首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin is critical for controlling energy functions including glucose and lipid metabolism. Insulin resistance seems to interact with hepatitis C promoting fibrosis progression and impairing sustained virological response to peginterferon and ribavirin. The main aim was to elucidate the direct effect of hepatitis C virus (HCV) infection on insulin signaling both in vitro analyzing gene expression and protein abundance. Huh7.5 cells and JFH-1 viral particles were used for in vitro studies. Experiments were conducted by triplicate in control cells and infected cells. Genes and proteins involved in insulin signaling pathway were modified by HCV infection. Moreover, metformin treatment increased gene expression of PI3K, IRS1, MAP3K, AKT and PTEN more than >1.5 fold. PTP1B, encoding a tyrosin phosphatase, was found highly induced (>3 fold) in infected cells treated with metformin. However, PTP1B protein expression was reduced in metformin treated cells after JFH1 infection. Other proteins related to insulin pathway like Akt, PTEN and phosphorylated MTOR were also found down-regulated. Viral replication was inhibited in vitro by metformin. A strong effect of HCV infection on insulin pathway-related gene and protein expression was found in vitro. These results could lead to the identification of new therapeutic targets in HCV infection and its co-morbidities.  相似文献   

2.

Background

Ethanol-induced gut barrier disruption is associated with several gastrointestinal and liver disorders.

Aim

Since human data on effects of moderate ethanol consumption on intestinal barrier integrity and involved mechanisms are limited, the objectives of this study were to investigate effects of a single moderate ethanol dose on small and large intestinal permeability and to explore the role of mitogen activated protein kinase (MAPK) pathway as a primary signaling mechanism.

Methods

Intestinal permeability was assessed in 12 healthy volunteers after intraduodenal administration of either placebo or 20 g ethanol in a randomised cross-over trial. Localization of the tight junction (TJ) and gene expression, phosphorylation of the MAPK isoforms p38, ERK and JNK as indicative of activation were analyzed in duodenal biopsies. The role of MAPK was further examined in vitro using Caco-2 monolayers.

Results

Ethanol increased small and large intestinal permeability, paralleled by redistribution of ZO-1 and occludin, down-regulation of ZO-1 and up-regulation of myosin light chain kinase (MLCK) mRNA expression, and increased MAPK isoforms phosphorylation. In Caco-2 monolayers, ethanol increased permeability, induced redistribution of the junctional proteins and F-actin, and MAPK and MLCK activation, as indicated by phosphorylation of MAPK isoforms and myosin light chain (MLC), respectively, which could be reversed by pretreatment with either MAPK inhibitors or the anti-oxidant L-cysteine.

Conclusions

Administration of moderate ethanol dosage can increase both small and colon permeability. Furthermore, the data indicate a pivotal role for MAPK and its crosstalk with MLCK in ethanol-induced intestinal barrier disruption.

Trial Registration

ClinicalTrials.gov NCT00928733  相似文献   

3.
4.
In Vitro and In Vivo Characterization of Pyocin   总被引:7,自引:3,他引:4       下载免费PDF全文
Pyocin, a bacteriocin obtained from lysates of ultraviolet-induced cultures of Pseudomonas aeruginosa was characterized in vitro and in vivo after 1,000-fold purification by chemical, column, and differential centrifugation procedures. Electron micrographs of negatively stained pyocin preparations contained rod-shaped particles which resembled the contractile tail protein of the T-even phages of Escherichia coli. Although two separate and distinct pyocin fractions were eluted from diethylaminoethyl cellulose (pH 7.5) during the purification procedure, the particles appeared identical. In addition, the two fractions exhibited a close correlation between their titers and the particle numbers as observed in the electron microscope. The particles were approximately 20 by 90 mmu with a core diameter of 5 mmu and a sheath length of 50 mmu. Neither intact phage nor ghosts were seen in any of the preparations, although ringlets of two different diameters, which appeared to correspond to the diameters of the sheath and inner core, were observed. Other studies indicated that, although crude preparations were stable to freezing and thawing, purified preparations lost all of their activity under similar treatment. However, the addition of 50% glycerol to purified preparations completely protected activity. Conversely, aged normal human or rabbit sera enhanced the antibacterial activity of pyocin approximately fourfold, although serum albumin and hemoglobin had no effect. In vivo studies indicated that purified pyocin was not lethal for mice when injected intraperitoneally in concentrations of 28,000 to 1,400,000 units (5.6 to 276 mug of protein), nor was 7,200 to 36,000 units dermonecrotic for rabbits.  相似文献   

