首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gut microbiota carry out key functions in health and participate in the pathogenesis of a growing number of diseases. The aim of this study was to develop a custom microarray that is able to identify hundreds of intestinal bacterial species. We used the Entrez nucleotide database to compile a data set of bacterial 16S rRNA gene sequences isolated from human intestinal and fecal samples. Identified sequences were clustered into separate phylospecies groups. Representative sequences from each phylospecies were used to develop a microbiota microarray based on the Affymetrix GeneChip platform. The designed microbiota array contains probes to 775 different bacterial phylospecies. In our validation experiments, the array correctly identified genomic DNA from all 15 bacterial species used. Microbiota array has a detection sensitivity of at least 1 pg of genomic DNA and can detect bacteria present at a 0.00025% level of overall sample. Using the developed microarray, fecal samples from two healthy children and two healthy adults were analyzed for bacterial presence. Between 227 and 232 species were detected in fecal samples from children, whereas 191 to 208 species were found in adult stools. The majority of identified phylospecies belonged to the classes Clostridia and Bacteroidetes. The microarray revealed putative differences between the gut microbiota of healthy children and adults: fecal samples from adults had more Clostridia and less Bacteroidetes and Proteobacteria than those from children. A number of other putative differences were found at the genus level.In the healthy adult, there are 1011 to 1014 bacteria colonizing the intestine. This outnumbers the total tissue cells in the body by at least an order of magnitude. The composition and activity of this complex microbial system (called microbiota or microflora) have a major influence on health and disease (9). Commensal microbiota contribute to the trophic functions of the gut (producing fermentation products and vitamins that can be used by intestinal epithelial cells), stimulate the immune function of the gastrointestinal tract, transform or excrete toxic substances, protect the host against invasion by pathogenic species, and modulate gut motility (28, 36). At the same time, recent research incriminates a dysfunctional cross-talk between the host and the microbiota in the pathogenesis of a growing number of disorders, such as irritable bowel syndrome, inflammatory bowel disease, allergic diseases, and gastrointestinal cancer (28).While the intestine in a newborn contains no microbes, immediately after birth the intestine of the infant is colonized by enterobacteria and enterococci. Gradual changes in microbiota composition occur during childhood, with a general reduction in the number of aerobes and facultative anaerobes and an increase in the populations of obligate anaerobic species (27). It is considered that by 2 years of age the microbiota resembles that of an adult, which is dominated in health and disease by species from only four phyla, Firmicutes (predominantly Clostridia; 50 to 70% total bacterial numbers), Bacteroidetes (10 to 30%), Proteobacteria (up to 10%), and Actinobacteria (up to 5%), with 90% believed to be obligate anaerobes (4, 10, 11, 22).Traditionally, microorganisms were detected in intestinal samples and feces by microscopic, biochemical, or physiological methods, or by culturing on selective nutrient media. However, since most intestinal microbiota species are obligate anaerobes, their isolation and culturing are difficult (21, 38, 42). In recent years, new methods based on the use of microarray technology have been utilized for the characterization of complex microbial communities (18, 32, 41, 43, 47). Microarrays represent an excellent choice for the high-throughput analysis of bacterial populations, because many different probes can be placed on one slide or synthesized on one chip, and samples thus can be tested for the presence of many different species simultaneously. Environmental and clinical samples can be interrogated directly, circumventing any need for culturing, and thus nonculturable species can be reliably detected.Several types of microarrays have been used to date to characterize the composition of microbial communities (47). Community genome arrays are constructed using whole genomic DNA (gDNA) isolated from pure culture strains (46). Functional gene arrays contain genes encoding key enzymes that are involved in various biochemical processes, and they are useful for monitoring physiological changes in microbial communities (14, 45). Phylogenetic oligonucleotide arrays contain probes derived from rRNA sequence information and are ideally suited for the analysis of microbial community composition structure and variance. Different types of phylogenetic arrays have been designed for these purposes (26, 30, 31).A number of projects performed in the last several years focused on sampling the diversity of human microbiota by the cloning and subsequent sequencing of the 16S rRNA genes isolated from gastrointestinal and fecal samples (5, 10, 13, 23, 38). In this project, we have designed, developed, and validated a custom microbiota microarray containing 16S rRNA genes probes to 775 different microbial phylospecies of human intestinal bacteria. We also have tested the applicability of this array to profiling the microbiota populations in fecal samples isolated from two adult and two child volunteers.  相似文献   

