首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 32 strains of Legionella pneumophila were used to optimize pulsed-field gel electrophoresis (PFGE) for subtyping of L. pneumophila. Twenty-six isolates of L. pneumophila with various origins and 11 isolates from five different water systems were used as the panels. For optimization of electrophoretic parameters (EPs) of SfiI PFGE, 26 isolates were analyzed with SfiI digestion, using four EPs yielding the same D value. The EP of a switch time of 5 to 50 s for 21 h had the smallest similarity coefficients and was declared the optimal EP for SfiI PFGE of L. pneumophila. By software analysis and pilot study, AscI was chosen as another PFGE enzyme. AscI PFGE could cluster the isolates from each water system into the same or very similar patterns and had a high degree of typing concordance with other molecular methods. In evaluating the discriminatory power of AscI with the panel of 26 isolates, AscI PFGE gave one single pattern and a D value of 100%. AscI PFGE had a high discriminatory power and a high degree of consistency with epidemiological data and other molecular typing methods for L. pneumophila subtyping, and hence, AscI could be used as a restriction enzyme in PFGE subtyping of L. pneumophila.Legionella pneumophila is an environmental organism that can cause disease in humans and is increasingly recognized as an important pathogen causing nosocomial pneumonia. Potable water systems (14, 26), spa water (28), and cooling towers (7, 13) are among the sources implicated in outbreaks of Legionnaires’ disease. Transmission of bacteria from the environment to humans occurs via inhalation or aspiration of Legionella-containing aerosols (3, 5). Strain differentiation is necessary for the identification of sources of contamination and determination of routes of transmission; this could in turn enable us to more accurately detect outbreaks and limit the spread of L. pneumophila infections. A variety of subtyping techniques have been used to identify and characterize L. pneumophila strains, including monoclonal antibody (MAb) analysis (16, 19), ribotyping (4), amplified fragment length polymorphism (AFLP) analysis (9, 22), PCR-based methods (15, 24), sequence-based typing (SBT) (9, 16), and pulsed-field gel electrophoresis (PFGE) (1, 6).Preliminary reports demonstrated that PFGE is a highly discriminative epidemiological marker for subtyping of L. pneumophila (6, 11, 23, 25), and a number of L. pneumophila PFGE protocols have been described in the literature (1, 2, 4, 14); however, most laboratories that use PFGE to subtype L. pneumophila cannot compare their results because the protocols differ from each other in critical parameters, such as the restriction enzymes and electrophoresis conditions used to generate the DNA fingerprints. To enhance our ability to monitor this pathogen, there is an urgent need for a standardized L. pneumophila PFGE protocol which can readily be implemented in different laboratories for information interpretation.An optimal PFGE protocol produces a suitable number of restriction fragments and gives distinct patterns by agarose gel electrophoresis, with these determined by the restriction enzymes and the electrophoretic parameters (EPs) used. SfiI is the most frequently used enzyme in conventional PFGE protocols for L. pneumophila, and there are several different EPs for SfiI digestion used by investigators for characterization and epidemiological studies. For a certain restriction enzyme, selection of the EP with the smallest similarity coefficients will increase the discriminatory power of PFGE. As the first phase of this study, we compared the similarity coefficients obtained for four EPs with SfiI digestion and determined the one with the maximal discriminatory power.There were some problems found in practical applications of epidemiological investigation of L. pneumophila by PFGE with single SfiI digestion, such as having epidemiologically unrelated strains exhibit the same patterns (30) and the appearance of “ghost” or “phantom” bands. Combination use of two enzymes would give a higher discriminatory power and more accurate results (10, 29). Thus, as the second phase of this study, we selected another suitable enzyme and compared it with SfiI to evaluate the possibility of its use in characterization and epidemiological studies of L. pneumophila.  相似文献   

2.
3.
