首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
野葛地下器官的解剖学研究   总被引:3,自引:0,他引:3  
野葛(Puerari9a lobata(willd.)Ohwi.)的地下器官包括初生根、块根、不定根和根状茎4部分。初生根为四原型,内皮层明显,可见到凯氏带。块根的次生木质部发达,民管周转存在额外形成层。成熟块根中积累丰富的淀粉。不定根为三原型,具次生结构。根状茎作为营养繁殖器官,产生不定根,其中不定根可发展成蓼根。无论初生根、收缩不定根或根状茎的细胞中均示发现淀粉积累,这可能与贮藏器官块根的发达  相似文献   

2.
Deep root development, which is important for the drought resistance in rice (Oryza sativa L.), is a complex trait combining various root morphologies. The objective of this study was to elucidate genotypic variation in deep root development in relation to morphological indicators such as vertical root distribution and root growth angle. Two experiments were conducted: one on upland fields, and one in pots and fields. In experiment 1, the root systems of six rice cultivars on upland fields were physio-morphologically analyzed under different water regimes (irrigated and intermittent drought conditions during panicle development). In experiment 2, cultivar differences in root growth angles were evaluated with 12 cultivars using the basket method under irrigated conditions. No cultivar × environment interactions were found for total root length or deep root length between irrigated and drought conditions in experiment 1. This suggests that constitutive root growth, which is genetically determined, is important for deep root development under intermittent drought conditions during reproductive stage. Among root traits, the deep root ratio (i.e., deep root weight divided by total root weight) was most closely related to deep root length under both water regimes. This suggested that vertical root distribution constitutively affects deep root length. Significant genotypic variation existed in the nodal root diameter and root growth angle of upland rice in experiment 2. It was considered that genotypes with thick roots allocated more assimilates to deep roots through root growth angles higher to the horizontal plane on upland fields. This is the first report on genotypic variation in the root growth angle of rice on upland fields. It should prove useful for rough estimations of genotypic variation in the vertical root distribution of upland rice because root growth angle is rapidly and easily measured.  相似文献   

3.
A. J. Diggle 《Plant and Soil》1988,105(2):169-178
A model is described which simulates the growth of fibrous root systems. The root growth is specified in terms of growing time, numbers of axes, initiation times of axes, growth rates and branching characteristics of the roots, and characteristics governing the direction of root growth. The model generates a representation of the root system in which the locations of all branches and root tips are recorded in three-dimensional coordinates, and updates this representation in discrete time steps until the specified growing time is reached. Data are presented from a simulation of wheat root growth by the model. The simulated root system is represented pictorially and also graphically in the form of root length and root tip number profiles which are stratified by branching order class. The pictorial representations produced by the model are much more realistic than any which have been produced by past root growth models, and the graphical representations show trends in root length and root tip numbers which are the same as those commonly observed in real roots.  相似文献   

4.
In a fractal branching pattern the same rules govern branching at each subsequent level. The initial size (diameter) and the essential branching rules thus contain the information required to construct the whole pattern. If root branching patterns have fractal characteristics, measurement of the proximal root diameter at the stem base and the branching rules as observed anywhere in the root system, would be enough to predict total root length, root diameter distribution and root length per unit dry weight (specific root length). A ‘pipe stem’ model is used to derive algebraic relations between total root size and proximal root diameter for two classes of branching patterns, determinate and proportionate. To predict total root length from the proximal root diameter, at least information is needed on the minimum root diameter, the average length of internal and external links (segments) and the proportionality factor between total cross sectional areas before and after branching. For the length of the longest root or the specific root length further information on the branching rules is needed, as it is highest for determinate and proportionate branching rules, respectively.  相似文献   

5.
海拔变化是多环境因子的梯度效应,细根作为植物吸收水分与养分的重要器官,其性状特征在指示植物的生长和分布等方面意义重大.该研究以弓杠岭2500~3300 m海拔地的云杉(Picea asperata)细根为研究对象,采用根序分级法对云杉1~5级根序的生物量及细根形态(平均直径、比根长、根长密度、比表面积)进行测定,以明确...  相似文献   

