首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dysfunction in various parts of immune defence, such as immune response, immune complex clearance, and inflammation, has an impact on pathogenesis in systemic lupus erythematosus (SLE). We hypothesised that combinations of common variants of genes involved in these immune functions are associated with susceptibility to SLE. The following variants were analysed: HLA DR3, HLA DQ2, C4AQ0, Fcγ receptor IIa (FcγRIIa) genotype R/R, Fcγ receptor IIIa (FcRγIIIa) genotype F/F, mannan-binding lectin (MBL) genotype conferring a low serum concentration of MBL (MBL-low), and interleukin-1 receptor antagonist (IL-1Ra) genotype 2/2. Polymorphisms were analysed in 143 Caucasian patients with SLE and 200 healthy controls. HLA DR3 in SLE patients was in 90% part of the haplotype HLA DR3-DQ2-C4AQ0, which was strongly associated with SLE (odds ratio [OR] 2.8, 95% CI 1.7–4.5). Analysis of combinations of gene variants revealed that the strong association with SLE for HLA DR3-DQ2-C4AQ0 remained after combination with FcγRIIa R/R, FcγRIIIa F/F, and MBL-low (OR>2). Furthermore, the combination of the FcγRIIa R/R and IL-1Ra 2/2 genotypes yielded a strong correlation with SLE (OR 11.8, 95% CI 1.5–95.4). This study demonstrates that certain combinations of gene variants may increase susceptibility to SLE, suggesting this approach for future studies. It also confirms earlier findings regarding the HLA DR3-DQ2-C4AQ0 haplotype.  相似文献   

2.
Cardiac vegetations result from bacterium-platelet adherence, activation and aggregation, and are associated with increased morbidity and mortality in infective endocarditis. The GPIIb/IIIa and FcγRIIa platelet receptors play a central role in platelet adhesion, activation and aggregation induced by endocarditis pathogens such as Staphylococcus aureus, but the influence of known polymorphisms of these receptors on the pathogenesis of infective endocarditis is unknown. We determined the GPIIIa platelet antigen Pl(A1/A2) and FcγRIIa H131R genotype of healthy volunteers (n?=?160) and patients with infective endocarditis (n?=?40), and investigated the influence of these polymorphisms on clinical outcome in infective endocarditis and S. aureus-platelet interactions in vitro. Platelet receptor genotype did not correlate with development of infective endocarditis, vegetation characteristics on echocardiogram or the composite clinical end-point of embolism, heart failure, need for surgery or mortality (P?>?0.05 for all), even though patients with the GPIIIa Pl(A1/A1) genotype had increased in vivo platelet activation (P?=?0.001). Furthermore, neither GPIIIa Pl(A1/A2) nor FcγRIIa H131R genotype influenced S. aureus-induced platelet adhesion, activation or aggregation in vitro (P?>?0.05). Taken together, our data suggest that the GPIIIa and FcγRIIa platelet receptor polymorphisms do not influence S. aureus-platelet interactions in vitro or the clinical course of infective endocarditis.  相似文献   

3.
The interaction of Abs with their specific FcRs is of primary importance in host immune effector systems involved in infection and inflammation, and are the target for immune evasion by pathogens. FcγRIIa is a unique and the most widespread activating FcR in humans that through avid binding of immune complexes potently triggers inflammation. Polymorphisms of FcγRIIa (high responder/low responder [HR/LR]) are linked to susceptibility to infections, autoimmune diseases, and the efficacy of therapeutic Abs. In this article, we define the three-dimensional structure of the complex between the HR (arginine, R134) allele of FcγRIIa (FcγRIIa-HR) and the Fc region of a humanized IgG1 Ab, hu3S193. The structure suggests how the HR/LR polymorphism may influence FcγRIIa interactions with different IgG subclasses and glycoforms. In addition, mutagenesis defined the basis of the epitopes detected by FcR blocking mAbs specific for FcγRIIa (IV.3), FcγRIIb (X63-21), and a pan FcγRII Ab (8.7). The epitopes detected by these Abs are distinct, but all overlap with residues defined by crystallography to contact IgG. Finally, crystal structures of LR (histidine, H134) allele of FcγRIIa and FcγRIIa-HR reveal two distinct receptor dimers that may represent quaternary states on the cell surface. A model is presented whereby a dimer of FcγRIIa-HR binds Ag-Ab complexes in an arrangement that possibly occurs on the cell membrane as part of a larger signaling assembly.  相似文献   