It is expected that the obligatory human pathogen Mycobacterium tuberculosis must adapt metabolically to the various nutrients available during its cycle of infection, persistence, and reactivation. Cholesterol, which is an important part of the mammalian cytoplasmic membrane, is a potential energy source. Here, we show that M. tuberculosis grown in medium containing a carbon source other than cholesterol is able to accumulate cholesterol in the free-lipid zone of its cell wall. This cholesterol accumulation decreases the permeability of the cell wall for the primary antituberculosis drug, rifampin, and partially masks the mycobacterial surface antigens. Furthermore, M. tuberculosis was able to grow on mineral medium supplemented with cholesterol as the sole carbon source. Targeted disruption of the Rv3537 (kstD) gene inhibited growth due to inactivation of the cholesterol degradation pathway, as evidenced by accumulation of the intermediate, 9-hydroxy-4-androstene-3,17-dione. Our findings that M. tuberculosis is able to accumulate cholesterol in the presence of alternative nutrients and use it when cholesterol is the sole carbon source in vitro may facilitate future studies into the pathophysiology of this important deadly pathogen.Mycobacterium tuberculosis, the causative agent of tuberculosis, is a very successful pathogen that infects one-third of the human population (21). Only 10% of primary infected individuals develop active disease during their lifetimes. Tubercle bacilli are able to persist in a dormant state, from which they may reactivate and induce the contagious disease state (13). In asymptomatic hosts, M. tuberculosis exists in reservoirs called granulomas, which are cellular aggregates that restrict bacterial spreading (40). Granulomas are organized collections of mature macrophages that exhibit a certain typical morphology and that arise in response to persistent intracellular pathogens (1, 4). Pathogenic mycobacteria can induce the formation of foamy macrophages filled with lipid-containing bodies; these have been postulated to act as a secure, nutrient-rich reservoir for tubercle bacilli (31). Moreover, M. tuberculosis DNA has been detected in fatty tissues surrounding the kidneys, as well as those of the stomach, lymph nodes, heart, and skin. Tubercle bacilli are able to enter adipocytes, where they accumulate within intracytoplasmic lipid inclusions and survive in a nonreplicating state (26). In vivo, it is expected that M. tuberculosis adapts metabolically to nutrient-poor conditions characterized by glucose deficiency and an abundance of fatty acids (25, 26). The presence of a complex repertoire of lipid metabolism genes in the genome of M. tuberculosis suggests that lipids, including steroids, are important alternative carbon and energy sources for this pathogen (7).One attractive potential alternative nutrient that is readily available in the mammalian host is cholesterol, a major sterol of the plasma membrane. The presence of cholesterol in lipid rafts is required in order for microorganisms to enter the intracellular compartment (14). Studies have shown that cholesterol is essential for the uptake of mycobacteria by macrophages, and it has been found to accumulate at the site of M. tuberculosis entry (2, 12, 30). Moreover, cholesterol depletion overcomes the phagosome maturation block experienced by Mycobacterium avium-infected macrophages (10).It is well known that cholesterol can be utilized by fast-growing, nonpathogenic mycobacteria (5, 20, 22), but it was previously thought that pathogenic mycobacteria might not be able to use cholesterol as a carbon and energy source (3). Recently, however, bioinformatic analysis identified a cassette of cholesterol catabolism genes in actinomycetes, including the M. tuberculosis complex (41). Microarray analysis of Rhodococcus sp. grown in the presence of cholesterol revealed the upregulation of 572 genes, most of which fell within six clearly discernible clusters (41). Most of the identified genes had significant homology to known steroid degradation genes from other organisms and were distributed within a single 51-gene cluster that appears to be very similar to a cluster present in the genome of M. tuberculosis (41). Many of the cholesterol-induced genes had been previously selected by transposon site hybridization analysis of genes that are essential for survival of tubercle bacilli (33) and/or are upregulated in gamma interferon-activated macrophages (37, 42). It was also demonstrated that the M. tuberculosis complex can grow on mineral medium with cholesterol as a primary source of carbon (27, 41). Moreover, the growth of tubercle bacilli on cholesterol was significantly affected by knockout of the mce4 gene, which encodes an ABC transporter responsible for cholesterol uptake (24, 27). Earlier studies had shown that disruption of mce4 attenuated bacterial growth in the spleens of infected animals that had developed adaptive immunity (17, 35).In the present study, we demonstrate for the first time that M. tuberculosis utilizes cholesterol via the 4-androstene-3,17-dione/1,4-androstadiene-3,17-dione pathway (AD/ADD) and that this process requires production of an intact KstD enzyme. We also show that tubercle bacilli growing in medium containing an alternative carbon source can accumulate cholesterol in the free-lipid zone of their cell walls, and this accumulation affects cell wall permeability.  相似文献   

4.
