首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
2.
Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs) in rat dorsal root ganglion (DRG) neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration–response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids.  相似文献   

3.
Dendritic ion channels play a critical role in shaping synaptic input and are fundamentally important for synaptic integration and plasticity. In the hippocampal region CA1, somato-dendritic gradients of AMPA receptors and the hyperpolarization-activated cation conductance (Ih) counteract the effects of dendritic filtering on the amplitude, time-course, and temporal integration of distal Schaffer collateral (SC) synaptic inputs within stratum radiatum (SR). While ion channel gradients in CA1 distal apical trunk dendrites within SR have been well characterized, little is known about the patterns of ion channel expression in the distal apical tuft dendrites within stratum lacunosum moleculare (SLM) that receive distinct input from the entorhinal cortex via perforant path (PP) axons. Here, we measured local ion channels densities within these distal apical tuft dendrites to determine if the somato-dendritic gradients of Ih and AMPA receptors extend into distal tuft dendrites. We also determined the densities of voltage-gated sodium channels and NMDA receptors. We found that the densities of AMPA receptors, Ih, and voltage-gated sodium channels are similar in tuft dendrites in SLM when compared with distal apical dendrites in SR, while the ratio of NMDA receptors to AMPA receptors increases in tuft dendrites relative to distal apical dendrites within SR. These data indicate that the somato-dendritic gradients of Ih and AMPA receptors in apical dendrites do not extend into the distal tuft, and the relative densities of voltage-gated sodium channels and NMDA receptors are poised to support nonlinear integration of correlated SC and PP input.  相似文献   

4.
5.
6.
7.
单离子通道电信号的依赖性   总被引:3,自引:2,他引:1  
运用时间序列关于信号依赖性的基本理论,讨论了单离子通道电信号的依赖性,得到关于依赖性的简明判别准则.  相似文献   

8.
Neuronal activity is mediated through changes in the probability of stochastic transitions between open and closed states of ion channels. While differences in morphology define neuronal cell types and may underlie neurological disorders, very little is known about influences of stochastic ion channel gating in neurons with complex morphology. We introduce and validate new computational tools that enable efficient generation and simulation of models containing stochastic ion channels distributed across dendritic and axonal membranes. Comparison of five morphologically distinct neuronal cell types reveals that when all simulated neurons contain identical densities of stochastic ion channels, the amplitude of stochastic membrane potential fluctuations differs between cell types and depends on sub-cellular location. For typical neurons, the amplitude of membrane potential fluctuations depends on channel kinetics as well as open probability. Using a detailed model of a hippocampal CA1 pyramidal neuron, we show that when intrinsic ion channels gate stochastically, the probability of initiation of dendritic or somatic spikes by dendritic synaptic input varies continuously between zero and one, whereas when ion channels gate deterministically, the probability is either zero or one. At physiological firing rates, stochastic gating of dendritic ion channels almost completely accounts for probabilistic somatic and dendritic spikes generated by the fully stochastic model. These results suggest that the consequences of stochastic ion channel gating differ globally between neuronal cell-types and locally between neuronal compartments. Whereas dendritic neurons are often assumed to behave deterministically, our simulations suggest that a direct consequence of stochastic gating of intrinsic ion channels is that spike output may instead be a probabilistic function of patterns of synaptic input to dendrites.  相似文献   

9.
10.
Silva  M. P.  Rodrigues  C. G.  Varanda  W. A.  Nogueira  R. A. 《Acta biotheoretica》2021,69(4):697-722
Acta Biotheoretica - Ion channels are transport proteins present in the lipid bilayers of biological membranes. They are involved in many physiological processes, such as the generation of nerve...  相似文献   

11.
Nax is a sodium-concentration ([Na+])-sensitive Na channel with a gating threshold of ~150 mM for extracellular [Na+] ([Na+]o) in vitro. We previously reported that Nax was preferentially expressed in the glial cells of sensory circumventricular organs including the subfornical organ, and was involved in [Na+] sensing for the control of salt-intake behavior. Although Nax was also suggested to be expressed in the neurons of some brain regions including the amygdala and cerebral cortex, the channel properties of Nax have not yet been adequately characterized in neurons. We herein verified that Nax was expressed in neurons in the lateral amygdala of mice using an antibody that was newly generated against mouse Nax. To investigate the channel properties of Nax expressed in neurons, we established an inducible cell line of Nax using the mouse neuroblastoma cell line, Neuro-2a, which is endogenously devoid of the expression of Nax. Functional analyses of this cell line revealed that the [Na+]-sensitivity of Nax in neuronal cells was similar to that expressed in glial cells. The cation selectivity sequence of the Nax channel in cations was revealed to be Na+ ≈ Li+ > Rb+ > Cs+ for the first time. Furthermore, we demonstrated that Nax bound to postsynaptic density protein 95 (PSD95) through its PSD95/Disc-large/ZO-1 (PDZ)-binding motif at the C-terminus in neurons. The interaction between Nax and PSD95 may be involved in promoting the surface expression of Nax channels because the depletion of endogenous PSD95 resulted in a decrease in Nax at the plasma membrane. These results indicated, for the first time, that Nax functions as a [Na+]-sensitive Na channel in neurons as well as in glial cells.  相似文献   

12.
吴晓英 《生命的化学》2002,22(6):524-526
长的瞬时受体电位(longTRP)阳离子通道家族成员的LTRPC2和LTRPC7,作为离子通道,又同时具有蛋白激酶活性。  相似文献   

13.
14.
15.
介绍了离子通道记录的记忆性及其反映这种记忆的齐次Markov模型和具有随机环境的Markov模型,并且上述模型较好的解决“Omission”问题,讨论了模型反映的离子通道记录的物理及生理机制,认为离子通道记录记忆性反映离子通道记忆性。  相似文献   

16.
17.
As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neurons with complementary response profiles; one neuron detects female pheromones that stimulate male courtship, the other detects male pheromones that inhibit male-male courtship. In contrast to ppk23, ppk25, is only expressed in a single gustatory neuron per taste hair, and males with impaired ppk25 function court females at reduced rates but do not display abnormal courtship of other males. These findings raised the possibility that ppk25 expression defines a subset of pheromone-sensing neurons. Here we show that ppk25 is expressed and functions in neurons that detect female-specific pheromones and mediates their stimulatory effect on male courtship. Furthermore, the role of ppk25 and ppk25-expressing neurons is not restricted to responses to female-specific pheromones. ppk25 is also required in the same subset of neurons for stimulation of male courtship by young males, males of the Tai2 strain, and by synthetic 7-pentacosene (7-P), a hydrocarbon normally found at low levels in both males and females. Finally, we unexpectedly find that, in females, ppk25 and ppk25-expressing cells regulate receptivity to mating. In the absence of the third antennal segment, which has both olfactory and auditory functions, mutations in ppk25 or silencing of ppk25-expressing neurons block female receptivity to males. Together these results indicate that ppk25 identifies a functionally specialized subset of pheromone-sensing neurons. While ppk25 neurons are required for the responses to multiple pheromones, in both males and females these neurons are specifically involved in stimulating courtship and mating.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号