4.
Human Fc receptors (FcγR) are membrane glycoproteins that are expressed on all immunologically active cells and have a well-defined role in regulating innate and adaptive immune responses by binding to the immunoglobulin G (IgG) antibody. Among the several classes of Fc receptors, FcγRIIa is the most widely expressed, and it serves as an important reagent in antibody engineering. Here, we report on high cell density cultivations (HCDC) of Escherichia coli for preparative scale production of FcγRIIa in a 6.6L bioreactor. Briefly, a pH-stat feeding strategy was employed, and two different cell densities (OD(600) of 46 and 100) were examined for the induction of FcγRIIa gene expression. When cells were induced at a high cell density (OD(600) of 100), the cell density increased to an OD(600) of 234 within 9h after induction, and a 2-fold higher production yield was obtained compared with that of induction at low cell density (OD(600) of 46). After simple purification steps including denaturation and refolding, 87.7 mg of soluble FcγRIIa that was more than 95% pure was obtained from a 20-mL culture with high recovery yield (≈54%). The biological activity of purified FcγRIIa was also confirmed by evaluating its interaction with all subclasses of IgG antibodies using an ELISA bioassay.  相似文献   

5.
Identification of the genetic basis of systemic lupus erythematosus (SLE) may contribute to the discovery of effective drugs before renal involvement. Our aim of this study was to estimate the association between Fc gamma receptor (FcγR) polymorphisms and SLE and renal involvement in Egyptian patients. FcγRIIB and FcγRIIA R131H gene polymorphisms were genotyped in 180 Egyptian adults. Genotyping for FcγRIIA R131H was performed using allele-specific PCR and FcγRIIB-Ile232 Thr polymorphism was genotyped using polymerase chain reaction restriction fragment length polymorphism (PCR–RFLP). The study showed that the homozygous genotype (Thr/Thr) of FcγRIIB significantly increased in all SLE patients (90 patients) and in SLE patients complicated with nephritis (61 patients). The Thr allele was significantly associated with an increased risk of the disease in all the patients and in patients complicated with nephritis. Our study demonstrated an association of FcγRIIB polymorphisms with SLE and lupus nephritis and a lack of association of FcγRIIA polymorphisms with SLE in the Egyptian patients.  相似文献   

6.
A high activatory/inhibitory FcγR binding ratio is critical for the activity of mAb such as rituximab and alemtuzumab that attack cancer cells directly and eliminate them by recruiting immune effectors. Optimal FcγR binding profiles of other anti-cancer mAb, such as immunostimulatory mAb that stimulate or block immune receptors, are less clear. In this study, we analyzed the importance of isotype and FcγR interactions in controlling the agonistic activity of the anti-mouse CD40 mAb 3/23. Mouse IgG1 (m1) and IgG2a (m2a) variants of the parental 3/23 (rat IgG2a) were engineered and used to promote humoral and cellular responses against OVA. The mouse IgG1 3/23 was highly agonistic and outperformed the parental Ab when promoting Ab (10-100-fold) and T cell (OTI and OTII) responses (2- to >10-fold). In contrast, m2a was almost completely inactive. Studies in FcγR knockout mice demonstrated a critical role for the inhibitory FcγRIIB in 3/23 activity, whereas activatory FcγR (FcγRI, -III, and -IV) was dispensable. In vitro experiments established that the stimulatory effect of FcγRIIB was mediated through Ab cross-linking delivered in trans between neighboring cells and did not require intracellular signaling. Intriguingly, activatory FcγR provided effective cross-linking of 3/23 m2a in vitro, suggesting the critical role of FcγRIIB in vivo reflects its cellular distribution and bioavailability as much as its affinity for a particular Ab isotype. In conclusion, we demonstrate an essential cross-linking role for the inhibitory FcγRIIB in anti-CD40 immunostimulatory activity and suggest that isotype will be an important issue when optimizing reagents for clinical use.  相似文献   