2.
We compared dideoxy sequencing of cloned chaperonin-60 universal target (cpn60 UT) amplicons to pyrosequencing of amplicons derived from vaginal microbial communities. In samples pooled from a number of individuals, the pyrosequencing method produced a data set that included virtually all of the sequences that were found within the clone library and revealed an additional level of taxonomic richness. However, the relative abundances of the sequences were different in the two datasets. These observations were expanded and confirmed by the analysis of paired clone library and pyrosequencing datasets from vaginal swabs taken from four individuals. Both for individuals with a normal vaginal microbiota and for those with bacterial vaginosis, the pyrosequencing method revealed a large number of low-abundance taxa that were missed by the clone library approach. In addition, we showed that the pyrosequencing method generates a reproducible profile of microbial community structure in replicate amplifications from the same community. We also compared the taxonomic composition of a vaginal microbial community determined by pyrosequencing of 16S rRNA amplicons to that obtained using cpn60 universal primers. We found that the profiles generated by the two molecular targets were highly similar, with slight differences in the proportional representation of the taxa detected. However, the number of operational taxonomic units was significantly higher in the cpn60 data set, suggesting that the protein-encoding gene provides improved species resolution over the 16S rRNA target. These observations demonstrate that pyrosequencing of cpn60 UT amplicons provides a robust, reliable method for deep sequencing of microbial communities.Scientific interest in human microbial communities is growing, and basic concepts about the “human microbiome” are evolving rapidly (3, 34). Molecular phylogenetic analysis of 16S rRNA-encoding DNA sequences has revealed a vast diversity of uncultured microbial symbionts that influence animal physiology in ways only beginning to be understood. In particular, microbial species inhabiting the human vagina are thought to play an important role in host health (10). A shift in the composition of the vaginal microbiota from “normal” (Lactobacillus dominated) to a state defined as bacterial vaginosis (BV; increased abundance of gram-negative organisms) is associated with a range of negative outcomes, including pelvic inflammatory disease, preterm births, and the acquisition of sexually transmitted diseases (21, 22, 37). This observation has led to an increased interest in determining the composition of the vaginal microbiota by culture-independent methods (8, 11, 17, 25, 30, 35, 36). However, established cloning and sequencing techniques remain time- and labor-intensive, severely limiting the reach of phylogenetic or functional surveys of microbial communities across body sites, individuals, geographic areas, and scales of time.The advent of next-generation ultra-high-throughput sequencing technologies, in particular, the GS FLX (454 Life Sciences, Branford, CT), has removed an important quantitative barrier in molecular analysis by increasing the number of reads from a gene or genome by orders of magnitude in a single run (20). Unfortunately, the short average length of pyrosequencing reads (∼200 bp compared to ∼700 bp using dideoxy sequencing) presents a new set of problems. The results of recent application of this technology to analysis of 16S rRNA gene sequences from microbes in vaginal samples have demonstrated that short reads are more likely to generate matches to multiple sequences in the rRNA sequence database and that taxonomic and phylogenetic resolution was limited due to strong similarities between 16S rRNA sequences from closely related species (32).An alternative molecular target for microbial identification and phylogenetic analysis is cpn60, a gene that encodes the 60-kDa chaperonin or heat shock protein (HSP60/GroEL) (13). The cpn60 gene is universal in eubacteria and eukaryotes and an extensive, curated reference database is available (13) (http://cpndb.cbr.nrc.ca). The cpn60 universal target (UT) offers key advantages, including short target length (549 to 567 bp), sufficient resolving power to distinguish closely related species and subspecies, and a relatively uniform distribution of variability across the entire length of the target (9, 12). The use of the cpn60 UT has been well established for phylogenetic analysis of complex samples (4, 14) and has recently been applied to vaginal microbial communities (11). In the present study, we examined the feasibility of pyrosequencing for determining the composition of the vaginal microbiota using the cpn60 UT. We compared the microbial community structure generated by pyrosequencing of cpn60 amplicons using the GS FLX with dideoxy sequencing based on clone libraries generated from the same samples. In addition, we evaluated the microbial community profiles generated by pyrosequencing of cpn60 UT amplicons and 16S rRNA amplicons from the same vaginal samples.  相似文献   

