首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility of obtaining recombinant fibrillogenic fusion proteins such as transthyretin (TTR) and β2-microglobulin (β2M) with a superfolder green fluorescent protein (sfGFP) was studied. According to the literature data, sfGFP is resistant to denaturating influences, does not aggregate during renaturation, possesses improved kinetic characteristics of folding, and folds well when fused to different polypeptides. The corresponding DNA constructs for expression in Escherichia coli were created. It could be shown that during expression of these constructs in E. coli, soluble forms of the fusion proteins are synthesized. Efficient isolation of the fusion proteins was performed with the help of nickel-affinity chromatography. For this purpose a polyhistidine sequence (6-His-tag) was incorporated into the C-terminus of the sfGFP. We could show that the purified fusion proteins contained full-size sequences of the most amyloidogenic TTR variant, TTR(L55P) and β2M, and also sfGFP possessing fluorescent properties. In the course of fibrillogenesis both fusion proteins demonstrated their ability to form fibrils that were clearly detectable by atomic force microscopy. Furthermore, with the help of confocal microscopy we were able to reveal structures (exhibiting fluorescence) that are formed during fibrillogenesis. Thus, the use of sfGFP has made it possible to avoid formation of inclusion bodies (IB) during the synthesis of recombinant fusion proteins and to obtain soluble forms of TTR(L55P) and β2M that are suitable for further studies.  相似文献   

2.
An E. coli strain carrying a fusion of the malE and lacZ genes is induced for the synthesis of a hybrid protein, consisting of the N-terminal part of the maltose-binding protein and the enzymatically active C-terminal part of β-galactosidase, by addition of maltose to cells. The secretion of the protein is initiated by the signal peptide attached to the N terminus of the maltose-binding protein sequence, but is not completed, presumably because the β-galactosidase moiety of the hybrid protein interferes with the passage of the polypeptide through the cytoplasmic membrane. Thus the protein becomes stuck to the cytoplasmic membrane. Under such conditions, periplasmic proteins, including maltose-binding protein (encoded by the malE gene) and alkaline phosphatase, and the major outer-membrane proteins, including OmpF, OmpA and probably lipoprotein, are synthesized as precursor forms with unprocessed signal sequences. This effect is observed within 15 min after high levels of induction are achieved. The simplest explanation for these results and those of pulse-chase experiments is that specific sites in the cytoplasmic membrane become progressively occupied by the hybrid protein, resulting in an inhibition of normal localization and processing of periplasmic and outer-membrane proteins. These results suggest that most of the periplasmic and outer-membrane proteins share a common step in localization before the polypeptide becomes accessible to the processing enzyme. If this interpretation is correct, we can estimate that an E. coli cell has roughly 2 × 104 such sites in the cytoplasmic membrane. A system is described for detecting the precursor of any exported protein.  相似文献   

3.
Freshly brewed blended coffee, instant coffee and instant caffeine-free coffee induced prophage λ in lysogenic E. coli K12, strain GY5027. Because coffee prepared from green beans by the same extraction method as used for freshly brewed blended coffee had no prophage-inducing activity, this activity may be attributed to compounds produced in the roasting process. Roasting also produced compounds that were mutagenic in S. typhimurium TA100 and E. coli WP2 uvrA/pKM101.  相似文献   

4.
5.
CRISPR-Cas is a prokaryotic immune system built from capture and integration of invader DNA into CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, termed ‘Adaptation’, which is dependent on Cas1 and Cas2 proteins. In Escherichia coli, Cascade-Cas3 degrades invader DNA to effect immunity, termed ‘Interference’. Adaptation can interact with interference (‘primed’), or is independent of it (‘naïve’). We demonstrate that primed adaptation requires the RecG helicase and PriA protein to be present. Genetic analysis of mutant phenotypes suggests that RecG is needed to dissipate R-loops at blocked replication forks. Additionally, we identify that DNA polymerase I is important for both primed and naive adaptation, and that RecB is needed for naïve adaptation. Purified Cas1-Cas2 protein shows specificity for binding to and nicking forked DNA within single strand gaps, and collapsing forks into DNA duplexes. The data suggest that different genome stability systems interact with primed or naïve adaptation when responding to blocked or collapsed invader DNA replication. In this model, RecG and Cas3 proteins respond to invader DNA replication forks that are blocked by Cascade interference, enabling DNA capture. RecBCD targets DNA ends at collapsed forks, enabling DNA capture without interference. DNA polymerase I is proposed to fill DNA gaps during spacer integration.  相似文献   

