首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.

Background

A canonical proposition states that, in mature brain, neurons responsive to sensory stimuli are tuned to specific properties installed shortly after birth. It is amply demonstrated that that neurons in adult visual cortex of cats are orientation-selective that is they respond with the highest firing rates to preferred oriented stimuli.

Methodology/Principal Findings

In anesthetized cats, prepared in a conventional fashion for single cell recordings, the present investigation shows that presenting a stimulus uninterruptedly at a non-preferred orientation for twelve minutes induces changes in orientation preference. Across all conditions orientation tuning curves were investigated using a trial by trial method. Contrary to what has been previously reported with shorter adaptation duration, twelve minutes of adaptation induces mostly attractive shifts, i.e. toward the adapter. After a recovery period allowing neurons to restore their original orientation tuning curves, we carried out a second adaptation which produced three major results: (1) more frequent attractive shifts, (2) an increase of their magnitude, and (3) an additional enhancement of responses at the new or acquired preferred orientation. Additionally, we also show that the direction of shifts depends on the duration of the adaptation: shorter adaptation in most cases produces repulsive shifts, whereas adaptation exceeding nine minutes results in attractive shifts, in the same unit. Consequently, shifts in preferred orientation depend on the duration of adaptation.

Conclusion/Significance

The supplementary response improvements indicate that neurons in area 17 keep a memory trace of the previous stimulus properties, thereby upgrading cellular performance. It also highlights the dynamic nature of basic neuronal properties in adult cortex since repeated adaptations modified both the orientation tuning selectivity and the response strength to the preferred orientation. These enhanced neuronal responses suggest that the range of neuronal plasticity available to the visual system is broader than anticipated.  相似文献   

2.
Ni H  Huang L  Chen N  Zhang F  Liu D  Ge M  Guan S  Zhu Y  Wang JH 《PloS one》2010,5(10):e13736

Background

Loss of a sensory function is often followed by the hypersensitivity of other modalities in mammals, which secures them well-awareness to environmental changes. Cellular and molecular mechanisms underlying cross-modal sensory plasticity remain to be documented.

Methodology/Principal Findings

Multidisciplinary approaches, such as electrophysiology, behavioral task and immunohistochemistry, were used to examine the involvement of specific types of neurons in cross-modal plasticity. We have established a mouse model that olfactory deficit leads to a whisking upregulation, and studied how GABAergic neurons are involved in this cross-modal plasticity. In the meantime of inducing whisker tactile hypersensitivity, the olfactory injury recruits more GABAergic neurons and their fine processes in the barrel cortex, as well as upregulates their capacity of encoding action potentials. The hyperpolarization driven by inhibitory inputs strengthens the encoding ability of their target cells.

Conclusion/Significance

The upregulation of GABAergic neurons and the functional enhancement of neuronal networks may play an important role in cross-modal sensory plasticity. This finding provides the clues for developing therapeutic approaches to help sensory recovery and substitution.  相似文献   

3.
B Ye  L Huang  Z Gao  P Chen  H Ni  S Guan  Y Zhu  JH Wang 《PloS one》2012,7(8):e41986

Background

Cross-modal plasticity is characterized as the hypersensitivity of remaining modalities after a sensory function is lost in rodents, which ensures their awareness to environmental changes. Cellular and molecular mechanisms underlying cross-modal sensory plasticity remain unclear. We aim to study the role of different types of neurons in cross-modal plasticity.

Methodology/Principal Findings

In addition to behavioral tasks in mice, whole-cell recordings at the excitatory and inhibitory neurons, and their two-photon imaging, were conducted in piriform cortex. We produced a mouse model of cross-modal sensory plasticity that olfactory function was upregulated by trimming whiskers to deprive their sensory inputs. In the meantime of olfactory hypersensitivity, pyramidal neurons and excitatory synapses were functionally upregulated, as well as GABAergic cells and inhibitory synapses were downregulated in piriform cortex from the mice of cross-modal sensory plasticity, compared with controls. A crosswire connection between barrel cortex and piriform cortex was established in cross-modal plasticity.

Conclusion/Significance

An upregulation of pyramidal neurons and a downregulation of GABAergic neurons strengthen the activities of neuronal networks in piriform cortex, which may be responsible for olfactory hypersensitivity after a loss of whisker tactile input. This finding provides the clues for developing therapeutic strategies to promote sensory recovery and substitution.  相似文献   

4.

