magnetosome genes and also can be utilized for large-scale genome engineering in magnetotactic bacteria.Magnetosomes are unique membrane-enveloped organelles that are formed by magnetotactic bacteria (MTB) for magnetic navigation (2, 37). The mechanism of magnetosome formation is within the focus of a multidisciplinary interest and has relevance for biotechnological applications (5). It has been recognized that the biomineralization of inorganic magnetite crystals and their assembly into highly ordered magnetosome chains are under strict genetic control. Recent studies combining proteomic and bioinformatic approaches suggested that the genetic determination of magnetosome formation is complex and may potentially involve 25 to 50 gene functions (15), with unknown numbers of accessory genes and those controlling signal transduction and motility to achieve effective magnetotaxis (8, 9, 12, 26, 27, 29). However, the functional characterization of these candidate genes has been lagging behind. This is due to technical difficulties and the lack of facile tools for genetic manipulation of MTB. Allelic replacement systems have been established for Magnetospirillum magneticum (18) and Magnetospirillum gryphiswaldense (39, 40), but so far, there are only few examples of these for magnetosome genes that were functionally characterized because of the tedious and cumbersome procedures required for mutant generation (11, 19, 28, 31-32). Most genes controlling magnetosome formation in these and other MTB are located within a genomic magnetosome island (MAI) (34), which is genetically instable during stationary growth (47) and more or less conserved in other MTB (12, 13, 35). Most known magnetosome genes are organized within several conserved operons, which are interspersed with large, poorly conserved genome sections of unknown functions that have been speculated to represent genetic junk irrelevant for magnetotaxis but to cause genetic instability by their high content of repeats and transposable elements (34, 47). Thus, for large-scale functional genome analysis and rearrangements of the MAI, there is a great need for additional and more efficient genetic methods.Artificial genome recombination systems have been described for a number of bacteria. Many of them are based on the Cre-loxP system of the P1 phage (42). The Cre-loxP recombination system is a simple two-component system that is recognized as a powerful genetic tool in a multitude of eukaryotic and prokaryotic organisms (4, 6, 48). The Cre protein belongs to the integrase family of site-specific recombinases and catalyzes reciprocal site-specific recombination of DNA at 34-bp loxP sites, resulting in either excision or inversion, depending on the parallel or antiparallel orientation of the loxP sites, respectively (21). It does not require any host cofactors or accessory proteins (7). Cre-lox deletion has several advantages over other methods, such as a high efficiency and the independency of the length of DNA located between the two lox sites. The utility of Cre-lox systems has been demonstrated in a wide variety of Gram-positive and Gram-negative bacteria (17, 22-23). In several studies, it was applied for the generation of large-scale deletions, as in for example, the Gram-positive Corynebacterium glutamicum (43-46) and Bacillus subtilis (49).In M. gryphiswaldense, the functionality of a Cre-loxP antibiotic marker recycling system (25) has been previously demonstrated by deletion of a single gene based on double-crossover insertion of two loxP sites, followed by subsequent Cre-mediated excision (31). In this study, we describe a novel strategy for Cre-loxP-mediated deletion of large genomic fragments which requires only two single crossovers. The system has been validated by the generation of three large deletions, two single and one combination within the MAI, which demonstrated that the total deleted region of approximately 87 kb is not essential for viability and growth in the laboratory.  相似文献   

4.
We sought to identify proteins in the Bacillus anthracis spore, conserved in other strains of the closely related Bacillus cereus group, that elicit an immune response in mammals. Two high throughput approaches were used. First, an in silico screening identified 200 conserved putative B. anthracis spore components. A total of 192 of those candidate genes were expressed and purified in vitro, 75 of which reacted with the rabbit immune sera generated against B. anthracis spores. The second approach was to screen for cross-reacting antigens in the spore proteome of 10 diverse B. cereus group strains. Two-dimensional electrophoresis resolved more than 200 protein spots in each spore preparation. About 72% of the protein spots were found in all the strains. 