The environment encountered by Mycobacterium tuberculosis during infection is genotoxic. Most bacteria tolerate DNA damage by engaging specialized DNA polymerases that catalyze translesion synthesis (TLS) across sites of damage. M. tuberculosis possesses two putative members of the DinB class of Y-family DNA polymerases, DinB1 (Rv1537) and DinB2 (Rv3056); however, their role in damage tolerance, mutagenesis, and survival is unknown. Here, both dinB1 and dinB2 are shown to be expressed in vitro in a growth phase-dependent manner, with dinB2 levels 12- to 40-fold higher than those of dinB1. Yeast two-hybrid analyses revealed that DinB1, but not DinB2, interacts with the β-clamp, consistent with its canonical C-terminal β-binding motif. However, knockout of dinB1, dinB2, or both had no effect on the susceptibility of M. tuberculosis to compounds that form N2-dG adducts and alkylating agents. Similarly, deletion of these genes individually or in combination did not affect the rate of spontaneous mutation to rifampin resistance or the spectrum of resistance-conferring rpoB mutations and had no impact on growth or survival in human or mouse macrophages or in mice. Moreover, neither gene conferred a mutator phenotype when expressed ectopically in Mycobacterium smegmatis. The lack of the effect of altering the complements or expression levels of dinB1 and/or dinB2 under conditions predicted to be phenotypically revealing suggests that the DinB homologs from M. tuberculosis do not behave like their counterparts from other organisms.The emergence and global spread of multi- and extensively drug-resistant strains of Mycobacterium tuberculosis have further complicated the already daunting challenge of controlling tuberculosis (TB) (15). The mechanisms that underlie the evolution of drug resistance in M. tuberculosis by chromosomal mutagenesis and their association with the conditions that tubercle bacilli encounter during the course of infection are poorly understood (6). It has been postulated that hypoxia, low pH, nutrient deprivation, and nitrosative and oxidative stress impose environmental and host immune-mediated DNA-damaging insults on infecting bacilli (64). In addition, the observed importance of excision repair pathways for the growth and survival of M. tuberculosis in murine models of infection (13, 55) and the upregulation of M. tuberculosis genes involved in DNA repair and modification in pulmonary TB in humans provide compelling evidence that the in vivo environment is DNA damaging (51).Damage tolerance constitutes an integral component of an organism''s response to genotoxic stress, preventing collapse of the replication fork at persisting, replication-blocking lesions through the engagement of specialized DNA polymerases that are able to catalyze translesion synthesis (TLS) across the sites of damage (19, 21, 60). Most TLS polymerases belong to the Y family, which comprises a wide range of structurally related proteins present in bacteria, archaea, and eukaryotes (44). Of these, the DinB subfamily of Y family polymerases, whose founder member is Escherichia coli Pol IV (63), is conserved among all domains of life (44). The association of Y family polymerases with inducible mutagenesis has implicated these enzymes in the adaptation of bacteria to environmental stress (17, 20, 39, 54, 58, 59, 66). Their key properties are exemplified in E. coli Pol IV: the polymerase catalyzes efficient and accurate TLS across certain N2-dG adducts (27, 28, 34, 40, 45, 67) and has been implicated in the tolerance of alkylation damage (4); furthermore, overexpression of Pol IV significantly increases mutation rates in E. coli (reviewed in references 21 and 26), and dinB is the only SOS-regulated gene required at induced levels for stress-induced mutagenesis in this organism (20). Furthermore, overproduction of E. coli Pol IV inhibits replication fork progression through replacement of the replicative polymerase to form an alternate replisome in which Pol IV modulates the rate of unwinding of the DnaB helicase (25) and also reduces colony-forming ability (61).The M. tuberculosis genome encodes two Y family polymerase homologs belonging to the DinB subfamily, designated herein as DinB1 (DinX, encoded by Rv1537) and DinB2 (DinP, encoded by Rv3056), as well as a third, distantly related homolog encoded by Rv3394c (see Fig. S1 in the supplemental material) (9). On the basis of sequence similarity with their counterparts from E. coli (63) and Pseudomonas aeruginosa (54), including the complete conservation of key acidic residues essential for catalysis, DinB1 and DinB2 may be functional DNA polymerases (see Fig. S1). In contrast, Rv3394c lacks these residues and as such is unlikely to have polymerase activity (see Fig. S1). Unlike most Y family polymerase-encoding genes investigated with other bacteria (17, 26, 54, 58), dinB1 and dinB2 expression in M. tuberculosis is not dependent on RecA, the SOS response, or the presence of DNA damage (5, 7, 52). That these genes are regulated by other mechanisms and so may serve distinct roles in DNA metabolism in M. tuberculosis is suggested by the observation that dinB1 is differentially expressed in pulmonary TB (51) and is a member of the SigH regulon (30), whereas expression of dinB2 is induced following exposure to novobiocin (5).In this study, we adopted a genetic approach to investigate the function of dinB1 and dinB2 in M. tuberculosis. Mutants with altered complements or expression levels of dinB1 and/or dinB2 were analyzed in vitro and in vivo under conditions predicted to be phenotypically revealing based on DinB function established with other model organisms. The lack of discernible phenotypes in any of the assays employed suggests that the DinB homologs from M. tuberculosis do not behave like their counterparts from other organisms.  相似文献   

5.