Objective

Diabetes mellitus is associated with cognitive deficits and an increased risk of dementia, particularly in the elderly. These deficits and the corresponding neurophysiological structural and functional alterations are linked to both metabolic and vascular changes, related to chronic hyperglycaemia, but probably also defects in insulin action in the brain. To elucidate the specific role of brain insulin signalling in neuronal functions that are relevant for cognitive processes we have investigated the behaviour of neurons and synaptic plasticity in the hippocampus of mice lacking the insulin receptor substrate protein 2 (IRS-2).

Research Design and Methods

To study neuronal function and synaptic plasticity in the absence of confounding factors such as hyperglycaemia, we used a mouse model with a central nervous system- (CNS)-restricted deletion of IRS-2 (NesCreIrs2KO).

Results

We report a deficit in NMDA receptor-dependent synaptic plasticity in the hippocampus of NesCreIrs2KO mice, with a concomitant loss of metaplasticity, the modulation of synaptic plasticity by the previous activity of a synapse. These plasticity changes are associated with reduced basal phosphorylation of the NMDA receptor subunit NR1 and of downstream targets of the PI3K pathway, the protein kinases Akt and GSK-3β.

Conclusions

These findings reveal molecular and cellular mechanisms that might underlie cognitive deficits linked to specific defects of neuronal insulin signalling.  相似文献   

5.

Objective

Shortly after infection, HIV enters the brain and causes widespread inflammation and neuronal damage, which ultimately leads to neuropsychological impairments. Despite a large body of neuroscience and imaging studies, the pathophysiology of these HIV-associated neurocognitive disorders (HAND) remains unresolved. Previous neuroimaging studies have shown greater activation in HIV-infected patients during strenuous tasks in frontal and parietal cortices, and less activation in the primary sensory cortices during rest and sensory stimulation.

Methods

High-density magnetoencephalography (MEG) was utilized to evaluate the basic neurophysiology underlying attentive, visual processing in older HIV-infected adults and a matched non-infected control group. Unlike other neuroimaging methods, MEG is a direct measure of neural activity that is not tied to brain metabolism or hemodynamic responses. During MEG, participants fixated on a centrally-presented crosshair while intermittent visual stimulation appeared in their top-right visual-field quadrant. All MEG data was imaged in the time-frequency domain using beamforming.

Results

Uninfected controls had increased neuronal synchronization in the 6–12 Hz range within the right dorsolateral prefrontal cortex, right frontal eye-fields, and the posterior cingulate. Conversely, HIV-infected patients exhibited decreased synchrony in these same neural regions, and the magnitude of these decreases was correlated with neuropsychological performance in several cortical association regions.

Conclusions

MEG-based imaging holds potential as a noninvasive biomarker for HIV-related neuronal dysfunction, and may help identify patients who have or may develop HAND. Reduced synchronization of neural populations in the association cortices was strongly linked to cognitive dysfunction, and likely reflects the impact of HIV on neuronal and neuropsychological health.  相似文献   

6.

Background/Objective

Transcutaneous electrical stimulation has been proven to modulate nervous system activity, leading to changes in pain perception, via the peripheral sensory system, in a bottom up approach. We tested whether different sensory behavioral tasks induce significant effects in pain processing and whether these changes correlate with cortical plasticity.

Methodology/Principal Findings

This randomized parallel designed experiment included forty healthy right-handed males. Three different somatosensory tasks, including learning tasks with and without visual feedback and simple somatosensory input, were tested on pressure pain threshold and motor cortex excitability using transcranial magnetic stimulation (TMS). Sensory tasks induced hand-specific pain modulation effects. They increased pain thresholds of the left hand (which was the target to the sensory tasks) and decreased them in the right hand. TMS showed that somatosensory input decreased cortical excitability, as indexed by reduced MEP amplitudes and increased SICI. Although somatosensory tasks similarly altered pain thresholds and cortical excitability, there was no significant correlation between these variables and only the visual feedback task showed significant somatosensory learning.