18 of these conserved proteins reacted against anti-B. anthracis spore rabbit immune sera, two of which (alanine racemase, Dal-1 and the methionine transporter, MetN) overlapped the set of proteins identified using the in silico screen. A conserved repeat domain protein (Crd) was the most immunoreactive protein found broadly across B. cereus sensu lato strains. We have established an approach for finding conserved targets across a species using population genomics and proteomics. The results of these screens suggest the possibility of a multiepitope antigen for broad host range diagnostics or therapeutics against Bacillus spore infection.The anthrax causing bacterium Bacillus anthracis is a member of the Bacillus cereus sensu lato (s.l.)1 group, a term given to the polyphyletic species consisting of Bacillus thuringiensis, Bacillus cereus, Bacillus mycoides, Bacillus weihenstephanensis, and Bacillus pseudomycoides (1). Genomics studies of B. cereus s.l. strains have shown a similar chromosomal gene composition within this group (27). Many phenotypes that distinguish B. cereus s.l. members, such as crystalline toxin production (8), emesis in humans (9), and anthrax virulence (10), are encoded by genes on large plasmids. Experimental conjugative transfer of plasmids between B. cereus s.l. strains has been demonstrated in vitro, in complex media, and in vector species (1113). Therefore there is a concern about transfer of virulence genes between genetic backgrounds creating new pathogen lineages. In this regard, there is an emerging evidence of natural dissemination of the pXO1 and pXO2 plasmids that encode the anthrax lethal toxin and capsule, respectively. For example, B. cereus G9241 carries a pXO1 plasmid and lethal toxin genes almost identical to those in B. anthracis (6), and a B. cereus strain, which causes anthrax-like illness in African great apes, apparently contains both pXO1 and pXO2 plasmids (14).The infectious agent of most if not all human B. cereus s.l. diseases is the spore. The spore is a dormant, environmentally resistant structure that persists in nutrient- or water-limiting conditions. Anthrax infection occurs after introduction of the B. anthracis spore into a skin abrasion or via inhalation or ingestion (10). The spore germinates inside host cells, and the resulting vegetative bacteria express toxins and capsules that elicit an immune response (10, 15, 16). Formation of the B. cereus spore involves asymmetric cell division during which a copy of the genome is partitioned into each of the sister cells. The smaller cell (prespore) develops into mature endospore, and the larger cell (mother cell) contributes to the differentiation process but undergoes autolysis following its completion to release the endospore into the surrounding medium. Synthesis of cortex, coat, and exosporium are a function mainly of the mother cell. The cortex and coat layers are in close proximity to one another, whereas the exosporium tends to appear as an irregularly shaped, loosely attached, balloon-like layer (1720). The coat and the exosporium contribute to the remarkable resistance of spores to extreme physical and chemical stresses including the exposure to extraterrestrial conditions (21, 22). Recent work on the structure, composition, assembly, and function of the spore coat and exosporium of pathogenic organisms like B. anthracis and B. cereus have highlighted the crucial link that exists between the origin of these layers (19, 23). There are differences in the appearance and thickness of the coat layers among the spores of various strains and species. In some B. thuringiensis strains, the inner coat is laminated but consists of a patchwork of striated packets, appearing either stacked or comblike, and the outer coat is granular (24), whereas in B. anthracis and other B. cereus s.l. isolates the coat appears compact (2527). The coat layers comprise about 30% of the total proteins present in the spore (19, 28). Intraspecies variation in the structure and composition of the spore surface layers may reflect the environmental conditions under which these spores are formed (2931).Because the spore is crucial to infection and persistence of B. anthracis and its close relatives, we undertook an investigation of its protein profile variability across the B. cereus s.l. group. Our goal in this study was to identify conserved antigenic spore proteins that may be transitioned in the future as candidates for immunodiagnostics, therapeutics, or vaccines. We used two high throughput approaches: genome-based bioinformatics analysis and comparative proteomics analysis of spores of B. cereus s.l. to select conserved targets. Our analysis revealed a list of conserved spore proteins within B. cereus but relatively few cross-reacting antigens. Two of these spore conserved antigens (Crd and MetN) have not been described previously for B. anthracis.  相似文献   

5.
A search for bacterium-specific biomarkers in peripheral blood following infection with Bacillus anthracis was carried out with rabbits, using a battery of specific antibodies generated by DNA vaccination against 10 preselected highly immunogenic bacterial antigens which were identified previously by a genomic/proteomic/serologic screen of the B. anthracis secretome. Detection of infection biomarkers in the circulation of infected rabbits could be achieved only after removal of highly abundant serum proteins by chromatography using a random-ligand affinity column. Besides the toxin component protective antigen, the following three secreted proteins were detected in the circulation of infected animals: the chaperone and protease HtrA (BA3660), an NlpC/P60 endopeptidase (BA1952), and a protein of unknown function harboring two SH3 (Src homology 3) domains (BA0796). The three proteins could be detected in plasma samples from infected animals exhibiting 103 to 105 CFU/ml blood and also in standard blood cultures at 3 to 6 h post-bacterial inoculation at a bacteremic level as low as 103 CFU/ml. Furthermore, the three biomarkers appear to be present only in the secretome of B. anthracis, not in those of the related pathogens B. thuringiensis and B. cereus. To the best of our knowledge, this is the first report of direct detection of B. anthracis-specific proteins, other than the toxin components, in the circulation of infected animals.The gram-positive spore-forming