《Journal of bacteriology》2009,191(6):1951-1960
We have identified a clonal complex of Mycobacterium bovis present at high frequency in cattle in population samples from several sub-Saharan west-central African countries. This closely related group of bacteria is defined by a specific chromosomal deletion (RDAf1) and can be identified by the absence of spacer 30 in the standard spoligotype typing scheme. We have named this group of strains the African 1 (Af1) clonal complex and have defined the spoligotype signature of this clonal complex as being the same as the M. bovis BCG vaccine strain but with the deletion of spacer 30. Strains of the Af1 clonal complex were found at high frequency in population samples of M. bovis from cattle in Mali, Cameroon, Nigeria, and Chad, and using a combination of variable-number tandem repeat typing and spoligotyping, we show that the population of M. bovis in each of these countries is distinct, suggesting that the recent mixing of strains between countries is not common in this area of Africa. Strains with the Af1-specific deletion (RDAf1) were not identified in M. bovis isolates from Algeria, Burundi, Ethiopia, Madagascar, Mozambique, South Africa, Tanzania, and Uganda. Furthermore, the spoligotype signature of the Af1 clonal complex has not been identified in population samples of bovine tuberculosis from Europe, Iran, and South America. These observations suggest that the Af1 clonal complex is geographically localized, albeit to several African countries, and we suggest that the dominance of the clonal complex in this region is the result of an original introduction into cows naïve to bovine tuberculosis.Mycobacterium bovis causes bovine tuberculosis (TB), an important disease of domesticated cattle that has a major economic and health impact throughout the world (61, 64, 65). The pathogen is a member of the Mycobacterium tuberculosis complex, which includes many species and subspecies that cause similar pathologies in a variety of mammalian hosts. The most notable member of the complex is M. tuberculosis, the most important bacterial pathogen of humans. In contrast to M. tuberculosis, which is largely host restricted to humans, M. bovis is primarily maintained in bovids, in particular, domesticated cattle, although the pathogen can frequently be recovered from other mammals, including humans (61). Bovine TB is found in cattle throughout the world and has been reported on every continent where cattle are farmed (3).Bovine TB has been reduced or eliminated from domestic cattle in many developed countries by the application of a test-and-cull policy that removes infected cattle (3, 8, 16, 17, 61, 64, 65). However, in Africa, although bovine TB is known to be common in both cattle and wildlife, control policies have not been enforced in many countries due to cost implications, lack of capacity, and infrastructure limitations (8, 16, 17, 57). In 1998, Cosivi et al. reported of bovine TB, “Of all nations in Africa, only seven apply disease control measures as part of a test-and-slaughter policy and consider bovine TB a notifiable disease; the remaining 48 control the disease inadequately or not at all” (16). In the intervening years, the situation is not thought to have improved (8); however, preliminary surveys of bovine TB have been carried out in some African countries (4, 7, 12, 37, 44, 49, 53, 54, 56).The most common epidemiological molecular-typing method applied to strains of M. bovis is spoligotyping. This method identifies polymorphism in the presence of spacer units in the direct-repeat (DR) region in strains of the M. tuberculosis complex (36, 67). The DR is composed of multiple, virtually identical 36-bp regions interspersed with unique DNA spacer sequences of similar size (direct variant repeat [DVR] units). Spacer sequences are unique to the DR region, and copies are not located elsewhere in the chromosome (68). The DR region may contain over 60 DVR units; however, 43 of the spacer units were selected from the spacer sequences of the M. tuberculosis reference strain H37Rv and M. bovis BCG strain P3 and are used in the standard application of spoligotyping to strains of the M. tuberculosis complex (29, 36). The DR region is polymorphic because of the loss (deletion) of single or multiple spacers, and each spoligotype pattern from strains of M. bovis is given an identifier (http://www.Mbovis.org).Several studies of the DR regions in closely related strains of M. tuberculosis have concluded that the evolutionary trend for this region is primarily loss of single DVRs or multiple contiguous DVRs (22, 29, 68); duplication of DVR units or point mutations in spacer sequences were found to be rare. The loss of discrete units observed by Groenen et al. (29) led them to suggest that the mechanism for spacer loss was homologous recombination between repeat units. However, a study by Warren et al. (69) suggested that for strains of M. tuberculosis, insertion of IS6110 sequences into the DR region and recombination between adjacent IS6110 elements were more important mechanisms for the loss of spacer units.The population structure of the M. tuberculosis group of organisms is apparently highly clonal, without any transfer and