5.
Beside its well described role in the central and peripheral nervous system 5-hydroxytryptamine (5-HT), commonly known as serotonin, is also a potent immuno-modulator. Serotoninergic receptors (5-HTR) are expressed by a broad range of inflammatory cell types, including dendritic cells (DCs). In this study, we aimed to further characterize the immuno-biological properties of serotoninergic receptors on human monocyte-derived DCs. 5-HT was able to induce oriented migration in immature but not in LPS-matured DCs via activation of 5-HTR1 and 5-HTR2 receptor subtypes. Accordingly, 5-HT also increased migration of pulmonary DCs to draining lymph nodes in vivo. By binding to 5-HTR3, 5-HTR4 and 5-HTR7 receptors, 5-HT up-regulated production of the pro-inflammatory cytokine IL-6. Additionally, 5-HT influenced chemokine release by human monocyte-derived DCs: production of the potent Th1 chemoattractant IP-10/CXCL10 was inhibited in mature DCs, whereas CCL22/MDC secretion was up-regulated in both immature and mature DCs. Furthermore, DCs matured in the presence of 5-HT switched to a high IL-10 and low IL-12p70 secreting phenotype. Consistently, 5-HT favoured the outcome of a Th2 immune response both in vitro and in vivo. In summary, our study shows that 5-HT is a potent regulator of human dendritic cell function, and that targeting serotoninergic receptors might be a promising approach for the treatment of inflammatory disorders.  相似文献   

6.
Regulation of Pyruvate Decarboxylase In Vitro and In Vivo   总被引:2,自引:0,他引:2  
Results presented in this paper strongly support the view thatregulation of the key enzyme of alcoholic fermentation, pyruvatedecarboxylase (PDC), is achieved in a number of ways, all associatedwith possible lowering of the cytoplasmic pH during anoxia.These mechanisms include not only the well-known acid pH optimumof PDC, but also long-term, reversible changes in characteristicsof the enzyme established both in vitro and in vivo. Following transfer of desalted extracts from pH 6.0 to 7.4,maximal activity of PDC was decreased, while there was a considerableincrease in the lag before maximal activity was reached. Similarchanges in enzyme characteristics were observed when wheat (Triticumaestivum L. cv. Gamenya) roots and rice (Oryza sativa L. cv.Calrose) coleoptiles were transferred from anoxic to aerobicsolutions, provided PDC was assayed within 10 min of the startof maceration. All of the above changes were usually readilyreversible when extracts were returned to pH 6.0, or when plantswere returned to anoxic solutions. Additional regulation of PDC would be achieved by the S0.5 forpyruvate which is 0.75 mol m–3 at pH 6.0, 1.0 mol m–3at pH 6.8, and 2.5 mol m–3 at pH 7.4; the latter is wellabove estimates for pyruvate concentrations in the cytoplasmof aerated tissues. We assess that the combined effects of the acid pH optimum,the high S0.5 at pH 7.4 and the long-term decreases in activityobserved during incubation at pH 7.4 would reduce PDC activityin aerobic cells to at most 7% of the activity in anoxic cells.Possible additional controls for the pathway of alcoholic fermentationare briefly considered. Key words: PDC, regulation, anoxia  相似文献   

7.
8.
9.
The objectives of present study were to investigate whether luteolin affects procoagulant proteinase activity and fibrin clot formation and influences thrombosis and coagulation in Sprague–Dawle rats. Luteolin significantly inhibited the enzymatic activity of thrombin and FXa activity by 29.1% and 16.2%. Luteolin also inhibited fibrin polymer formation in turbidity and microscopic analysis using fluorescent conjugate. Coagulation assay of luteolin was found to prolong activated partial thromboplastin time and prothrombin time. Moreover, luteolin protected the development of oxidative stress induced thrombosis in the FeCl3‐induced carotid arterial thrombus model. This study demonstrated that luteolin may be useful by reducing or preventing thrombotic challenge and can help us better understand the antithrombotic action of luteolin.  相似文献   