bacterium Bacillus anthracis is the causative agent of anthrax, a rare fatal disease which is initiated, in its most severe form, by inhalation of spores. Due to the severity of the disease, the ease of respiratory infection, and the extreme resistance of the spores to unfavorable environmental conditions, B. anthracis is considered a potential biological warfare agent (for a review, see references 8, 10, 35, 56, and 62), and in recent years, the need for novel reliable diagnostic approaches, improved vaccination strategies, novel therapeutic targets, and a better understanding of the pathogenesis of anthrax has been widely acknowledged.Inhaled B. anthracis spores are taken up by alveolar macrophages and germinate into vegetative bacilli which eventually invade the bloodstream, where they multiply massively and secrete toxins and virulence factors. Anthrax is toxinogenic in the sense that the bacterial binary exotoxin is necessary for the onset of the disease (54), yet other factors may be required for the colonization and expansion of bacteria in the host (15, 18, 31, 32, 37, 46, 65, 66, 70, 83). The toxin is composed of the following three proteins: protective antigen (PA), which mediates binding to the receptor on target cells and internalization of the toxin components (14, 74); lethal factor, a zinc protease targeting several mitogen-activated protein kinases (52); and edema factor (EF), a calmodulin-dependent adenylate cyclase (55, 57). The genes encoding the three exotoxin components are located on the native virulence plasmid pXO1. Genes encoding proteins with functions involved in the synthesis of the second major B. anthracis virulence determinant, an immunologically inert polyglutamyl capsule that protects bacteria from phagocytosis, are located on a second native virulence plasmid, pXO2 (56).In humans, the initial symptoms of inhalation anthrax are nonspecific and reminiscent of influenza-like upper respiratory tract infections. The second stage is characterized by high fever, respiratory failure, dyspnea, and shock. Unless patients are treated promptly, death occurs within 24 h of the onset of the second stage, preceded by massive bacteremia (27, 34, 73, 76). The mandatory treatment for anthrax is based on administration of antibiotics (17, 76), yet study of the disease in animal models has clearly established that the time of antibiotic administration postinfection is crucial for the effectiveness of the treatment, strongly supporting the importance of rapid diagnosis (2, 47, 48). At present, due to the severity of the disease and its rapid progression, treatment is administered to each person with confirmed contact with contaminated areas (76).Early accurate diagnosis of anthrax is complicated by the rarity of the disease and the nonspecific nature of the symptoms. Microbiologic identification of anthrax is based on the nonhemolytic nature of the typically white-gray colonies and the rod morphology of the gram-positive nonmotile bacilli detected in clinical samples or blood cultures (16, 19, 30, 73, 78). Immunofluorescence and immunohistochemistry targeted to bacterial proteins are not routinely conducted. Later in the course of the disease, seroconversion in response to the various components of the toxin may serve only as a retrospective confirmation of initial exposure. With the advent of genetic methodologies, B. anthracis in cultures inoculated with clinical and forensic samples can be detected specifically and accurately by PCR, usually designed to amplify genes located on the native virulence plasmids (30). Recently, the use of PA as a disease biomarker was suggested, owing to the presence of this protein in detectable amounts in the circulation of infected animals (53, 71). EF and lethal factor can be detected in the circulation only at later stages of infection (30).In recent years, the search for novel biomarkers of disease, including bacterial infections, has exploited the approach of global biological inspection based on functional genomic or proteomic studies (64, 85). We previously documented such global surveys, combined with a serological study of B. anthracis (5, 6, 20, 21, 22, 38, 39), for identification of vaccine and diagnostic marker candidates among extracellular (secreted or membranal) proteins. These studies indeed revealed a list of proteins that can serve as potential biomarkers, based on their immunogenicity (which probes their in vivo expression), abundance under various culture conditions, and functional relatedness to infection. In the present study, the search was extended by directly addressing the presence of bacterial secreted proteins in the circulation of B. anthracis-infected rabbits, using specific antibodies generated by DNA vaccination against the previously selected immunogenic proteins. Visualization of bacterial proteins in the circulation of infected animals was achieved only following depletion of highly abundant serum proteins by an affinity chromatography protocol. The search enabled the successful detection, in addition to PA, of three secreted proteins uniquely expressed by B. anthracis, i.e., HtrA (BA3660), the BA1952 endopeptidase, and a protein of unknown function (BA0796). All of these proteins are potential virulence-related factors. This is the first communication of the presence of B. anthracis secreted proteins other than the bacterial toxin in the circulation of infected animals, and their identification strongly supports the validity of the reductional screening approach for selection of disease biomarkers.  相似文献   

6.