Conclusions/Significance

Lack of correlation between cortical excitability and pain thresholds and lack of differential effects across tasks, but significant changes in pain thresholds suggest that analgesic effects of somatosensory tasks are not primarily associated with motor cortical neural mechanisms, thus, suggesting that subcortical neural circuits and/or spinal cord are involved with the observed effects. Identifying the neural mechanisms of somatosensory stimulation on pain may open novel possibilities for combining different targeted therapies for pain control.  相似文献   

7.
Li YC  Chen CC  Chen JH 《PloS one》2011,6(5):e18954

Background

Visual processing network is one of the functional networks which have been reliably identified to consistently exist in human resting brains. In our work, we focused on this network and investigated the intrinsic properties of low frequency (0.01–0.08 Hz) fluctuations (LFFs) during changes of visual stimuli. There were two main questions to be discussed in this study: intrinsic properties of LFFs regarding (1) interactions between visual stimuli and resting-state; (2) impact of repetition rate of visual stimuli.

Methodology/Principal Findings

We analyzed scanning sessions that contained rest and visual stimuli in various repetition rates with a novel method. The method included three numerical approaches involving ICA (Independent Component Analyses), fALFF (fractional Amplitude of Low Frequency Fluctuation), and Coherence, to respectively investigate the modulations of visual network pattern, low frequency fluctuation power, and interregional functional connectivity during changes of visual stimuli. We discovered when resting-state was replaced by visual stimuli, more areas were involved in visual processing, and both stronger low frequency fluctuations and higher interregional functional connectivity occurred in visual network. With changes of visual repetition rate, the number of areas which were involved in visual processing, low frequency fluctuation power, and interregional functional connectivity in this network were also modulated.

Conclusions/Significance

To combine the results of prior literatures and our discoveries, intrinsic properties of LFFs in visual network are altered not only by modulations of endogenous factors (eye-open or eye-closed condition; alcohol administration) and disordered behaviors (early blind), but also exogenous sensory stimuli (visual stimuli with various repetition rates). It demonstrates that the intrinsic properties of LFFs are valuable to represent physiological states of human brains.  相似文献   

8.

Background

Fetal alcohol exposure affects 1 in 100 children making it the leading cause of mental retardation in the US. It has long been known that alcohol affects cerebellum development and function. However, the underlying molecular mechanism is unclear.

Methodology/Principal Findings

We demonstrate that CREB binding protein (CBP) is widely expressed in granule and Purkinje neurons of the developing cerebellar cortex of naïve rats. We also show that exposure to ethanol during the 3rd trimester-equivalent of human pregnancy reduces CBP levels. CBP is a histone acetyltransferase, a component of the epigenetic mechanism controlling neuronal gene expression. We further demonstrate that the acetylation of both histone H3 and H4 is reduced in the cerebellum of ethanol- treated rats.

Conclusions/Significance

These findings indicate that ethanol exposure decreases the expression and function of CBP in the developing cerebellum. This effect of ethanol may be responsible for the motor coordination deficits that characterize fetal alcohol spectrum disorders.  相似文献   

9.
10.

Background

In visual processing, there are marked cultural differences in the tendency to adopt either a global or local processing style. A remote culture (the Himba) has recently been reported to have a greater local bias in visual processing than Westerners. Here we give the first evidence that a greater, and remarkable, attentional selectivity provides the basis for this local bias.

Methodology/Principal Findings

In Experiment 1, Eriksen-type flanker interference was measured in the Himba and in Western controls. In both groups, responses to the direction of a task-relevant target arrow were affected by the compatibility of task-irrelevant distractor arrows. However, the Himba showed a marked reduction in overall flanker interference compared to Westerners. The smaller interference effect in the Himba occurred despite their overall slower performance than Westerners, and was evident even at a low level of perceptual load of the displays. In Experiment 2, the attentional selectivity of the Himba was further demonstrated by showing that their attention was not even captured by a moving singleton distractor.

Conclusions/Significance

We argue that the reduced distractibility in the Himba is clearly consistent with their tendency to prioritize the analysis of local details in visual processing.  相似文献   

11.

Background

The regulation of energy intake is a complex process involving the integration of homeostatic signals and both internal and external sensory inputs. The objective of this study was to examine the effects of short-term overfeeding on the neuronal response to food-related visual stimuli in individuals prone and resistant to weight gain.