10.
It is generally recognized that synthetic glucocorticoids induce skeletal muscle weakness, and endogenous glucocorticoid levels increase in patients with muscle atrophy. It is reported that heat stress attenuates glucocorticoid‐induced muscle atrophy; however, the mechanisms involved are unknown. Therefore, we examined the mechanisms underlying the effects of heat stress against glucocorticoid‐induced muscle atrophy using C2C12 myotubes in vitro, focusing on expression of key molecules and signaling pathways involved in regulating protein synthesis and degradation. The synthetic glucocorticoid dexamethasone decreased myotube diameter and protein content, and heat stress prevented the morphological and biochemical glucocorticoid effects. Heat stress also attenuated increases in mRNAs of regulated in development and DNA damage responses 1 (REDD1) and Kruppel‐like factor 15 (KLF15). Heat stress recovered the dexamethasone‐induced inhibition of PI3K/Akt signaling. These data suggest that changes in anabolic and catabolic signals are involved in heat stress‐induced protection against glucocorticoid‐induced muscle atrophy. These results have a potentially broad clinical impact because elevated glucocorticoid levels are implicated in a wide range of diseases associated with muscle wasting. J. Cell. Physiol. 232: 650–664, 2017. © 2016 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.  相似文献   

11.
Alpha (α)-synuclein neuronal effects are continually being defined although its role in regulating glial phenotypes remains unclear. An ability to regulate microglial activation was investigated using primary cultures from wild type and α-synuclein deficient mice (Snca /). Snca / microglia demonstrated increased secretion of the cytokine tumor necrosis factor-alpha (TNF-α), impaired phagocytic ability, elevated prostaglandin levels, and increased protein levels of key enzymes in lipid-mediated signaling events, cytosolic phospholipase (cPLA2), cyclooxygenase-2 (Cox-2) and phospholipase D2 (PLD2) when compared to wild type cells. Increased cytokine secretion and cPLA2 and Cox-2 levels in Snca / microglia were partially attenuated by inhibiting PLD-dependent signaling with n-butanol treatment.  相似文献   

12.
The Bacillus subtilis pur operon repressor (PurR) has a PRPP (5-phosphoribosyl 1-pyrophosphate) binding motif at residues 199–211. Two PurR PRPP binding region mutations (D203A and D204A) were constructed, and the effects on binding of repressor to the pur operon control site in vitro and on regulation of pur operon expression in vivo were investigated. PRPP significantly inhibited the binding of wild-type but not mutant PurR to pur operon control site DNA. In strains with the D203A and D204A mutations, pur operon expression in vivo was super-repressed by addition of adenine to the growth medium. These results support the role of PRPP in modulating the regulatory function of PurR in vivo. YabJ, the product of the distal gene in the bicistronic purR operon, is also required for PurR function in vivo. Received: 5 January 2000 / Accepted: 9 February 2000  相似文献   

13.
14.
Comparison of the most stable potential hairpins in the sequences of natural ribozymes with those in the randomized sequences has revealed that the hairpin loop energies are lower than expected by chance. Although these hairpins are not necessarily parts of functional structures, there is a selective pressure to diminish the destabilizing free energies of the hairpin loops. In contrast, no significant bias is observed in the stacking values of the most stable stems. In the ribozymes isolated in vitro the loops of potential hairpins are closer to random values, which can result in less efficient folding rates. Furthermore, the effects of kinetic traps seem to be more significant in the folding pathways of the in vitro isolates due to a potential to form stable stacks incompatible with the functional folds. Similarly to natural ribozyme sequences, the untranslated regions of viral RNAs also form hairpins with relatively low loop free energies. These evolutionary trends suggest ways for efficient engineering of improved RNA constructs on the basis of analysis of in vitro isolates and approaches for the search of regions coding for functional RNA structures in large genome sequences. Received: 12 January 2001 / Accepted: 21 May 2001  相似文献   