6.
Summary Secretion of fusion proteins composed of cytoplasmic protein dihydrofolate reductase (DHFR) and the Escherichia coli -haemolysin (HlyA) C-terminal sequence was examined through the haemolysin secretion machinery of E. coli. DHFR of various lengths was combined with the HlyA C-terminal region, and both secretion and DHFR activity of the fusions were measured. The secretion was found to be inversely correlated with the intracellular DHFR activity. Moreover, when one amino acid (Ile155) in a -sheet of the DHFR C-terminal region was replaced with Lys, the enzymatically active DHFR fusion protein was secreted into the medium. We discuss the possibility of a relationship between folding and secretion of HlyA-fused protein in the HlyA secretion system. Correspondence to: H. Nakano  相似文献   

7.
Polyamines are small molecules associated with a wide variety of physiological functions. Bacterial pathogens have developed subtle strategies to exploit polyamines or manipulate polyamine-related processes to optimize fitness within the host. During the transition from its innocuous E. coli ancestor, Shigella, the aetiological agent of bacillary dysentery, has undergone drastic genomic rearrangements affecting the polyamine profile. A pathoadaptation process involving the speG gene and the cad operon has led to spermidine accumulation and loss of cadaverine. While a higher spermidine content promotes the survival of Shigella within infected macrophages, the lack of cadaverine boosts the pathogenic potential of the bacterium in host tissues. Enteroinvasive E. coli (EIEC) display the same pathogenicity process as Shigella, but have a higher infectious dose and a higher metabolic activity. Pathoadaption events affecting the cad locus have occurred also in EIEC, silencing cadaverine production. Since EIEC are commonly regarded as evolutionary intermediates between E. coli and Shigella, we investigated on their polyamine profile in order to better understand which changes have occurred along the path to pathogenicity. By functional and molecular analyses carried out in EIEC strains belonging to different serotypes, we show that speG has been silenced in one strain only, favouring resistance to oxidative stress conditions and survival within macrophages. At the same time, we observe that the content of spermidine and putrescine, a relevant intermediate in the synthesis of spermidine, is higher in all strains as compared to E. coli. This may represent an evolutionary response to the lack of cadaverine. Indeed, restoring cadaverine synthesis decreases the expression of the speC gene, whose product affects putrescine production. In the light of these results, we discuss the possible impact of pathoadaptation events on the evolutionary emergence of a polyamine profile favouring to the pathogenic lifestyle of Shigella and EIEC.  相似文献   

8.
9.
Summary Acetate was inhibitory to the growth of early induced E. coli cells and their expression of fusion protein, transforming growth factor--Pseudomonas exotoxin 40 (TGF-PE40), but the inhibitory level was strain dependent For E. coli JM109 (pTAC-TGF57-PE40), 2 g/L of added acetate (3 g/L of total acetate in the medium) decreased TGFa-PE40 production by 38.0%. Acetate was less inhibitory to E. coli RR1, and RR1 was not affected by adding 2 g/L of acetate. However, 5 g/L of added acetate (6.7 g/L of total acetate in the medium) decreased TGF-PE40 production by 21.2%. These results indicate that higher acetate concentration was associated with inhibition of TGF-PE40 expression of E. coli JM109 during late induction.  相似文献   