3.
Sugarcane bagasse is an important lignocellulosic by-product with potential for conversion to biofuels and chemicals in biorefinery. As a step towards an understanding of microbial diversity and the processes existing in bagasse collection sites, the microbial community in industrial bagasse feedstock piles was investigated. Molecular biodiversity analysis of 16S rDNA sequences revealed the presence of a complex bacterial community. A diverse group of mainly aerobic and facultative anaerobic bacteria was identified reflecting the aerobic and high temperature microenvironmental conditions under the pile surface. The major bacterial taxa present were identified as Firmicutes, Alpha- and Gammaproteobacteria, Acidobacteria, Bacteroidetes, and Actinobacteria. Analysis of the eukaryotic microbial assemblage based on an internal transcribed spacer revealed the predominance of diverse cellulolytic and hemicellulolytic ascomycota. A microbial interaction model is proposed, focusing on lignocellulose degradation and methane metabolism. The insights into the microbial community in this study provide a basis for efficient utilization of bagasse in lignocellulosic biomass-based industries.  相似文献   

4.
Recent analyses of human-associated bacterial diversity have categorized individuals into ‘enterotypes’ or clusters based on the abundances of key bacterial genera in the gut microbiota. There is a lack of consensus, however, on the analytical basis for enterotypes and on the interpretation of these results. We tested how the following factors influenced the detection of enterotypes: clustering methodology, distance metrics, OTU-picking approaches, sequencing depth, data type (whole genome shotgun (WGS) vs.16S rRNA gene sequence data), and 16S rRNA region. We included 16S rRNA gene sequences from the Human Microbiome Project (HMP) and from 16 additional studies and WGS sequences from the HMP and MetaHIT. In most body sites, we observed smooth abundance gradients of key genera without discrete clustering of samples. Some body habitats displayed bimodal (e.g., gut) or multimodal (e.g., vagina) distributions of sample abundances, but not all clustering methods and workflows accurately highlight such clusters. Because identifying enterotypes in datasets depends not only on the structure of the data but is also sensitive to the methods applied to identifying clustering strength, we recommend that multiple approaches be used and compared when testing for enterotypes.  相似文献   

5.
生物冶金技术因具有流程短、成本低、环境友好, 且特别适合处理低品位、复杂、难处理的矿产资源等优点,已经成为研究热点。然而由于缺少高效菌种以及不能对浸矿体系微生物进行定量分析, 难以对浸矿工艺参数和微生物种群进行优化调控, 从而导致硫化矿生物浸出速度慢、浸出率低。随着基因芯片、菌种保存技术的发展, 这些难题在逐一被解决。对近年来针对硫化矿浸出过程微生物的基因功能与群落结构分析的研究进行了概述, 将帮助我们更好地了解基因组学与生物冶金技术结合的重要作用。  相似文献   

6.
生物冶金技术因具有流程短、成本低、环境友好, 且特别适合处理低品位、复杂、难处理的矿产资源等优点,已经成为研究热点。然而由于缺少高效菌种以及不能对浸矿体系微生物进行定量分析, 难以对浸矿工艺参数和微生物种群进行优化调控, 从而导致硫化矿生物浸出速度慢、浸出率低。随着基因芯片、菌种保存技术的发展, 这些难题在逐一被解决。对近年来针对硫化矿浸出过程微生物的基因功能与群落结构分析的研究进行了概述, 将帮助我们更好地了解基因组学与生物冶金技术结合的重要作用。  相似文献   

7.
8.
Wells used for drinking water often have a large biomass and a high bacterial diversity. Current technologies are not always able to reduce the bacterial population, and the threat of pathogen proliferation in drinking water sources is omnipresent. The environmental conditions that shape the microbial communities in drinking water sources have to be elucidated, so that pathogen proliferation can be foreseen. In this work, the bacterial community in nine water wells of a groundwater aquifer in Northern Mexico were characterized and correlated to environmental characteristics that might control them. Although a large variation was observed between the water samples, temperature and iron concentration were the characteristics that affected the bacterial community structure and composition in groundwater wells. Small increases in the concentration of iron in water modified the bacterial communities and promoted the growth of the iron-oxidizing bacteria Acidovorax. The abundance of the genera Flavobacterium and Duganella was correlated positively with temperature and the Acidobacteria Gp4 and Gp1, and the genus Acidovorax with iron concentrations in the well water. Large percentages of Flavobacterium and Pseudomonas bacteria were found, and this is of special concern as bacteria belonging to both genera are often biofilm developers, where pathogens survival increases.  相似文献   