The sequestration of iron by mammalian hosts represents a significant obstacle to the establishment of a bacterial infection. In response, pathogenic bacteria have evolved mechanisms to acquire iron from host heme. Bacillus anthracis, the causative agent of anthrax, utilizes secreted hemophores to scavenge heme from host hemoglobin, thereby facilitating iron acquisition from extracellular heme pools and delivery to iron-regulated surface determinant (Isd) proteins covalently attached to the cell wall. However, several Gram-positive pathogens, including B. anthracis, contain genes that encode near iron transporter (NEAT) proteins that are genomically distant from the genetically linked Isd locus. NEAT domains are protein modules that partake in several functions related to heme transport, including binding heme and hemoglobin. This finding raises interesting questions concerning the relative role of these NEAT proteins, relative to hemophores and the Isd system, in iron uptake. Here, we present evidence that a B. anthracis S-layer homology (SLH) protein harboring a NEAT domain binds and directionally transfers heme to the Isd system via the cell wall protein IsdC. This finding suggests that the Isd system can receive heme from multiple inputs and may reflect an adaptation of B. anthracis to changing iron reservoirs during an infection. Understanding the mechanism of heme uptake in pathogenic bacteria is important for the development of novel therapeutics to prevent and treat bacterial infections.Pathogenic bacteria need to acquire iron to survive in mammalian hosts (12). However, the host sequesters most iron in the porphyrin heme, and heme itself is often bound to proteins such as hemoglobin (14, 28, 85). Circulating hemoglobin can serve as a source of heme-iron for replicating bacteria in infected hosts, but the precise mechanisms of heme extraction, transport, and assimilation remain unclear (25, 46, 79, 86). An understanding of how bacterial pathogens import heme will lead to the development of new anti-infectives that inhibit heme uptake, thereby preventing or treating infections caused by these bacteria (47, 68).The mechanisms of transport of biological molecules into a bacterial cell are influenced by the compositional, structural, and topological makeup of the cell envelope. Gram-negative bacteria utilize specific proteins to transport heme through the outer membrane, periplasm, and inner membrane (83, 84). Instead of an outer membrane and periplasm, Gram-positive bacteria contain a thick cell wall (59, 60). Proteins covalently anchored to the cell wall provide a functional link between extracellular heme reservoirs and intracellular iron utilization pathways (46). In addition, several Gram-positive and Gram-negative bacterial genera also contain an outermost structure termed the S (surface)-layer (75). The S-layer is a crystalline array of protein that surrounds the bacterial cell and may serve a multitude of functions, including maintenance of cell architecture and protection from host immune components (6, 7, 18, 19, 56). In bacterial pathogens that manifest an S-layer, the “force field” function of this structure raises questions concerning how small molecules such as heme can be successfully passed from the extracellular milieu to cell wall proteins for delivery into the cell cytoplasm.Bacillus anthracis is a Gram-positive, spore-forming bacterium that is the etiological agent of anthrax disease (30, 33). The life cycle of B. anthracis begins after a phagocytosed spore germinates into a vegetative cell inside a mammalian host (2, 40, 69, 78). Virulence determinants produced by the vegetative cells facilitate bacterial growth, dissemination to major organ systems, and eventually host death (76-78). The release of aerosolized spores into areas with large concentrations of people is a serious public health concern (30).Heme acquisition in B. anthracis is mediated by the action of IsdX1 and IsdX2, two extracellular hemophores that extract heme from host hemoglobin and deliver the iron-porphyrin to cell wall-localized IsdC (21, 45). Both IsdX1 and IsdX2 harbor near iron transporter domains (NEATs), a conserved protein module found in Gram-positive bacteria that mediates heme uptake from hemoglobin and contributes to bacterial pathogenesis upon infection (3, 8, 21, 31, 44, 46, 49, 50, 67, 81, 86). Hypothesizing that B. anthracis may contain additional mechanisms for heme transport, we provide evidence that B. anthracis S-layer protein K (BslK), an S-layer homology (SLH) and NEAT protein (32, 43), is surface localized and binds and transfers heme to IsdC in a rapid, contact-dependent manner. These results suggest that the Isd system is not a self-contained conduit for heme trafficking and imply that there is functional cross talk between differentially localized NEAT proteins to promote heme uptake during infection.  相似文献   

7.
8.
9.
Bacillus anthracis spores are enclosed by an exosporium comprised of a basal layer and an external hair-like nap. The filaments of the nap are composed of trimers of the collagen-like glycoprotein BclA. The attachment of essentially all BclA trimers to the exosporium requires the basal layer protein BxpB, and both proteins are included in stable high-molecular-mass exosporium complexes. BclA contains a proteolytically processed 38-residue amino-terminal domain (NTD) that is essential for basal-layer attachment. In this report, we identify three NTD submotifs (SM1a, SM1b, and SM2, located within residues 21 to 33) that are important for BclA attachment and demonstrate that residue A20, the amino-terminal residue of processed BclA, is not required for attachment. We show that the shortest NTD of BclA—or of a recombinant protein—sufficient for high-level basal-layer attachment is a 10-residue motif consisting of an initiating methionine, an apparently arbitrary second residue, SM1a or SM1b, and SM2. We also demonstrate that cleavage of the BclA NTD is necessary for efficient attachment to the basal layer and that the site of cleavage is somewhat flexible, at least in certain mutant NTDs. Finally, we propose a mechanism for BclA attachment and discuss the possibility that analogous mechanisms are involved in the attachment of many different collagen-like proteins of B. anthracis and closely related Bacillus species.Bacillus anthracis, a Gram-positive, rod-shaped, aerobic bacterium, is the causative agent of anthrax (17). When vegetative cells of B. anthracis are starved for certain essential nutrients, they form dormant spores that can survive in harsh soil