6.
The soil bacterium Rhizobium infects its leguminous host plants in temperate regions of the world mostly by way of the growing root hairs. Root hair curling is a prerequisite for root hair infection, although sidelong root hair infections occasionally have been observed. The processes underlying Rhizobium -induced root hair curling are unknown.
Computer simulation of root hair growth indicates that one-sided tip growth inhibition by Rhizobium can result in root hair curling when three conditions are simultaneously fulfilled: 1) rhizobial growth inhibition is strong enough to prevent removal out of the tip growth range: 2) root hair surface growth between the attached Rhizobium and the root hair top is inhibited; 3) rhizobial growth inhibition is limited to one side of the root hair.
The results predict that root hair curling by stimulation of tip growth is improbable. This study accentuates the need for information about the growth processes contributing to tip growth in leguminous root hairs.  相似文献   

7.
In Arabidopsis thaliana, lateral roots are formed from root pericycle cells adjacent to the xylem poles. Lateral root development is regulated antagonistically by the plant hormones auxin and cytokinin. While a great deal is known about how auxin promotes lateral root development, the mechanism of cytokinin repression is still unclear. Elevating cytokinin levels was observed to disrupt lateral root initiation and the regular pattern of divisions that characterizes lateral root development in Arabidopsis. To identify the stage of lateral root development that is sensitive to cytokinins, we targeted the expression of the Agrobacterium tumefaciens cytokinin biosynthesis enzyme isopentenyltransferase to either xylem-pole pericycle cells or young lateral root primordia using GAL4-GFP enhancer trap lines. Transactivation experiments revealed that xylem-pole pericycle cells are sensitive to cytokinins, whereas young lateral root primordia are not. This effect is physiologically significant because transactivation of the Arabidopsis cytokinin degrading enzyme cytokinin oxidase 1 in lateral root founder cells results in increased lateral root formation. We observed that cytokinins perturb the expression of PIN genes in lateral root founder cells and prevent the formation of an auxin gradient that is required to pattern lateral root primordia.  相似文献   

8.
冬小麦根系各种参数垂直分布实验研究   总被引:17,自引:0,他引:17  
本文根据田间实测资料研究了冬小麦根系各种参数(长度、重量、活性表面和根径)的垂直分布。结果表明,在所观测地区的土壤条件下,冬小麦根系的长度、重量、表面积和体积随深度呈指数分布,而累积根系的长度、重量和表面积随深度呈双曲线型分布。根据作者的观测资料和国内外其它观测资料分析研究表明,对于不同土壤,根区各层土壤中累计根重及根长的百分比随相对深度的变化都符合下列双曲线函数形式:这一研究结果可为根系生态研究和作物对水分吸收的模拟工作提供参考。  相似文献   

9.
The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture.  相似文献   

10.
J L Johnson 《Life sciences》1977,20(10):1637-1644
Two primary reasons which are emerging to suggest that glutamate is not a dorsal root transmitter are: 1) that free glutamate levels in the dorsal root vs. the ventral root are not sufficiently different to warrant a transmitter function in the dorsal root, and 2) the spinal cord glutamate levels do not significantly change (per g tissue) after dorsal root input section. Recent analyses suggest, however, that there is a highly significant depression of glutamate in the dorsal root when related to total free amino acid concentration changes after root injury. This is not seen in the peripheral nerve. Thus the dorsal vs. ventral root free glutamate concentration difference is highly significant metabolically. The failure to see a decrease in spinal cord gray glutamate levels after dorsal root section would appear to be explained by the fact that the spinal cord satellite cells and neurons have a higher free glutamate concentration than the entering dorsal roots along with a considerable perikaryal free amino acid pool for protein synthesis. This will mask any changes due to dorsal root section.Comparisons of excess free glutamate and substance P (the two leading dorsal root transmitter candidates) in the dorsal root compared to the ventral root have shown that there is a much larger excess of free glutamate in the dorsal root. This is true, even when considering the excitatory potency differences of these two substances. Thus, a very large free glutamate excess in the dorsal root is present with a relatively small concentration difference compared to the ventral root (where a transmitter role is not entertained). This fact could be of considerable metabolic significance in the regulation of transmitter levels of glutamate. The data available, therefore, are supportive of a possible glutamate transmitter role in a population of dorsal root fibers.  相似文献   