9.
Twenty macropods from five locations in Queensland, Australia, grazing on a variety of native pastures were surveyed and the bacterial community of the foregut was examined using 454-amplicon pyrosequencing. Specifically, the V3/V4 region of 16S rRNA gene was examined. A total of 5040 OTUs were identified in the data set (post filtering). Thirty-two OTUs were identified as ‘shared’ OTUS (i.e. present in all samples) belonging to either Firmicutes or Bacteroidetes (Clostridiales/Bacteroidales). These phyla predominated the general microbial community in all macropods. Genera represented within the shared OTUs included: unclassified Ruminococcaceae, unclassified Lachnospiraceae, unclassified Clostridiales, Peptococcus sp. Coprococcus spp., Streptococcus spp., Blautia sp., Ruminoccocus sp., Eubacterium sp., Dorea sp., Oscillospira sp. and Butyrivibrio sp. The composition of the bacterial community of the foregut samples of each the host species (Macropus rufus, Macropus giganteus and Macropus robustus) was significantly different allowing differentiation between the host species based on alpha and beta diversity measures. Specifically, eleven dominant OTUs that separated the three host species were identified and classified as: unclassified Ruminococcaceae, unclassified Bacteroidales, Prevotella spp. and a Syntrophococcus sucromutans. Putative reductive acetogens and fibrolytic bacteria were also identified in samples. Future work will investigate the presence and role of fibrolytics and acetogens in these ecosystems. Ideally, the isolation and characterization of these organisms will be used for enhanced feed efficiency in cattle, methane mitigation and potentially for other industries such as the biofuel industry.  相似文献   

10.
As a non-ruminant herbivore, the white rhinoceros has the ability to utilize fibrous plant matter through microbial fermentation in the hindgut. So far, there has been no report using molecular techniques to study the gut microbiota of the white rhinoceros. We used barcoded pyrosequencing to characterize 105,651 sequences of 16S rRNA genes obtained from fecal samples from five white rhinoceroses. Results showed that Firmicutes and Bacteroidetes were the predominant phyla in the samples, which were comprised largely of unclassified bacteria. The microbiota of one animal treated with drug therapy differed from those in other healthy animals, and was dominated by Aerococcus -related bacteria. The core microbiota in the healthy rhinoceros were dominated by phyla Firmicutes and Bacteroidetes, represented by the Ruminococcaceae, Lachnospiraceae, Rikenellaceae and Prevotellaceae families. The present work provides a phylogenetic framework for understanding the complex microbial community of the rhinoceros; however, further studies are required to link the distinctive microbiota with their digestive role in the hindgut of the white rhinoceros.  相似文献   

11.
We have developed a three-component system for microbial identification that consists of (i) a universal syringe-operated silica minicolumn for successive DNA and RNA isolation, fractionation, fragmentation, fluorescent labeling, and removal of excess free label and short oligonucleotides; (ii) microarrays of immobilized oligonucleotide probes for 16S rRNA identification; and (iii) a portable battery-powered device for imaging the hybridization of fluorescently labeled RNA fragments with the arrays. The minicolumn combines a guanidine thiocyanate method of nucleic acid isolation with a newly developed hydroxyl radical-based technique for DNA and RNA labeling and fragmentation. DNA and RNA can also be fractionated through differential binding of double- and single-stranded forms of nucleic acids to the silica. The procedure involves sequential washing of the column with different solutions. No vacuum filtration steps, phenol extraction, or centrifugation is required. After hybridization, the overall fluorescence pattern is captured as a digital image or as a Polaroid photo. This three-component system was used to discriminate Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, and human HL60 cells. The procedure is rapid: beginning with whole cells, it takes approximately 25 min to obtain labeled DNA and RNA samples and an additional 25 min to hybridize and acquire the microarray image using a stationary image analysis system or the portable imager.  相似文献   