environments for many years (12, 19). Spore formation starts with asymmetric septation that divides the starved vegetative cell into two genome-containing compartments, a mother cell compartment and a smaller forespore compartment. The mother cell then engulfs the forespore and surrounds it with three protective layers: a cortex composed of peptidoglycan, a closely apposed proteinaceous coat, and a loosely fitting exosporium (11). After a spore maturation stage, the mother cell lyses and releases the mature spore. When spores encounter an aqueous environment containing nutrients, they can germinate and grow as vegetative cells (18). Anthrax is typically caused by contact with spores (17).The outermost layer of B. anthracis spores, the exosporium, has been studied intensively in recent years because it is both the first point of contact with the immune system of an infected host and the target of new detectors for agents of bioterrorism (21, 28, 32). The exosporium of B. anthracis and closely related pathogenic species, such as Bacillus cereus and Bacillus thuringiensis, is a prominent structure consisting of a paracrystalline basal layer and an external hair-like nap (1, 9). The filaments of the nap are formed by trimers of the collagen-like glycoprotein BclA (2, 29). Recent studies suggest that BclA plays a major role in pathogenesis by directing spores to professional phagocytic cells, a critical step in disease progression (4, 21). The basal layer is composed of approximately 20 different proteins (23, 25, 26), several of which have been shown to play key roles in exosporium assembly (3, 13, 27). One of these proteins is BxpB (also called ExsFA) (25, 30, 34), which is required for the attachment of approximately 98% of spore-bound BclA to the basal layer (26, 30). Residual BclA attachment requires the basal layer protein ExsFB, a paralog of BxpB (30).BclA contains three distinct domains: a 38-residue amino-terminal domain (NTD), a central collagen-like region containing a strain-specific number of XXG (mostly PTG) repeats, and a 134-residue carboxyl-terminal domain (CTD) (25, 29, 31). The CTD apparently functions as the major nucleation site for trimerization of BclA (24), and CTD trimers form the globular distal ends of the filaments in the nap (2). The highly extended collagen-like region is extensively glycosylated (5), and its length determines the depth of the nap (2, 31). The NTD is the site of attachment of BclA to the basal layer, and deletion of the NTD prevents this attachment (2). The NTD is normally proteolytically processed to remove the first 19 amino acids, and it is this mature form of BclA that is attached to the basal layer (25, 29). In an earlier report, we suggested that NTD processing of BclA is required for basal-layer attachment, perhaps through a direct covalent linkage to BxpB (26).Recently, Thompson and Stewart identified conserved 11-residue sequences in the NTDs of BclA and the minor B. anthracis collagen-like glycoprotein BclB and showed that these sequences are involved in the incorporation of BclA and BclB into the exosporium. These investigators used a truncated BclA NTD that lacked residues 2 through 19 but included the conserved 11-amino-acid sequence to target enhanced green fluorescent protein (EGFP) to the surface of the developing forespore (33). Thompson and Stewart also reported that cleavage of the BclA NTD occurred after its association with the forespore and suggested that this cleavage was involved indirectly in the attachment process. Actual cleavage sites were not determined in these studies, however. We have performed related studies of the attachment of BclA to the exosporium that provide a more detailed and somewhat different view of this process. In our studies, which are reported here, we identified short segments, or submotifs, of the BclA NTD that can be arranged in different combinations to produce 10-amino-acid motifs sufficient for tight attachment of BclA, and probably most proteins, to the exosporium basal layer. Additionally, we present direct evidence showing that BclA NTD cleavage is required for efficient attachment to the basal layer and that selection of the cleavage site can be somewhat flexible. Finally, we discuss a possible mechanism for BclA attachment and the likelihood that similar mechanisms are used for attachment of many different collagen-like proteins of B. anthracis and closely related Bacillus species.  相似文献   

10.
11.
In the current study, we examined the regulatory interactions of a serine/threonine phosphatase (BA-Stp1), serine/threonine kinase (BA-Stk1) pair in Bacillus anthracis. B. anthracis STPK101, a null mutant lacking BA-Stp1 and BA-Stk1, was impaired in its ability to survive within macrophages, and this correlated with an observed reduction in virulence in a mouse model of pulmonary anthrax. Biochemical analyses confirmed that BA-Stp1 is a PP2C phosphatase and dephosphorylates phosphoserine and phosphothreonine residues. Treatment of BA-Stk1 with BA-Stp1 altered BA-Stk1 kinase activity, indicating that the enzymatic function of BA-Stk1 can be influenced by BA-Stp1 dephosphorylation. Using a combination of mass spectrometry and mutagenesis approaches, three phosphorylated residues, T165, S173, and S214, in BA-Stk1 were identified as putative regulatory targets of BA-Stp1. Further analysis found that T165 and S173 were necessary for optimal substrate phosphorylation, while S214 was necessary for complete ATP hydrolysis, autophosphorylation, and substrate phosphorylation. These findings provide insight into a previously undescribed Stp/Stk pair in B. anthracis.A profile of the intracellular signaling proteins that regulate transition of Bacillus anthracis from dormancy to expression of virulence factors is emerging. Like many prokaryotes, B. anthracis utilizes two-component histidine kinase systems to regulate physiological changes and the expression of virulence factors. These systems include the Spo0 histidine kinase-based phosphorelay pathway (32, 37) and the Bacillus respiratory response A and B system involved in regulating toxin expression (36). Unlike for histidine kinase systems, little is known about reversible serine/threonine phosphorylation events in B. anthracis. These systems are common to eukaryotic cells (3, 14, 25, 40) but were only recently found in prokaryotes to modulate a variety of metabolic and physiological processes (1, 2, 7, 11, 12, 15, 17, 24, 28, 35, 38). Whether reversible serine/threonine phosphorylation contributes to similar events in B. anthracis is not known.The current