10.
During exponential growth some cells of E. coli undergo senescence mediated by asymmetric segregation of damaged components, particularly protein aggregates. We showed previously that functional cell division asymmetry in E. coli was responsive to the nutritional environment. Short term exposure as well as long term selection in low calorie environments led to greater cell division symmetry and decreased frequency of senescent cells as compared to high calorie environments. We show here that long term selection in low nutrient environment decreased protein aggregation as revealed by fluorescence microscopy and proportion of insoluble proteins. Across selection lines protein aggregation was correlated significantly positively with the RNA content, presumably indicating metabolic rate. This suggests that the effects of caloric restriction on cell division symmetry and aging in E. coli may work via altered protein handling mechanisms. The demonstrable effects of long term selection on protein aggregation suggest that protein aggregation is an evolvable phenomenon rather than being a passive inevitable process. The aggregated proteins progressively disappeared on facing starvation indicating degradation and recycling demonstrating that protein aggregation is a reversible process in E. coli.  相似文献   

11.
Molecular Genetics and Genomics - This study deals with the effects of a temperature-sensitive (ts) mutation at the gene encoding the DNA gyrase B subunit (gyrB ts) and a deletion of the top gene...  相似文献   

12.
The fluorescent antibody technique was used to trace an inoculated Nocardia erythropolis strain which was capable of rapidly degrading phthalate esters in soil column and activated sludge systems. The reaction of antibody to Nocardia erythropolis S-1 was highly strain specific, i. e., only one of twelve other strain of N. erythropolis was stained with this fluorescent antibody. All other species of Nocardia and other genera of bacteria and a strain of Candida were not stained. Using this technique it was demonstrated that N. erythropolis S-1 inoculated into activated sludge and soil column systems was successfully distinguished from many other microorganisms in mixed culture systems, and the distribution of this strain was appreciated.  相似文献   

13.
Summary A synthetic lactose-inducible promoter was chosen to study host cell responses to the over-expression of heterologous genes. Fermentations were conducted to compare the effect of induction strategies on the synthesis of -galactosidase versus the production of recombinant protein. The levels of lactose, IPTG and glucose during induction were manipulated to adjust the utilization of lactose as the inducer and/or the carbon source. In addition, the involvement of the gal operon in lactose metabolism was also explored in order to optimize lactose transport and utilization during induction.  相似文献   

14.
15.
Predicting the location and strength of promoters from genomic sequence requires accurate sequenced-based promoter models. We present the first model of a full-length bacterial promoter, encompassing both upstream sequences (UP-elements) and core promoter modules, based on a set of 60 promoters dependent on σ(E), an alternative ECF-type σ factor. UP-element contribution, best described by the length and frequency of A- and T-tracts, in combination with a PWM-based core promoter model, accurately predicted promoter strength both in vivo and in vitro. This model also distinguished active from weak/inactive promoters. Systematic examination of promoter strength as a function of RNA polymerase (RNAP) concentration revealed that UP-element contribution varied with RNAP availability and that the σ(E) regulon is comprised of two promoter types, one of which is active only at high concentrations of RNAP. Distinct promoter types may be a general mechanism for increasing the regulatory capacity of the ECF group of alternative σ's. Our findings provide important insights into the sequence requirements for the strength and function of full-length promoters and establish guidelines for promoter prediction and for forward engineering promoters of specific strengths.  相似文献   

16.
In order to assess the feasibility of a high-pressure immunodesorption process using a β-galactosidase-anti-/3-galactosidase complex as a model, the influence of high hydrostatic pressure on the inactivation of E. coli /3-galactosidase has been investigated. The irreversible activity loss of β-galactosidase was studied as a function of pH and temperature for pressures comprised between atmospheric pressure and 500 megapascal (MPa; 1 MPa = 10 bar). This enabled us to establish a practical pressure-temperature diagram of stability for this enzyme. The stability domains determined thus appeared to be strongly dependent on the pH under atmospheric pressure of the phosphate buffer employed for pressurisation. Therefore, to interpret meaningfully this result, the influence of pressure on the pH-activity curve of β-galactosidase was investigated by using a high-pressure stopped-flow device. It appeared that the pH-activity curve of this enzyme was also reversibly affected by pressures lower than 150 MPa. An interpretation of these results in relation to the high-pressure induced changes of ionisation constants is proposed. For our practical purpose, the implications for the elaboration of a high-pressure immunodesorption process using /3-galactosidase as a tag, are discussed.  相似文献   