12.
PhyloTrac is an integrated desktop application for analysis of PhyloChip microarray data. PhyloTrac combined with PhyloChip provides turnkey and comprehensive identification and analysis of bacterial and archaeal communities in complex environmental samples. PhyloTrac is free for noncommercial organizations and is available for all major operating systems at http://www.phylotrac.org/.The PhyloChip is a low-cost Affymetrix GeneChip microarray, developed at Lawrence Berkeley National Laboratory (LBNL), designed to detect and quantify abundance of bacterial and archaeal taxa using signature probes targeting all known 16S rRNA gene sequences. The second generation of the PhyloChip microarray targets nearly 9,000 operational taxonomic units (OTUs), with an average of 24 probes, each 25 bp long, and the upcoming third-generation PhyloChip application will target an even larger number of OTUs. Multiple, complex environments have been successfully analyzed using the PhyloChip microarray, including, among others, air (2), soil (1), the human lung (6), and the gut (9). PhyloChip microarrays are manufactured by Affymetrix, but to date, analysis has been available only from within LBNL, limiting the accessibility of the technology. PhyloTrac addresses this limitation by providing a standardized analysis package for the PhyloChip microarray, including microarray normalization, OTU quantification, multiple interactive visualizations, and integrated analytics.  相似文献   

13.
Microcosms capable of reductive dechlorination of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) were constructed in glass bottles by seeding them with a polluted river sediment and incubating them anaerobically with an organic medium. All of the PCDD/F congeners detected were equally reduced without the accumulation of significant amounts of less-chlorinated congeners as the intermediate or end products. Alternatively, large amounts of catechol and salicylic acid were produced in the upper aqueous phase. Thus, the dechlorination of PCDD/Fs and the oxidative degradation of the dechlorinated products seemed to take place simultaneously in the microcosm. Denaturing gel gradient electrophoresis and clone library analyses of PCR-amplified 16S rRNA genes from the microcosm showed that members of the phyla Firmicutes, Proteobacteria, and Bacteroidetes predominated. A significant number of Chloroflexi clones were also detected. Quantitative real-time PCR with specific primer sets showed that the 16S rRNA genes of a putative dechlorinator, “Dehalococcoides,” and its relatives accounted for 0.1% of the total rRNA gene copies of the microcosm. Most of the clones thus obtained formed a cluster distinct from the typical “Dehalococcoides” group. Quinone profiling indicated that ubiquinones accounted for 18 to 25% of the total quinone content, suggesting the coexistence and activity of ubiquinone-containing aerobic bacteria. These results suggest that the apparent complete dechlorination of PCDD/Fs found in the microcosm was due to a combination of the dechlorinating activity of the “Dehalococcoides”-like organisms and the oxidative degradation of the dechlorinated products by aerobic bacteria with aromatic hydrocarbon dioxygenases.  相似文献   

14.
Molecular Biology - Serum amyloid A is an inflammatory biomarker whose concentration changes during infectious and inflammatory diseases. SAA’s tendency for aggregation and complex formation...  相似文献   

15.

Background

Previous studies have focused on linking soil community structure, diversity, or specific taxa to disturbances. Relatively little attention has been directed to crop monoculture soils, particularly potato monoculture. Information about microbial community changes over time between monoculture and non-monoculture treatments is lacking. Furthermore, few studies have examined microbial communities in potato monoculture soils using a high throughput pyrosequencing approach.

Methodology/Principal Findings

Soils along a seven-year gradient of potato monoculture were collected and microbial communities were characterized using high throughput pyrosequencing approach. Principal findings are as follows. First, diversity (H Shannon) and richness (S Chao1) indices of bacterial community, but not of fungal community, were linearly decreased over time and corresponded to a decline of soil sustainability represented by yield decline and disease incidence increase. Second, Fusarium, the only soilborne pathogen-associated fungal genus substantially detected, was linearly increased over time in abundance and was closely associated with yield decline. Third, Fusarium abundance was negatively correlated with soil organic matter (OM) and total nitrogen (TN) but positively with electrical conductivity (EC). Fourth, Fusarium was correlated in abundances with 6 bacterial taxa over time.