7.
Cover Image     
The immunoglobulin G (IgG) molecule has a long circulating serum half-life (~3 weeks) through pH- dependent FcRn binding-mediated recycling. To hijack the intracellular trafficking and recycling mechanism of IgG as a way to extend serum persistence of non-antibody therapeutic proteins, we have evolved the ectodomain of a low-affinity human FcγRIIa for enhanced binding to the lower hinge and upper CH2 region of IgG, which is very far from the FcRn binding site (CH2–CH3 interface). High-throughput library screening enabled isolation of an FcγRIIa variant (2A45.1) with 32-fold increased binding affinity to human IgG1 Fc (equilibrium dissociation constant: 9.04 × 10−7 M for wild type FcγRIIa and 2.82 × 10−8 M for 2A45.1) and significantly improved affinity to mouse serum IgG compared to wild type human FcγRIIa. The in vivo pharmacokinetic profile of PD-L1 fused with engineered FcγRIIa (PD-L1–2A45.1) was compared with that of PD-L1 fused with wild type FcγRIIa (PD-L1–wild type FcγRIIa) and human PD-L1 in mice. PD-L1–2A45.1 showed 11.7- and 9.7-fold prolonged circulating half-life (t1/2) compared to PD-L1 when administered intravenously and intraperitoneally, respectively. In addition, the AUCinf of PD-L1–2A45.1 was two-fold higher compared to that of PD-L1–wild type FcγRIIa. These results demonstrate that engineered FcγRIIa fusion offers a novel and successful strategy for prolonging serum half-life of therapeutic proteins.  相似文献   

8.
Fcγ receptor IIa (FcγRIIa) plays an important role in antibody-dependent cellular cytotoxicity and inflammation. Changes in FcγRIIa expression levels or activity caused by genetic polymorphisms in FCGR2A, the gene encoding FcγRIIa, may lead to differences in disease progression as well as efficacy of antibody therapeutics between individuals. In this study, we sequenced the 5′-flanking region along with all exons and their flanking regions of FCGR2A from 111 Japanese subjects. Forty-eight genetic variations were found including 12 novel ones. Beside the well-known functional 497A?>?G (H166R) polymorphism, we detected 818T?>?C (L273P) at 0.005 frequency. Since the functional significance of this polymorphism has not been revealed, we next assessed the functions of the L273P substitution by expressing wild-type and the variant proteins in human Jurkat cells. The L273P variant protein showed similar cell surface expression and IgG-binding properties as the wild-type, but it exhibited a stronger signal transduction activity based on the approximately 2-fold enhancement of tyrosine phosphorylation of FcγRIIa itself. The current results suggest that L273P could have functional significance in the antibody-dependent clinical responses through FcγRIIa.  相似文献   

9.
Passive transfer of neutralizing antibodies is effective in protecting rhesus macaques against simian/human immunodeficiency virus (SHIV) challenge. In addition to neutralization, effector functions of the crystallizable fragment (Fc) of antibodies are involved in antibody-mediated protection against a number of viruses. We recently showed that interaction between the Fc fragment of the broadly neutralizing antibody IgG1 b12 and cellular Fcγ receptors (FcγRs) plays an important role in protection against SHIV infection in rhesus macaques. The specific nature of this Fc-dependent protection is largely unknown. To investigate, we generated a panel of 11 IgG1 b12 antibody variants with selectively diminished or enhanced affinity for the two main activating FcγRs, FcγRIIa and FcγRIIIa. All 11 antibody variants bind gp120 and neutralize virus as effectively as does wild-type b12. Binding studies using monomeric (enzyme-linked immunosorbent assay [ELISA] and surface plasmon resonance [SPR]) and cellularly expressed Fcγ receptors show decreased (up to 5-fold) and increased (up to 90-fold) binding to FcγRIIa and FcγRIIIa with this newly generated panel of antibodies. In addition, there was generally a good correlation between b12 variant affinity for Fcγ receptor and variant function in antibody-dependent cell-mediated virus inhibition (ADCVI), phagocytosis, NK cell activation assays, and antibody-dependent cellular cytotoxicity (ADCC) assays. In future studies, these b12 variants will enable the investigation of the protective role of individual FcγRs in HIV infection.  相似文献   