paradigm for prokaryotic serine/threonine kinases (STK) is based in part on the structure of PknB, a serine/threonine kinase from Mycobacterium tuberculosis that is structurally related to eukaryotic Hanks-type kinases (39). PknB autophosphorylates and is dephosphorylated by an M. tuberculosis phosphatase, PstP, in order to alter kinase activity (4). Similar to the findings for PnkB, Madec et al. identified critical autophosphorylated residues and autophosphorylated domains of PrkC, an STK from Bacillus subtilis (22), which suggested that the phosphorylation state of these residues impacts the activation of PrkC (22). These studies suggested that prokaryotic STKs exhibited activities similar to those of their eukaryotic homologs and were regulated by cognate phosphatases. Hence, studies of serine/threonine phosphatase (STP)/STK pairs may help define a core regulatory module in bacterial physiology and virulence, wherein the kinase autophosphorylates following interaction with stimuli and is subsequently downregulated by a cognate phosphatase when stimulus levels decline.Analysis of the B. anthracis genome indicates that this organism has a single phosphatase-kinase pair encoded within a putative operon. This operon, between nucleotides 3588319 and 3678099 in the genome of B. anthracis Sterne, contains eight candidate open reading frames (ORFs). Six of the potential ORFs encode proteins involved in translation and DNA metabolism, while the phosphatase-encoding ORF (stp1) and the kinase-encoding ORF (stk1) are paired at the 3′ end of this operon. Examination of the genome sequences of several other Gram-positive bacteria indicates that this putative operon and the general orientation of stp1 and stk1 are conserved among members of the Firmicutes group of bacteria. B. anthracis Stp1 (BA-Stp1) and BA-Stk1 homologs influence a variety of bacterial processes. For example, homologs of BA-Stp1 and BA-Stk1 regulate growth in Bacillus subtilis (12), cell viability and segregation in Streptococcus agalactiae (28), competence in Streptococcus pneumoniae (26), and virulence in both Streptococcus pyogenes (17) and Staphylococcus aureus (9). Although kinases homologous to BA-Stk1 influence several bacterial processes in different species, the tandem association of this kinase with a phosphatase does not vary. This observation led us to hypothesize that the phosphatase (BA-Stp1) influences Ba-Stk1 activity by dephosphorylation.In the current study, we analyzed the importance of BA-Stp1 and BA-Stk1 in the virulence of B. anthracis and assessed the biochemical interactions between these two proteins. Results from these studies indicate that this phosphatase-kinase pair contributes to the virulence of B. anthracis, as mutants lacking BA-Stp1 and BA-Stk1 exhibit decreased lethality in a mouse model of pulmonary anthrax. Furthermore, a series of biochemical analyses reveal an interaction between BA-Stk1 and BA-Stp1 where BA-Stk1 autophosphorylates in order to enhance kinase activity and is dephosphorylated by BA-Stp1 as a putative step in downregulating kinase activity as the levels of stimuli subside. Moreover, we have identified candidate serine and threonine residues that appear to modulate kinase activity. These findings provide insight into a previously undescribed serine/threonine phosphatase-kinase system in B. anthracis.  相似文献   

12.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

13.
Bacillus cereus spores are assembled with a series of concentric layers that protect them from a wide range of environmental stresses. The outermost layer, or exosporium, is a bag-like structure that interacts with the environment and is composed of more than 20 proteins and glycoproteins. Here, we identified a new spore protein, ExsM, from a β-mercaptoethanol extract of B. cereus ATCC 4342 spores. Subcellular localization of an ExsM-green fluorescent protein (GFP) protein revealed a dynamic pattern of fluorescence that follows the site of formation of the exosporium around the forespore. Under scanning electron microscopy, exsM null mutant spores were smaller and rounder than wild-type spores, which had an extended exosporium (spore length for the wt, 2.40 ± 0.56 μm, versus that for the exsM mutant, 1.66 ± 0.38 μm [P < 0.001]). Thin-section electron microscopy revealed that exsM mutant spores were encased by a double-layer exosporium, both layers of which were composed of a basal layer and a hair-like nap. Mutant exsM spores were more resistant to lysozyme treatment and germinated with higher efficiency than wild-type spores, and they had a delay in outgrowth. Insertional mutagenesis of exsM in Bacillus anthracis ΔSterne resulted in a partial second exosporium and in smaller spores. In all, these findings suggest that ExsM plays a critical role in the formation of the exosporium.Bacillus cereus and Bacillus anthracis are closely related members of the Bacillus cereus group (47). Although B. cereus is mainly an apathogenic organism, certain isolates can cause two different types of food poisoning, emetic syndrome and diarrheal disease (18). The emetic syndrome is caused by ingestion of cereulide, a heat-resistant toxin produced by vegetative cells contaminating the food (30), while the diarrheal disease occurs when spores germinate in the intestinal tract. Spores are also the infective agent in anthrax, a disease caused by B. anthracis (64).B. cereus and B. anthracis differentiate into spores when faced with nutrient deprivation. The spore is a dormant cell type that can remain viable for decades until favorable conditions induce germination and the resumption of vegetative growth. The remarkable resistance properties of the spore result from its unique architecture, consisting of a series of concentric protective layers (51). The spore core contains the genetic material and is surrounded by the cortex, a thick layer of modified peptidoglycan that promotes a highly dehydrated state. Encasing the core and the cortex, the coat is a multilayer protein shell that provides mechanical and chemical resistance. In addition, both the cortex and coat contribute to spore germination (17). Separated from the coat by an interspace, the exosporium encloses the rest of the spore, and it is composed of an inner basal layer and an outer hair-like nap (25).Being the most external layer of the spore, the exosporium interacts directly with the environment and as such provides a semipermeable barrier that may exclude large molecules, like antibodies and hydrolytic enzymes (3, 23, 24, 54). However, the exosporium does not appear to contribute