11.
Plasmodesmata linking the root cap and root in primary rootsZea mays are restricted to approx. 400 protodermal cells borderingapprox. 110000 µm2 of the calyptrogen of the root cap.This area is less than 10% of the cross-sectional area of theroot-tip at the cap junction. Therefore, gravitropic effectorsmoving from the root cap to the root can move symplasticallyonly through a relatively small area in the centre of the root.Decapped roots are non-responsive to gravity. However, decappedroots whose caps are replaced immediately after decapping arestrongly graviresponsive. Thus, gravicurvature occurs only whenthe root cap contacts the root, and symplastic continuity betweenthe cap and root is not required for gravicurvature. Completelyremoving mucilage from the root tip renders the root non-responsiveto gravity. Taken together, these data suggest that gravitropiceffectors move apoplastically through mucilage from the capto the root. Calyptrogen, open meristem, protoderm, root cap, root gravitropism, Zea mays  相似文献   

12.
Summary The root systems of Scots pine in a plantation were studied by three methods; soil coring, soil monoliths, and a root trench with observation windows were used to estimate root length, root diameters and the initiatio of new root tips. The vertical and horizontal distribution of roots is described and root distribution has been related to distance from the tree and soil heterogeneity. It was found that the initiation of new root tips was not readily relatable to the soil environment and the usefulness of the root window technique for observing new root tips is questioned.  相似文献   

13.
Summary Observation of soil grown roots of rye-grass shows that an approximately cylindrical volume of soil, the root hair cylinder, is densely occupied by root hairs. Estimates are given of the concentration of labile and solution potassium within the root hair cylinder during experiments measuring potassium uptake from two soils by single roots. Calculations, using a diffusion model, suggest that labile potassium concentrations may be reduced to between 99.3 and 53 per cent of the initial, depending on the diffusion characteristics of the soil and nutrient demand by the root. Of the total potassium absorbed by a root in 4 days, the proportion which is supplied from within the root hair cylinder is small (0.8 to 6.3 per cent) indicating that diffusion to the root from the soil outside the root hair cylinder is of paramount importance. When root demand is high, diffusion appears to limit uptake to between 71 and 59 per cent of that which roots of comparable physiology would be expected to absorb from stirred solution of the same concentration. Nevertheless, the presence of root hairs is calculated to have enhanced uptake by up to 77 per cent compared with roots without hairs because they virtually increase the root diameter. Diffusion does not appear to be a limiting factor when root demand is low and hairs can then add little to the efficiency of the root system in potassium absorption.  相似文献   

14.
Thaler  Philippe  Pagès  Loïc 《Plant and Soil》1998,201(2):307-320
A model has been designed to simulate rubber seedling root development as related to assimilate availability. Each root of the system is defined both as an element of a network of axes, characterized by its order, position and connections and as an individual sink competing for assimilates. At each time step, the growth of each root is calculated as a function of its own growth potential and of assimilate availability calculated within the whole plant. The potential elongation rate of a root is estimated by its apical diameter, which reflects the size of the meristem. When a root is initiated, the apical diameter depends on root type, but it varies thereafter according to assimilate availability. Thus, the latter controls both current and potential elongation. The model was able to simulate periodicity in root development as related to shoot growth and to reproduce differences in sensitivity to assimilate availability related to root type. It thereby validated the hypothesis that root growth but also root system architecture depend on assimilate allocation and that apical diameter is a good indicator of root growth potential. Provided that specific calibration is done, this model may be used for other species.  相似文献   