Conclusions

Soil bacterial and fungal communities exhibited differential responses to the potato monoculture. The overall soil bacterial communities were shaped by potato monoculture. Fusarium was the only soilborne pathogen-associated genus associated with disease incidence increase and yield decline. The changes of soil OM, TN and EC were responsible for Fusarium enrichment, in addition to selections by the monoculture crop. Acidobacteria and Nitrospirae were linearly decreased over time in abundance, corresponding to the decrease of OM, suggesting their similar ecophysiologial trait. Correlations between abundance of Fusarium with several other bacterial taxa suggested their similar behaviors in responses to potato monoculture and/or soil variables, providing insights into the ecological behaviors of these taxa in the environment.  相似文献   

16.
In this study, the microbial community in a mangrove ecosystem was surveyed and used to test the eligibility of 16S rDNA library and neighbor-joining method for the purpose of estimating microbial composition. Genetic diversity (π) and four other diversity indices (Simpson’s unbiased, Shannon-Wiener, Evenness, and Chao1 indices) were applied to estimate the adaptive lineages of microorganisms in the mangrove ecosystem. The results indicated that γ-Proteobacteria is the most diverse taxon, while the most abundant family is Rhodobacteraceae (α-Proteobacteria), followed by Comamonadaceae (β-Proteobacteria). This result may imply the existence of a graded distribution of microbial diversity across a spectrum of different salinities in the waterbody of this estuary ecosystem. Furthermore, at least 500–1,000 bps of the posterior portion of 16S rDNA is required as a marker to profile the microbial diversity in a microcosm of interest using phylogenetic methods, according to the results of our sliding window analyses for the measurements of π, consistency index, and retention index.  相似文献   

17.
The recent advent of tools enabling statistical inferences to be drawn from comparisons of microbial communities has enabled the focus of microbial ecology to move from characterizing biodiversity to describing the distribution of that biodiversity. Although statistical tools have been developed to compare community structures across a phylogenetic tree, we lack tools to compare the memberships and structures of two communities at a particular operational taxonomic unit (OTU) definition. Furthermore, current tests of community structure do not indicate the similarity of the communities but only report the probability of a statistical hypothesis. Here we present a computer program, SONS, which implements nonparametric estimators for the fraction and richness of OTUs shared between two communities.  相似文献   

18.
19.
The ruminal microbiome of cattle plays an important role not only in animal health and productivity but also in food safety and environment. Microbial profiles of rumen fluid obtained from dairy cows fed on three different fiber/starch diet compositions were characterized. Tagged 16S rRNA gene pyrosequencing and statistical analysis revealed that the dominant ruminal bacteria shared by all three sample groups belonged to phyla Bacteroidetes, Firmicutes, and Proteobacteria. However, the relative abundance of these bacterial groups was markedly affected by diet composition. In animals fed with a high fiber diet, the fibrolytic and cellulolytic bacteria Lachnospiraceae, Ruminococcaceae, and Fibrobacteraceae were found in highest abundance compared with animals fed other diets with lower fiber content. The polysaccharide-degrading Prevotellaceae and Flavobacteriaceae bacteria were most abundant in the rumen of cows fed on diet with the highest starch content. These data highlight the ruminal microbiome’s ability to adapt to feed composition and also provide a basis for the development of feed formulation systems designed to improve livestock productivity.  相似文献   

20.
The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus strains in public databases. The Streptococcus pangenome consists of 12,403 orthologous groups of which 574 are shared among all sequenced streptococci and are defined as the Streptococcus core genome. Genome mining of the small-intestinal streptococci focused on functions playing an important role in the interaction of these streptococci in the small-intestinal ecosystem, including natural competence and nutrient-transport and metabolism. Analysis of the small-intestinal Streptococcus genomes predicts a high capacity to synthesize amino acids and various vitamins as well as substantial divergence in their carbohydrate transport and metabolic capacities, which is in agreement with observed physiological differences between these Streptococcus strains. Gene-specific PCR-strategies enabled evaluation of conservation of Streptococcus populations in intestinal samples from different human individuals, revealing that the S. salivarius strains were frequently detected in the small-intestine microbiota, supporting the representative value of the genomes provided in this study. Finally, the Streptococcus genomes allow prediction of the effect of dietary substances on Streptococcus population dynamics in the human small-intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号