17.
The -glucuronidase (GUS) gene is to date the most frequently used reporter gene in plants. Marketing of crops containing this gene requires prior evaluation of their biosafety. To aid such evaluations of the GUS gene, irrespective of the plant into which the gene has been introduced, the ecological and toxicological aspects of the gene and gene product have been examined. GUS activity is found in many bacterial species, is common in all tissues of vertebrates and is also present in organisms of various invertebrate taxa. The transgenic GUS originates from the enterobacterial species Escherichia coli that is widespread in the vertebrate intestine, and in soil and water ecosystems. Any GUS activity added to the ecosystem through genetically modified plants will be of no or minor influence. Selective advantages to genetically modified plants that posses and express the E. coli GUS transgene are unlikely. No increase of weediness of E. coli GUS expressing crop plants, or wild relatives that might have received the transgene through outcrossing, is expected. Since E. coli GUS naturally occurs ubiquitously in the digestive tract of consumers, its presence in food and feed from genetically modified plants is unlikely to cause any harm. E. coli GUS in genetically modified plants and their products can be regarded as safe for the environment and consumers  相似文献   

18.
19.

The previous deletion of the cytoplasmic components of the phosphotransferase system (PTS) in Escherichia coli JM101 resulted in the PTS derivative strain PB11 with severely impaired growth capability in glucose as the sole carbon source. Previous adaptive laboratory evolution (ALE) experiment led to select a fast-growing strain named PB12 from PB11. Comparative genome analysis of PB12 showed a chromosomal deletion, which result in the loss of several genes including rppH which codes for the RNA pyrophosphohydrolase RppH, involved in the preparation of hundreds of mRNAs for further degradation by RNase E. Previous inactivation of rppH in PB11 (PB11rppH) improved significantly its growing capabilities and increased several mRNAs respect its parental strain PB11. These previous results led to propose to the PB11rppH mutant as an intermediate between PB11 and PB12 strains merged during the early ALE experiment. In this contribution, we report the metabolic response to the PTS and rppH mutations in the deep of a proteomic approach to understanding the relevance of rppH phenotype during an ALE experiment. Differentially upregulated proteins between the wild-type JM101/PB11, PB11/PB11rppH, and PB11/PB12 comparisons led to identifying 45 proteins between strain comparisons. Downregulated or upregulated proteins in PB11rppH were found expressed at an intermediate level with respect to PB11 and PB12. Many of these proteins were found involved in non-previously metabolic traits reported in the study of the PTS strains, including glucose, amino acids, ribose transport; amino acid biosynthesis; NAD biosynthesis/salvage pathway, biosynthesis of Ac-CoA precursors; detoxification and degradation pathways; stress response; protein synthesis; and possible mutator activities between comparisons. No changes were found in the expression of galactose permease GalP, previously proposed as the primary glucose transporter in the absence of PTS selected by the PTS derivatives during the ALE experiment. This result suggests that the evolving PTS population selected other transporters such as LamB, MglB, and ManX instead of GalP for glucose uptake during the early ALE experiment. Analysis of the biological relevance of the metabolic traits developed by the studied strains provided valuable information to understand the relevance of the rppH mutation in the PTS background during an ALE experiment as a strategy for the selection of valuable phenotypes for metabolic engineering purposes.

  相似文献   

20.
S-RNase is a style-specific ribonuclease which is associated with gametophytic self-incompatibility. An expression vector of a fusion protein of Pyrus pyrifolia(Japanese pear) S3-RNase with glutathione-S-transferase (GST) was constructed and transformed into E. coli. Using this system, the fusion protein, GST-S3-RNase, was expressed as an active form and can be used for screening pollen S-gene product(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号