15.
Cleavage of Viral Precursor Proteins In Vivo and In Vitro   总被引:8,自引:18,他引:8       下载免费PDF全文
The use of protease inhibitors causes the accumulation of very large polypeptides (polyprotein) in tissue culture cells infected with either poliovirus or echovirus 12. The effectiveness of the inhibitor varies, depending on the cell line chosen. In infected monkey kidney cells, polyprotein is not cleaved when a chymotrypsin inhibitor is added, but in infected HeLa cells a trypsin inhibitor is most effective. Therefore, at least a part of the proteolytic activity is supplied by the host cell. Extracted viral polyprotein can be cleaved in vitro by trypsin or chymotrypsin. As estimated by migration in sodium dodecyl sulfate gels and antigenicity, chymotrypsin cleavage of the poliovirus polyprotein yields fragments which are similar to the in vivo product. The polyprotein is not in soluble form but is attached to a fast-sedimenting, membrane-bound structure. Proteolytic activities in cell extracts were assayed using polyprotein as substrate, and infected and uninfected extracts produced qualitatively dissimilar cleavages.  相似文献   

16.
Phosphorylation of Vesicular Stomatitis Virus In Vivo and In Vitro   总被引:4,自引:16,他引:4  
The structural protein, NS, of purified vesicular stomatitis virus (VSV) is a phosphoprotein. In infected cells phosphorylated NS is found both free in the cytoplasm and as part of the viral ribonucleoprotein (RNP) complex containing both the 42S RNA and the structural proteins L, N, and NS, indicating that phosphorylation occurs as an early event in viral maturation. VSV contains an endogenous protein kinase activity, probably of host region, which catalyzes the in vitro phosphorylation of the viral proteins NS, M, and L, but not of N or G. The phosphorylated sites on NS appear to be different in the in vivo and in vitro reactions, and are differentially sensitive to alkaline phosphatase. After removal of the membrane components of purified VSV with a dextran-polyethylene glycol two-phase separation, the kinase activity remains tightly associated with the viral RNP. However, viral RNP isolated from infected cells shows only a small amount of kinase activity. The protein kinase enzyme appears to be a cellular contaminant of purified VSV because an activity from the uninfected cell extract can phosphorylate in vitro the dissociated viral proteins NS and M. The virion-associated activity may be derived either from the cytoplasm or the plasma membrane of the host cell since both of these cellular components contain protein kinase activity similar to that found in purified VSV.  相似文献   

17.
Streptomycin-dependent cholera vibrio strains were derived from Inaba, Ogawa, and NAG vibrios by the method of Mel. These phenotypes grew more slowly and attacked fermentable substances after a longer period of time than the streptomycin-sensitive parent strains. Rabbits injected with streptomycin-sensitive strains and their streptomycin-dependent forms showed homologous agglutinin production. Patas monkeys fed with 10(9) streptomycin-dependent strains shed them for 1 to 2 days without ill effect, whereas the same number of streptomycin-independent organisms caused disease. The possibility of the application of multiple doses of streptomycin-dependent organisms in oral immunization against cholera was considered.  相似文献   