15.
Root respiration is a critical physiological trait involved in root resource acquisition strategies, yet it is less represented in root trait syndrome. Here we compiled a large dataset of root respiration associated with root chemical and morphological traits from 245 plant species. Our results demonstrated that root respiration correlated positively with root nitrogen concentration (RNC) and negatively with root tissue density (RTD) across and within woody and non‐woody species. However, the relationships between root respiration and specific root length (SRL) and root diameter (RD) were weak or even insignificant. Such root respiration–traits relationships were not completely in line with predictions by the root economics spectrum (RES). Furthermore, the principal component analysis showed that root trait syndrome was multidimensional. Root respiration was associated more strongly with the RNC‐RTD axis (the classical RES) than with the orthogonal SRL‐RD axis for woody species, but not for non‐woody species. Collectively, the linkages of root physiological, chemical, and morphological traits provide a better understanding of root trait covariation and root resource acquisition strategies.  相似文献   

16.
侧根的发生及其激素调控   总被引:17,自引:1,他引:16  
本文概述了侧根发生及其植物激素调控的研究进展。侧根的发生起源于特定的中柱鞘细胞,其发生过程可简单地分为侧根发生的起始、侧根原基的形成、侧根分生组织的形成和活化等几个关键时期。参与侧根发生调控的植物激素主要是生长素,它影响到侧根发生过程的各个时期。茉莉酸对侧根的发生也有一定的调控作用。  相似文献   

17.
In-situ root extent measurements by electrical capacitance methods   总被引:8,自引:0,他引:8  
F. N. Dalton 《Plant and Soil》1995,173(1):157-165
A conceptual model is presented that provides a rational basis for using plant root capacitance as an in-situ measurement for assessing plant root development. This method is based on measuring the electricla capacitance of an equivalent parallel resistance-capacitance circuit formed by the interface between soil-water and the plant root surface. Nutrient solution studies using tomato (Lycopersicon esculentum Mill.) showed a good correlation between plant root capacitance and root mass. Stage of development studies showed plant root capacitance measurements capable of detecting root development rate and suggested the method to be sensitive to root function. Soil water content was shown to have a significant effect on plant root capacitance measurement. The possibility of using this technique to assess relative root function is discussed. Positioning of the plant shoot electrode was shown to also have a significant effect on measurement of plant root capacitance, demonstrating the need for using consistent measurement techniques. The electrical capacitance method shows considerable promise. More research is needed before it can be used routinely.  相似文献   

18.
19.
To observe root system development, soybean plants (Glycine max) were grown in root boxes that were set horizontally to reduce the effect of gravity. Along with the root system development, the two-dimensional distribution of soil water content in the root boxes was measured continuously by the time domain reflectometry (TDR) method. Root system development and its morphological architecture were strongly affected by the positions of the water supply. It is suggested that root hydrotropism plays the dominant role in root system development. In addition to root hydrotropism, the importance of root compensatory growth is suggested. A combined model of root system development and soil water flow considering root hydrotropism and compensatory growth was used to simulate root system development and soil water flow. The morphological architecture of root systems and the distribution of soil water content obtained in the experiment were successfully explained by the model simulation. These results confirmed that root hydrotropism and compensatory growth are dominant factors in root system development under a reduced effect of gravity. The validity of the model was confirmed, and its applications for various purposes were suggested.  相似文献   

20.
林木细根寿命及其影响因子研究进展   总被引:21,自引:6,他引:21       下载免费PDF全文
 细根周转要消耗大量的C,它影响森林生态系统C分配格局与过程和养分循环,对生态系统生产力具有重要意义。细根的周转取决于细根的寿命,细根寿命越短,周转越快,根系对C的消耗也越多。大量研究表明,细根的寿命与地上部分C向根系供应的多少有密切关系,同时也与细根直径大小、土壤中N和水分的有效性、土壤温度以及根际周围的土壤动物和微生物的活动有关。本文综述了国外近年来在该领域里的研究进展,特别是对控制细根寿命的机理和主要影响因子进行了评述,目的是引起国内研究者的关注,促进我国根系生态学的研究与发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号