10.
Mapping single nucleotide polymorphisms (SNPs) in genes potentially involved in immune responses may help understand the pathophysiology of infectious diseases in specific geographical regions. In this context, we have aimed to analyze the frequency of immunogenetic markers, focusing on genes CD209 (SNP -336A/G), FCγRIIa (SNP -131H/R), TNF-α (SNP -308A/G) and VDR (SNP Taq I) in two populations of the Espirito Santo State (ES), Brazil: general and Pomeranian populations. Peripheral blood genomic DNA was extracted from one hundred healthy individuals of the general population and from 59 Pomeranians. Polymorphic variant identification was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP). SNP genotype frequencies were in Hardy–Weinberg Equilibrium. There was no statistically significant difference in allelic and genotypic distributions between the two populations studied. Statistically significant differences were observed for SNP genotype distribution in genes CD209, TNF-α and VDR when comparing the ES populations with other Brazilian populations. This is the first report of CD209, FcγRIIa, TNF-α and VDR allelic frequencies for the general and Pomeranian populations of ES.  相似文献   

11.
Fc gamma Rs mediate immune complex-induced tissue injury. The hypothesis that Fc gamma RIIa and Fc gamma RIIIb control neutrophil responses by activating mitogen-activated protein kinases was examined. Homotypic and heterotypic cross-linking of Fc gamma RIIa and/or Fc gamma RIIIb resulted in a rapid, transient increase in ERK and p38 activity, with maximal stimulation between 1 and 3 min. Fc gamma RIIa and Fc gamma RIIIb stimulated distinct patterns of ERK and p38 activity, and heterotypic cross-linking failed to stimulate synergistic activation of either ERK or p38 activity. Both Fc gamma RIIa and Fc gamma RIIIb required activation of a nonreceptor tyrosine kinase and phosphatidylinositol 3-kinase for stimulation of ERK and p38. Inhibition of ERK activation with PD98059 enhanced H2O2 production stimulated by homotypic and heterotypic Fc gamma R cross-linking. Inhibition of p38 with SB203580 attenuated H2O2 production stimulated by Fc gamma RIIIb or heterotypic cross-linking, but had no effect on Fc gamma RIIa-stimulated H2O2 production. On the other hand, PD98059 inhibited actin polymerization stimulated by Fc gamma R cross-linking, while SB203580 had no effect. Inhibition of actin polymerization with cytochalasin D enhanced p38 activity stimulated by either Fc gamma RIIa or Fc gamma RIIIb, but cytochalasin D only enhanced H2O2 production stimulated by Fc gamma RIIIb. Our data indicate that Fc gamma RIIa and Fc gamma RIIIb independently activate ERK and p38. The two receptors demonstrate different efficacies for ERK and p38 activation, and they do not act cooperatively. ERK and p38 provide stimulatory and inhibitory signals for neutrophil responses to immune complexes. In addition, these data indicate that actin reorganization may play a role in mediating p38-dependent activation of respiratory burst upon stimulation of Fc gamma RIIIb in neutrophils.  相似文献   