Methodology/Principal Findings

22 thin and 19 reduced-obese (RO) individuals were studied. Functional magnetic resonance imaging (fMRI) was performed in the fasted state after two days of eucaloric energy intake and after two days of 30% overfeeding in a counterbalanced design. fMRI was performed while subjects viewed images of foods of high hedonic value and neutral non-food objects. In the eucaloric state, food as compared to non-food images elicited significantly greater activation of insula and inferior visual cortex in thin as compared to RO individuals. Two days of overfeeding led to significant attenuation of not only insula and visual cortex responses but also of hypothalamus response in thin as compared to RO individuals.

Conclusions/Significance

These findings emphasize the important role of food-related visual cues in ingestive behavior and suggest that there are important phenotypic differences in the interactions between external visual sensory inputs, energy balance status, and brain regions involved in the regulation of energy intake. Furthermore, alterations in the neuronal response to food cues may relate to the propensity to gain weight.  相似文献   

12.

Background

Fetal Alcohol Spectrum Disorder (FASD) is underdiagnosed in Canada. The diagnosis of FASD is not simple and currently, the recommendation is that a comprehensive, multidisciplinary assessment of the individual be done. The purpose of this study was to estimate the annual cost of FASD diagnosis on Canadian society.

Methods

The diagnostic process breakdown was based on recommendations from the Fetal Alcohol Spectrum Disorder Canadian Guidelines for Diagnosis. The per person cost of diagnosis was calculated based on the number of hours (estimated based on expert opinion) required by each specialist involved in the diagnostic process. The average rate per hour for each respective specialist was estimated based on hourly costs across Canada. Based on the existing clinical capacity of all FASD multidisciplinary clinics in Canada, obtained from the 2005 and 2011 surveys conducted by the Canada Northwest FASD Research Network, the number of FASD cases diagnosed per year in Canada was estimated. The per person cost of FASD diagnosis was then applied to the number of cases diagnosed per year in Canada in order to calculated the overall annual cost.

Results

Using the most conservative approach, it was estimated that an FASD evaluation requires 32 to 47 hours for one individual to be screened, referred, admitted, and diagnosed with an FASD diagnosis, which results in a total cost of $3,110 to $4,570 per person. The total cost of FASD diagnostic services in Canada ranges from $3.6 to $5.2 million (lower estimate), up to $5.0 to $7.3 million (upper estimate) per year.

Discussion

As a result of using the most conservative approach, the cost of FASD diagnostic services presented in the current study is most likely underestimated. The reasons for this likelihood and the limitations of the study are discussed.  相似文献   

13.

Background

Body image distortion is a central symptom of Anorexia Nervosa (AN). Even if corporeal awareness is multisensory majority of AN studies mainly investigated visual misperception. We systematically reviewed AN studies that have investigated different nonvisual sensory inputs using an integrative multisensory approach to body perception. We also discussed the findings in the light of AN neuroimaging evidence.

Methods

PubMed and PsycINFO were searched until March, 2014. To be included in the review, studies were mainly required to: investigate a sample of patients with current or past AN and a control group and use tasks that directly elicited one or more nonvisual sensory domains.

Results

Thirteen studies were included. They studied a total of 223 people with current or past AN and 273 control subjects. Overall, results show impairment in tactile and proprioceptive domains of body perception in AN patients. Interoception and multisensory integration have been poorly explored directly in AN patients. A limitation of this review is the relatively small amount of literature available.

Conclusions

Our results showed that AN patients had a multisensory impairment of body perception that goes beyond visual misperception and involves tactile and proprioceptive sensory components. Furthermore, impairment of tactile and proprioceptive components may be associated with parietal cortex alterations in AN patients. Interoception and multisensory integration have been weakly explored directly. Further research, using multisensory approaches as well as neuroimaging techniques, is needed to better define the complexity of body image distortion in AN.

Key Findings

The review suggests an altered capacity of AN patients in processing and integration of bodily signals: body parts are experienced as dissociated from their holistic and perceptive dimensions. Specifically, it is likely that not only perception but memory, and in particular sensorimotor/proprioceptive memory, probably shapes bodily experience in patients with AN.  相似文献   

14.

Background

Alcoholism is associated with abnormal anger processing. The purpose of this study was to investigate brain regions involved in the evaluation of angry facial expressions in patients with alcohol dependency.

Methods

Brain blood-oxygenation-level-dependent (BOLD) responses to angry faces were measured and compared between patients with alcohol dependency and controls.