to the typical resistance properties of the spore (6, 35, 60). Also, the exosporium is not necessary in anthrax pathogenesis when tested under laboratory conditions (7, 27, 59), although it is able to down-modulate the innate immune response to spores and mediate adhesion to host tissues (4, 8, 43, 44). The exosporium may also help the spore avoid premature germination in unsustainable environments, since it contains two enzymes, alanine racemase (Alr) and inosine hydrolase (Iunh), that can inactivate low quantities of the germinants l-alanine and inosine, respectively (6, 48, 55, 61). However, regulation of germination by the exosporium is poorly understood. Mutation of exosporial proteins has resulted in only negligible and inconsistent germination phenotypes (2, 5, 27, 28, 52, 54).The exosporium is composed of at least 20 proteins and glycoproteins in tight or loose association (48, 53, 57, 61, 65). These proteins are synthesized in the mother cell and always start self-assembly at the forespore pole near the middle of the mother cell, concurrently with the cortex and coat formation (42). Exosporium assembly is discontinuous and starts with a synthesis of a substructure known as the cap, which likely contains only a subset of the proteins present in the exosporium (55). After cap formation, construction of the rest of the exosporium requires the expression of ExsY (6). BclA is the main component of the hair-like nap on the external side of the exosporium, and it is linked to the basal layer through interaction with ExsFA/BxpB (54, 58). In addition, CotE participates in the correct attachment of the exosporium to the spore (27).Despite these findings, exosporium assembly continues to be a poorly understood process, and many questions remain regarding its composition and the regulation of its synthesis. In this study, we characterized a new spore protein, ExsM, which plays a key role in assembly of the exosporium. In B. cereus, inactivation of exsM resulted in spores with an unusual double-layer exosporium, and a similar phenotype was also observed in B. anthracis exsM null mutant spores. Finally, double-layer exosporium spores allowed us to study the role of the exosporium in germination and outgrowth.  相似文献   

14.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

15.
16.
17.
Many species of Rickettsia are well-known mammalian pathogens transmitted by blood-feeding arthropods. However, molecular surveys are continually uncovering novel Rickettsia species, often in unexpected hosts, including many arthropods that do not feed on blood. This study reports a systematic molecular characterization of a Rickettsia infecting the psocid Liposcelis bostrychophila (Psocoptera: Liposcelidae), a common and cosmopolitan household pest. Surprisingly, the psocid Rickettsia is shown to be Rickettsia felis, a human pathogen transmitted by fleas that causes serious morbidity and occasional mortality. The plasmid from the psocid R. felis was sequenced and was found to be virtually identical to the one in R. felis from fleas. As Liposcelis insects are often intimately associated with humans and other vertebrates, it is speculated that they acquired R. felis from fleas. Whether the R. felis in psocids causes disease in vertebrates is not known and warrants further study.Many species of Rickettsia are well-known mammalian pathogens that are transmitted by blood-feeding arthropods via bites or feces and can cause mild to fatal diseases in humans (33). Some species are also considered potential bioterrorism agents (4). Most Rickettsia research has focused on pathogens that are found in two closely related species groups, the typhus and spotted fever groups, such as Rickettsia prowazekii, Rickettsia rickettsii, and Rickettsia typhi, the causal agents of epidemic typhus, Rocky Mountain spotted fever, and murine typhus, respectively (3, 4, 33). However, recent surveys suggest that Rickettsia bacteria are much more widespread than previously suspected and that they are being detected in novel hosts, the vast majority of which are arthropods, including many that do not feed on blood (29, 45).The number of new rickettsial species that cause diseases in humans is rapidly increasing (33). One such species that has been generating much interest in recent years is Rickettsia felis, the causative agent of a murine typhus-like disease (1, 2, 13, 16, 17, 28, 44). The disease is often unrecognized, and even though it is considered clinically mild, it can cause severe illness and death in older patients and in cases of delayed diagnosis (2). R. felis was identified only in 1990 (1) and has since been found worldwide in fleas, where it is maintained transovarially and can reach high infection rates (e.g., 86% to 94% in cat fleas) (2, 3, 44), as well as in ticks and mites (34). While experimental infections have confirmed that R. felis is transmitted to vertebrate hosts via blood feeding and that R. felis occurs in an infectious extracellular state (39), it is not known whether transmission can also occur through contamination of broken skin by infected vector feces, as in R. typhi (3, 34).A number of features distinguish R. felis from species in both the typhus and spotted fever groups. Lately, it has been proposed that R. felis be in its own group, allied with Rickettsia akari and Rickettsia australis, the causal agents of rickettsial pox and Queensland tick typhus, respectively, and a number of recently discovered strains infecting insects that do not feed on blood (16, 17, 29, 45). Moreover, R. felis was the first Rickettsia species shown to have a plasmid (28). While plasmids now appear to be quite widespread in the genus, the R. felis plasmid stands out with respect to its relatively large size and distinctive gene content (5, 6, 9, 14, 17).This study reports that a common and cosmopolitan insect, the psocid Liposcelis bostrychophila (Psocoptera: Liposcelidae) harbors R. felis. Liposcelids are the closest free-living relatives of parasitic lice (19) and are well-known for their close proximity to humans, particularly as pests in houses and grain storage facilities (8, 41). Through 16S rRNA gene sequencing, L. bostrychophila was recently shown to harbor a strain of Rickettsia (29, 30, 42). A systematic molecular characterization of this Rickettsia was conducted, demonstrating that it is authentic R. felis. Furthermore, the psocid symbiont plasmid was sequenced and was shown to be virtually identical to the plasmid from R. felis that infects cat fleas.  相似文献   

18.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

19.