12.
《ImmunoMethods》1994,4(1):41-47
Murine low-affinity Fc receptors for IgG (FcγRIIbl, FcγRIIb2, and FcγRIII) bind the same IgG subclasses and are not distinguished by available anti-FcγRII/III mAbs (2.4G2). They trigger various biological activities, among which are the internalization of soluble and particulate immune complexes, cell activation, and its regulation. To determine the biological properties of the three murine receptors, each was expressed by stable transfection of corresponding cDNAs in two model cells: the murine lymphoma B cell IIA1.6 and the rat basophilic leukemia cell RBL-2H3. Biological activities of recombinant receptors were triggered with soluble immune complexes or 2.4G2 IgG in IIA1.6 cells, which express no FcγR, and with 2.4G2 Fab or F(ab′)2, cross-linked with mouse anti-rat F(ab′)2 in RBL, which express rat FcγR. Conditions for studying cell activation and endocytosis in both cell models are described, as are conditions for studying phagocytosis in RBL cells and antigen presentation or regulation of cell activation in IIA1.6 cells. Internalization of immune complexes was triggered by FcγRIIb2 and FcγRIII, but not by FcγRIIb1. Intracytoplasmic sequences required for phagocytosis and endocytosis could be distinguished in FcγRIIb2, but not in FcγRIII. Cell activation was restricted to FcγRIII. FcγRIII-mediated endocytosis, phagocytosis, and cell activation involved the consensus tyrosine-containing activation motif found in the intracytoplasmic domain of the γ subunit. Regulation of cell activation was induced by both FcγRII isoforms and depended on the same sequence as endocytosis. As a consequence, a single motif can determine more than one biological response of the cell, and a given response may be triggered by several motifs, borne by different FcγR.  相似文献   

13.
The CH2-CH3 interface of the IgG Fc domain contains the binding sites for a number of Fc receptors including Staphylococcal protein A and the neonatal Fc receptor (FcRn). It has recently been proposed that the CH2-CH3 interface also contains the principal binding site for an isoform of the low affinity IgG Fc receptor II (Fc gamma RIIb). The Fc gamma RI and Fc gamma RII binding sites have previously been mapped to the lower hinge and the adjacent surface of the CH2 domain although contributions of the CH2-CH3 interface to binding have been suggested. This study addresses the question whether the CH2-CH3 interface plays a role in the interaction of IgG with Fc gamma RI and Fc gamma RIIa. We demonstrate that recombinant soluble murine Fc gamma RI and human Fc gamma RIIa did not compete with protein A and FcRn for binding to IgG, and that the CH2-CH3 interface therefore appears not to be involved in Fc gamma RI and Fc gamma RIIa binding. The importance of the lower hinge was confirmed by introducing mutations in the proposed binding site (LL234,235AA) which abrogated binding of recombinant soluble Fc gamma RIIa to human IgG1. We conclude that the lower hinge and the adjacent region of the CH2 domain of IgG Fc is critical for the interaction between Fc gamma RIIa and human IgG, whereas contributions of the CH2-CH3 interface appear to be insignificant.  相似文献   

14.
Engineering of antibodies for improved pharmacokinetics through enhanced binding to the neonatal Fc receptor (FcRn) has been demonstrated in transgenic mice, non-human primates and humans. Traditionally, such approaches have largely relied on random mutagenesis and display formats, which fail to address related critical attributes of the antibody, such as effector functions or biophysical stability. We have developed a structure- and network-based framework to interrogate the engagement of IgG with multiple Fc receptors (FcRn, C1q, TRIM21, FcγRI, FcγRIIa/b, FcγRIIIa) simultaneously. Using this framework, we identified features that govern Fc-FcRn interactions and identified multiple distinct pathways for enhancing FcRn binding in a pH-specific manner. Network analysis provided a novel lens to study the allosteric impact of half-life-enhancing Fc mutations on FcγR engagement, which occurs distal to the FcRn binding site. Applying these principles, we engineered a panel of unique Fc variants that enhance FcRn binding while maintaining robust biophysical properties and wild type-like binding to activating receptors. An antibody harboring representative Fc designs demonstrates a half-life improvement of > 9 fold in transgenic mice and > 3.5 fold in cynomolgus monkeys, and maintains robust effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity.  相似文献   