Results

During intensity ratings of angry faces, significant differences in BOLD were observed between patients with alcohol dependency and controls. That is, patients who were alcohol-dependent showed significantly greater activation in several brain regions, including the dorsal anterior cingulate cortex (dACC) and medial prefrontal cortex (MPFC).

Conclusions

Following exposure to angry faces, abnormalities in dACC and MPFC activation in patients with alcohol dependency indicated possible inefficiencies or hypersensitivities in social cognitive processing.  相似文献   

15.

Background

Detection of visual contours (strings of small oriented elements) is markedly poor in schizophrenia. This has previously been attributed to an inability to group local information across space into a global percept. Here, we show that this failure actually originates from a combination of poor encoding of local orientation and abnormal processing of visual context.

Methods

We measured the ability of observers with schizophrenia to localise contours embedded in backgrounds of differently oriented elements (either randomly oriented, near-parallel or near-perpendicular to the contour). In addition, we measured patients’ ability to process local orientation information (i.e., report the orientation of an individual element) for both isolated and crowded elements (i.e., presented with nearby distractors).

Results

While patients are poor at detecting contours amongst randomly oriented elements, they are proportionally less disrupted (compared to unaffected controls) when contour and surrounding elements have similar orientations (near-parallel condition). In addition, patients are poor at reporting the orientation of an individual element but, again, are less prone to interference from nearby distractors, a phenomenon known as visual crowding.

Conclusions

We suggest that patients’ poor performance at contour perception arises not as a consequence of an “integration deficit” but from a combination of reduced sensitivity to local orientation and abnormalities in contextual processing. We propose that this is a consequence of abnormal gain control, a phenomenon that has been implicated in orientation-selectivity as well as surround suppression.  相似文献   

16.

Background & Aims

Gastric electrical stimulation (GES) is an effective therapy to treat patients with chronic dyspepsia refractory to medical management. However, its mechanisms of action remain poorly understood.

Methods

Gastric pain was induced by performing gastric distension (GD) in anesthetized rats. Pain response was monitored by measuring the pseudo-affective reflex (e.g., blood pressure variation), while neuronal activation was determined using c-fos immunochemistry in the central nervous system. Involvement of primary afferents was assessed by measuring phosphorylation of ERK1/2 in dorsal root ganglia.

Results

GES decreased blood pressure variation induced by GD, and prevented GD-induced neuronal activation in the dorsal horn of the spinal cord (T9–T10), the nucleus of the solitary tract and in CRF neurons of the hypothalamic paraventricular nucleus. This effect remained unaltered within the spinal cord when sectioning the medulla at the T5 level. Furthermore, GES prevented GD-induced phosphorylation of ERK1/2 in dorsal root ganglia.

Conclusions

GES decreases GD-induced pain and/or discomfort likely through a direct modulation of gastric spinal afferents reducing central processing of visceral nociception.  相似文献   

17.

Aims

ApoB-100 is the major protein component of cholesterol- and triglyceride-rich LDL and VLDL lipoproteins in the serum. Previously, we generated and partially described transgenic mice overexpressing the human ApoB-100 protein. Here, we further characterize this transgenic strain in order to reveal a possible link between hypeprlipidemia and neurodegeneration.

Methods and Results

We analyzed the serum and cerebral lipid profiles, tau phosphorylation patterns, amyloid plaque-formation, neuronal apoptosis and synaptic plasticity of young (3 month old), adult (6 month old) and aging (10–11 month old) transgenic mice. We show that ApoB-100 transgenic animals present i) elevated serum and cerebral levels of triglycerides and ApoB-100, ii) increased cerebral tau phosphorylation at phosphosites Ser199, Ser199/202, Ser396 and Ser404. Furthermore, we demonstrate, that tau hyperphosphorylation is accompanied by impaired presynaptic function, long-term potentiation and widespread hippocampal neuronal apoptosis.

Conclusions

The results presented here indicate that elevated ApoB-100 level and the consequent chronic hypertriglyceridemia may lead to impaired neuronal function and neurodegeneration, possibly via hyperphosphorylation of tau protein. On account of their specific phenotype, ApoB-100 transgenic mice may be considered a versatile model of hyperlipidemia-induced age-related neurodegeneration.  相似文献   

18.