A conjugative plasmid from the catheter-associated urinary tract infection strain Escherichia coli MS2027 was sequenced and annotated. This 42,644-bp plasmid, designated pMAS2027, contains 58 putative genes and is most closely related to plasmids belonging to incompatibility group X (IncX1). Plasmid pMAS2027 encodes two important virulence factors: type 3 fimbriae and a type IV secretion (T4S) system. Type 3 fimbriae, recently found to be functionally expressed in E. coli, played an important role in biofilm formation. Biofilm formation by E. coli MS2027 was specifically due to expression of type 3 fimbriae and not the T4S system. The T4S system, however, accounted for the conjugative ability of pMAS2027 and enabled a non-biofilm-forming strain to grow as part of a mixed biofilm following acquisition of this plasmid. Thus, the importance of conjugation as a mechanism to spread biofilm determinants was demonstrated. Conjugation may represent an important mechanism by which type 3 fimbria genes are transferred among the Enterobacteriaceae that cause device-related infections in nosocomial settings.Bacterial biofilms are complex communities of bacterial cells living in close association with a surface (17). Bacterial cells in these protected environments are often resistant to multiple factors, including antimicrobials, changes in the pH, oxygen radicals, and host immune defenses (19, 38). Biofilm formation is a property of many bacterial species, and a range of molecular mechanisms that facilitate this process have been described (2, 3, 11, 14, 16, 29, 33, 34). Often, the ability to form a biofilm is dependent on the production of adhesins on the bacterial cell surface. In Escherichia coli, biofilm formation is enhanced by the production of certain types of fimbriae (e.g., type 1 fimbriae, type 3 fimbriae, F1C, F9, curli, and conjugative pili) (14, 23, 25, 29, 33, 39, 46), cell surface adhesins (e.g., autotransporter proteins such as antigen 43, AidA, TibA, EhaA, and UpaG) (21, 34, 35, 40, 43), and flagella (22, 45).The close proximity of bacterial cells in biofilms creates an environment conducive for the exchange of genetic material. Indeed, plasmid-mediated conjugation in monospecific and mixed E. coli biofilms has been demonstrated (6, 18, 24, 31). The F plasmid represents the best-characterized conjugative system for biofilm formation by E. coli. The F pilus mediates adhesion to abiotic surfaces and stabilizes the biofilm structure through cell-cell interactions (16, 30). Many other conjugative plasmids also contribute directly to biofilm formation upon derepression of the conjugative function (16).One example of a conjugative system employed by gram-negative Enterobacteriaceae is the type 4 secretion (T4S) system. The T4S system is a multisubunit structure that spans the cell envelope and contains a secretion channel often linked to a pilus or other surface filament or protein (8). The Agrobacterium tumefaciens VirB-VirD4 system is the archetypical T4S system and is encoded by 11 genes in the virB operon and one gene (virD4) in the virD operon (7, 8). Genes with strong homology to genes in the virB operon have also been identified on other conjugative plasmids. For example, the pilX1 to pilX11 genes on the E. coli R6K IncX plasmid and the virB1 to virB11 genes are highly conserved at the nucleotide level (28).We recently described identification and characterization of the mrk genes encoding type 3 fimbriae in a uropathogenic strain of E. coli isolated from a patient with a nosocomial catheter-associated urinary tract infection (CAUTI) (29). The mrk genes were located on a conjugative plasmid (pMAS2027) and were strongly associated with biofilm formation. In this study we determined the entire sequence of plasmid pMAS2027 and revealed the presence of conjugative transfer genes homologous to the pilX1 to pilX11 genes of E. coli R6K (in addition to the mrk genes). We show here that biofilm formation is driven primarily by type 3 fimbriae and that the T4S apparatus is unable to mediate biofilm growth in the absence of the mrk genes. Finally, we demonstrate that conjugative transfer of pMAS2027 within a mixed biofilm confers biofilm formation properties on recipient cells due to acquisition of the type 3 fimbria-encoding mrk genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号