15.
Interactions between the Fc segment of IgG and FcγRs on a variety of cells are likely to play an important role in the anti-HIV activity of Abs. Because the nature of the glycan structure on the Fc domain is a critical determinant of Fc-FcγR binding, proper Fc glycosylation may contribute to Ab-mediated protection. We have generated five different glycoforms of the broadly HIV-1-neutralizing mAb 2G12 in wild-type and glycoengineered plants and Chinese hamster ovary cells. Plant-derived 2G12 exhibited highly homogeneous glycosylation profiles with a single dominant N-glycan species. Using flow cytometry with FcγR-expressing cell lines, all 2G12 glycoforms demonstrated similar binding to FcγRI, FcγRIIa, and FcγRIIb. In contrast, two glycoforms derived from glycoengineered plants that lack plant-specific xylose and core α1,3-fucose, and instead carry human-like glycosylation with great uniformity, showed significantly enhanced binding to FcγRIIIa compared with Chinese hamster ovary or wild-type plant-derived 2G12. Using surface plasmon resonance, we show that binding of 2G12 to FcγRIIIa is markedly affected by core fucose, irrespective of its plant-specific α1,3 or mammalian-type α1,6 linkage. Consistent with this finding, 2G12 glycoforms lacking core fucose (and xylose) mediated higher antiviral activity against HIV-1 or simian immunodeficiency virus as measured by Ab-dependent cell-mediated virus inhibition. This is, to our knowledge, the first demonstration that specific alterations of Fc glycosylation can improve antiviral activity. Such alterations may result in better immunotherapeutic reagents. Moreover, biasing vaccine-induced immune responses toward optimal Fc glycosylation patterns could result in improved vaccine efficacy.  相似文献   

16.
Receptors for the Fc region of IgG (Fc gamma R) mediate internalization of opsonized particles by human neutrophils (PMN) and mononuclear phagocytes. Cross-linking of Fc gamma R leads to activation of protein tyrosine kinases and phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) within Fc gamma R subunits, both obligatory early signals for phagocytosis. Human PMN constitutively express two structurally distinct Fc gamma R, Fc gamma RIIa and Fc gamma RIIIb, and can be induced to express Fc gamma RI by IFN-gamma. We have previously shown that stimulation of PMN through Fc gamma RIIIb results in enhanced Fc gamma RIIa-mediated phagocytic activity that is inhibited by catalase. In the present study, we have tested the hypothesis that reactive oxygen intermediates (ROI) have the capacity to regulate Fc gamma R responses and defined a mechanism for this effect. We show that H2O2 augmented phagocytosis mediated by Fc gamma RIIa and Fc gamma RI in PMN and amplified receptor-triggered tyrosine phosphorylation of Fc gamma R-associated ITAMs and signaling elements. Generation of endogenous oxidants in PMN by cross-linking Fc gamma RIIIb similarly enhanced phosphorylation of Fc gamma RIIa and Syk, a tyrosine kinase required for phagocytic function, in a catalase-sensitive manner. Our results provide a mechanism for priming phagocytes for enhanced responses to receptor-driven effects. ROI generated in an inflammatory milieu may stimulate quiescent cells to rapidly increase the magnitude of their effector function. Indeed, human monocytes incubated in the presence of stimulated PMN showed oxidant-induced increases in Fc gamma RIIa-mediated phagocytosis. Definition of the role of oxidants as amplifiers of Fc gamma R signaling identifies a target for therapeutic intervention in immune complex-mediated tissue injury.  相似文献   

17.
Fc engineering is a promising approach to enhance the antitumor efficacy of monoclonal antibodies (mAbs) through antibody-dependent cell-mediated cytotoxicity (ADCC). Glyco- and protein-Fc engineering have been employed to enhance FcγR binding and ADCC activity of mAbs; the drawbacks of previous approaches lie in their binding affinity to both FcγRIIIa allotypes, the ratio of activating FcγR binding to inhibitory FcγR binding (A/I ratio) or the melting temperature (TM) of the CH2 domain. To date, no engineered Fc variant has been reported that satisfies all these points. Herein, we present a novel Fc engineering approach that introduces different substitutions in each Fc domain asymmetrically, conferring optimal binding affinity to FcγR and specificity to the activating FcγR without impairing the stability. We successfully designed an asymmetric Fc variant with the highest binding affinity for both FcγRIIIa allotypes and the highest A/I ratio compared with previously reported symmetrically engineered Fc variants, and superior or at least comparable in vitro ADCC activity compared with afucosylated Fc variants. In addition, the asymmetric Fc engineering approach offered higher stability by minimizing the use of substitutions that reduce the TM of the CH2 domain compared with the symmetric approach. These results demonstrate that the asymmetric Fc engineering platform provides best-in-class effector function for therapeutic antibodies against tumor antigens.  相似文献   