18.
In Vivo and In Vitro Action of Norethindrone on Staphylococci   总被引:5,自引:0,他引:5       下载免费PDF全文
Norethindrone has been examined in vitro for antibacterial activity against 10 microorganisms. Turbidimetric techniques were used to assay the antibacterial activity of norethindrone. The organisms tested included Staphylococcus aureus, S. epidermidis, Micrococcus conglomeratus, Listeria monocytogenes, Streptococcus faecalis, Salmonella typhosa, Shigella flexnerii, Klebsiella pneumoniae, Escherichia coli, and Proteus vulgaris. Bacteriostatic action was shown only against the gram-positive microorganisms when they were grown anaerobically in Tryptic Soy Broth containing 10 to 50 mug of norethindrone per ml. The bacteriostatic action of norethindrone was exerted primarily during the first 8 hr of incubation and it was reduced by the presence of oxygen. Mestranol at a concentration of 1 to 10 mug/ml failed to exert any significant action on S. aureus. However, incorporation of 5 mug of mestranol per ml in the culture medium enhanced the bacteriostatic action of norethindrone on staphylococci. Enhancement of the bacteriostatic action of norethindrone could not be obtained by the addition of a concentration of 5 mug/ml of testosterone, 17alpha-estradiol, and 17beta-estradiol. Progesterone and 4-pregnen-20beta-ol-3-one under similar conditions showed an additive bacteriostatic effect when they were incorporated into the culture medium containing norethindrone. In vivo studies indicated that female, adult New Zealand rabbits, injected subcutaneously with two injections of 10 to 20 mug of norethindrone, 24 hr apart, and challenged intradermally with S. aureus 4 hr after the second injection, had fewer lesions with smaller areas of swelling and erythema as compared to control, nontreated rabbits. The protective effect of norethindrone on the development of staphylococcal lesion seemed related to hormone concentration. Thus, it was demonstrated with doses of 20, 15, and 10 mug, but not with doses of 1 and 5 mug. When the lesions were excised 48 to 92 hr after infection and when viable cell counts were made, rabbits treated with norethindrone showed significantly lower staphylococcal counts than the control rabbits. During the 1st day after infection with S. aureus, leukocytic counts of the norethindrone-treated rabbits remained normal, whereas control animals showed elevated leukocytic counts.  相似文献   

19.
Demyelination in the CNS of shiverer mutant mice was studied in vivo and in vitro. By immunohistochemical reaction with glial fibrillary acidic protein antibody, hypertrophy of the fibrous astrocytes was observed in the white matter of shiverer cerebella. The cerebella of shiverer mice in primary culture from the day of birth showed very poor myelination under optical microscopy. Axons of Purkinje cells are thought to be the main myelinated axons in the primary culture of the cerebellum. Purkinje cells from shiverer appeared normal with regard to Bodian silver impregnation, hematoxylin and eosin staining, and P400 protein characterization of Purkinje cells. Addition of the conditioned culture medium of shiverer to the control culture did not interfere with myelination. We concluded that the demyelination in the CNS of shiverer could be caused by an intrinsic defect of the oligodendrocyte rather than by hypertrophy of the astrocytes or by diffusible factors.  相似文献   

20.

Rationale

The sacred lotus (Nelumbo nucifera) contains many phytochemicals and has a history of human use. To determine which compounds may be responsible for reported psychotropic effects, we used in silico predictions of the identified phytochemicals. Nuciferine, an alkaloid component of Nelumbo nucifera and Nymphaea caerulea, had a predicted molecular profile similar to antipsychotic compounds. Our study characterizes nuciferine using in vitro and in vivo pharmacological assays.

Methods

Nuciferine was first characterized in silico using the similarity ensemble approach, and was followed by further characterization and validation using the Psychoactive Drug Screening Program of the National Institute of Mental Health. Nuciferine was then tested in vivo in the head-twitch response, pre-pulse inhibition, hyperlocomotor activity, and drug discrimination paradigms.

Results

Nuciferine shares a receptor profile similar to aripiprazole-like antipsychotic drugs. Nuciferine was an antagonist at 5-HT2A, 5-HT2C, and 5-HT2B, an inverse agonist at 5-HT7, a partial agonist at D2, D5 and 5-HT6, an agonist at 5-HT1A and D4 receptors, and inhibited the dopamine transporter. In rodent models relevant to antipsychotic drug action, nuciferine blocked head-twitch responses and discriminative stimulus effects of a 5-HT2A agonist, substituted for clozapine discriminative stimulus, enhanced amphetamine induced locomotor activity, inhibited phencyclidine (PCP)-induced locomotor activity, and rescued PCP-induced disruption of prepulse inhibition without induction of catalepsy.

Conclusions

The molecular profile of nuciferine was similar but not identical to that shared with several approved antipsychotic drugs suggesting that nuciferine has atypical antipsychotic-like actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号