Background

Individuals with the 22q11.2 deletion syndrome (22q11DS) are at increased risk for schizophrenia and Autism Spectrum Disorders (ASDs). Given the prevalence of visual processing deficits in these three disorders, a causal relationship between genes in the deleted region of chromosome 22 and visual processing is likely. Therefore, 22q11DS may represent a unique model to understand the neurobiology of visual processing deficits related with ASD and psychosis.

Methodology

We measured Event-Related Potentials (ERPs) during a texture segregation task in 58 children with 22q11DS and 100 age-matched controls. The C1 component was used to index afferent activity of visual cortex area V1; the texture negativity wave provided a measure for the integrity of recurrent connections in the visual cortical system. COMT genotype and plasma proline levels were assessed in 22q11DS individuals.

Principal Findings

Children with 22q11DS showed enhanced feedforward activity starting from 70 ms after visual presentation. ERP activity related to visual feedback activity was reduced in the 22q11DS group, which was seen as less texture negativity around 150 ms post presentation. Within the 22q11DS group we further demonstrated an association between high plasma proline levels and aberrant feedback/feedforward ratios, which was moderated by the COMT 158 genotype.

Conclusions

These findings confirm the presence of early visual processing deficits in 22q11DS. We discuss these in terms of dysfunctional synaptic plasticity in early visual processing areas, possibly associated with deviant dopaminergic and glutamatergic transmission. As such, our findings may serve as a promising biomarker related to the development of schizophrenia among 22q11DS individuals.  相似文献   

19.

Background

Fetal alcohol exposure causes in the offspring a collection of permanent physiological and neuropsychological deficits collectively termed Fetal Alcohol Spectrum Disorder (FASD). The timing and amount of exposure cannot fully explain the substantial variability among affected individuals, pointing to genetic influences that mediate fetal vulnerability. However, the aspects of vulnerability that depend on the mother, the father, or both, are not known.

Methodology/Principal Findings

Using the outbred Sprague-Dawley (SD) and inbred Brown Norway (BN) rat strains as well as their reciprocal crosses, we administered ethanol (E), pair-fed (PF), or control (C) diets to the pregnant dams. The dams'' plasma levels of free thyroxine (fT4), triiodothyronine (T3), free T3 (fT3), and thyroid stimulating hormone (TSH) were measured to elucidate potential differences in maternal thyroid hormonal environment, which affects specific aspects of FASD. We then compared alcohol-exposed, pair fed, and control offspring of each fetal strain on gestational day 21 (G21) to identify maternal and paternal genetic effects on bodyweight and placental weight of male and female fetuses.

Conclusions

SD and BN dams exhibited different baseline hypothalamic-pituitary-thyroid function. Moreover, the thyroid function of SD dams was more severely affected by alcohol consumption while that of BN dams was relatively resistant. This novel finding suggests that genetic differences in maternal thyroid function are one source of maternal genetic effects on fetal vulnerability to FASD. The fetal vulnerability to decreased bodyweight after alcohol exposure depended on the genetic contribution of both parents, not only maternal contribution as previously thought. In contrast, the effect of maternal alcohol consumption on placental weight was consistent and not strain-dependent. Interestingly, placental weight in fetuses with different paternal genetic contributions exhibited opposite responses to caloric restriction (pair feeding). In summary, these novel findings demonstrate both maternal and paternal genetic contributions to in utero vulnerability to alcohol, refining our understanding of the genetically-based heterogeneity seen in human FASD.  相似文献   

20.

Background

A key aspect of representations for object recognition and scene analysis in the ventral visual stream is the spatial frame of reference, be it a viewer-centered, object-centered, or scene-based coordinate system. Coordinate transforms from retinocentric space to other reference frames involve combining neural visual responses with extraretinal postural information.

Methodology/Principal Findings

We examined whether such spatial information is available to anterior inferotemporal (AIT) neurons in the macaque monkey by measuring the effect of eye position on responses to a set of simple 2D shapes. We report, for the first time, a significant eye position effect in over 40% of recorded neurons with small gaze angle shifts from central fixation. Although eye position modulates responses, it does not change shape selectivity.

Conclusions/Significance

These data demonstrate that spatial information is available in AIT for the representation of objects and scenes within a non-retinocentric frame of reference. More generally, the availability of spatial information in AIT calls into questions the classic dichotomy in visual processing that associates object shape processing with ventral structures such as AIT but places spatial processing in a separate anatomical stream projecting to dorsal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号