18.
《MABS-AUSTIN》2013,5(2):409-421
Antibody-dependent cell-mediated cytotoxicity (ADCC) has been suggested as an essential mechanism for the in vivo activity of cetuximab, an epidermal growth factor receptor (EGFR)-targeting therapeutic antibody. Thus, enhancing the affinity of human IgG1 antibodies to natural killer (NK) cell-expressed FcγRIIIa by glyco- or protein-engineering of their Fc portion has been demonstrated to improve NK cell-mediated ADCC and to represent a promising strategy to improve antibody therapy. However, human polymorphonuclear (PMN) effector cells express the highly homologous FcγRIIIb isoform, which is described to be ineffective in triggering ADCC. Here, non-fucosylated or protein-engineered anti-EGFR antibodies with optimized FcγRIIIa affinities demonstrated the expected benefit in NK cell-mediated ADCC, but did not mediate ADCC by PMN, which could be restored by FcγRIIIb blockade. Furthermore, eosinophils and PMN from paroxysmal nocturnal hemoglobinuria patients that expressed no or low levels of FcγRIIIb mediated effective ADCC with FcγRIII-optimized anti-EGFR antibody. Additional experiments with double FcγRIIa/FcγRIII-optimized constructs demonstrated enhanced PMN-mediated ADCC compared with single FcγRIII-optimized antibody. In conclusion, our data demonstrate that FcγRIIIb engagement impairs PMN-mediated ADCC activity of FcγRIII-optimized anti-EGFR antibodies, while further optimization of FcγRIIa binding significantly restores PMN recruitment.  相似文献   

19.
《MABS-AUSTIN》2013,5(6):784-787
The FCGR3A-V158F and FCGR2A-H131R polymorphisms are associated with clinical responses to therapeutic mAbs and with immune thrombocytopenic purpura (ITP). The FCGR2C-ORF/STOP polymorphism, controlling FcγRIIC expression on natural killer cells and therefore FcγRIIC-mediated antibody dependent cell-mediated cytotoxicity, is also associated with ITP. Using a new pyrosequencing assay to determine this polymorphism in a control population, we observed the expected allele frequencies (ORF:12.6%) and percentages of individuals with a single copy (10.0%) or 3 copies (12.1%) of FCGR2C, or with at least one FCGR2C-ORF allele (20.1%). No association of FCGR2C copy number variations with the FCGR3A-V158F or FCGR2A-H131R genotype was detected. More importantly, our results demonstrate a strong and a weaker linkage disequilibrium associating the FCGR2C-ORF allele with the FCGR3A-158V and the FCGR2A-131H allele, respectively.  相似文献   

20.
The balance between activating and inhibitory signals from the different FcγRs for IgG ensures homeostasis of many inflammatory responses. FCGR2C is the product of an unequal crossover of the FCGR2A and FCGR2B genes encoding the activating FcγRIIa (CD32a) and inhibitory FcγRIIb (CD32b), respectively. A single nucleotide polymorphism (SNP) in exon 3 of FCGR2C results in either expression of the activating FcγRIIc (CD32c) (FCGR2C-open reading frame [ORF]) or its absence because of a stop codon (FCGR2C-Stop). Two additional variations in FcγRIIb/c expression on leukocytes have now been identified. In case of "nonclassical" FCGR2C-ORF alleles, FcγRIIc expression was unexpectedly absent, because of novel splice site mutations near exon 7 leading to another stop codon. In some individuals with FCGR2C-Stop alleles FcγRIIb was detected on NK cells, which normally are devoid of this protein. Individuals with these nonclassical FCGR2C-Stop alleles carried a deletion of FCGR2C-FCGR3B that extends into the promoter region of the adjacent FCGR2B gene and probably deletes a negative regulatory element in the FCGR2B promoter in NK cells. FcγRIIb expression on NK cells effectively inhibited killing mediated by FcγRIIIa (CD16a) in Ab-dependent cytotoxicity tests. Our findings demonstrate a more extensive and previously unnoticed variation in FcγR expression with relevance to immunity and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号