recombination of chromosomal sequences between strains (15, 30, 60, 61). In a strictly clonal population, the loss by deletion of unique chromosomal DNA cannot be replaced by recombination from another strain, and the deleted region will act as a molecular marker for the strain and all its descendants. Deletions of specific chromosomal regions (regions of difference [RDs] or large sequence polymorphisms) have been very successful at identifying phylogenetic relationships in the M. tuberculosis complex (11, 25, 26, 35, 48, 50, 61, 62, 66). However, because the loss of spoligotype spacer sequences is so frequent, identical spoligotype patterns can occur independently in unrelated lineages (homoplasy), and therefore, the deletion of spoligotype spacers may be an unreliable indicator of phylogenetic relationship (61, 69).In samples of M. bovis strains from Cameroon, Nigeria, Chad, and Mali, spoligotyping was used to show that many of the strains had similar spoligotype patterns that lacked spacer 30, and it has been suggested that strains from these four countries are phylogenetically related (12, 18, 49, 53). We have extended the previous observations of spoligotype similarities between strains from these countries and confirmed the existence of a unique clonal complex of M. bovis, all descended from a single strain in which a specific deletion of chromosomal DNA occurred. We have named this clonal complex of M. bovis strains African 1 (Af1), and we show that this clonal complex is dominant in these four west-central African countries but rare in eastern and southern Africa. Extended genotyping, using variable-number tandem repeats (VNTR), of strains with the most common spoligotype patterns suggests that each of these four west-central African countries has a unique population structure. Evolutionary scenarios that may have led to the present day distribution of the Af1 clonal complex are discussed.  相似文献   

6.
7.
Legionella pneumophila is a ubiquitous inhabitant of environmental water reservoirs. The bacteria infect a wide variety of protozoa and, after accidental inhalation, human alveolar macrophages, which can lead to severe pneumonia. The capability to thrive in phagocytic hosts is dependent on the Dot/Icm type IV secretion system (T4SS), which translocates multiple effector proteins into the host cell. In this study, we determined the draft genome sequence of L. pneumophila strain 130b (Wadsworth). We found that the 130b genome encodes a unique set of T4SSs, namely, the Dot/Icm T4SS, a Trb-1-like T4SS, and two Lvh T4SS gene clusters. Sequence analysis substantiated that a core set of 107 Dot/Icm T4SS effectors was conserved among the sequenced L. pneumophila strains Philadelphia-1, Lens, Paris, Corby, Alcoy, and 130b. We also identified new effector candidates and validated the translocation of 10 novel Dot/Icm T4SS effectors that are not present in L. pneumophila strain Philadelphia-1. We examined the prevalence of the new effector genes among 87 environmental and clinical L. pneumophila isolates. Five of the new effectors were identified in 34 to 62% of the isolates, while less than 15% of the strains tested positive for the other five genes. Collectively, our data show that the core set of conserved Dot/Icm T4SS effector proteins is supplemented by a variable repertoire of accessory effectors that may partly account for differences in the virulences and prevalences of particular L. pneumophila strains.Many bacterial pathogens use specialized protein secretion systems to deliver into host cells virulence effector proteins that interfere with the antimicrobial responses of the host and facilitate the survival of the pathogen (5, 10, 22, 76). The components of these secretion systems are highly conserved. Comparative bioinformatic analysis of pathogen genomes revealed an ever-increasing number of proteins that are likely to be translocated virulence effectors. Only a few effectors have been characterized, and their biochemical functions are unknown, yet the identification of translocated effector proteins and their mechanism of action is fundamental to understanding the pathogenesis of many bacterial infections.Legionella pneumophila is the etiological agent of Legionnaires’ disease, which is an acute form of pneumonia (34, 66). L. pneumophila serogroup 1 accounts for more than 90% of all cases worldwide. Although L. pneumophila is an environmental organism, its ability to survive and replicate in amoebae, such as Acanthamoeba castellanii, has equipped the organism with the capacity to replicate in human cells (45, 58, 68, 80). Following the inhalation of aerosols containing L. pneumophila into the human lung, the bacteria promote their uptake by alveolar macrophages and epithelial cells (21, 44, 71), where they replicate within an intracellular vacuole that avoids fusion with the endocytic pathway (46, 47). L. pneumophila evades endosome fusion by establishing a replicative vacuole that shares many characteristics with the endoplasmic reticulum (ER) (48, 53, 89). The formation of the unique Legionella-containing vacuole (LCV) requires the Dot (defective in organelle trafficking)/Icm (intracellular multiplication) type IV secretion system (T4SS) (85, 91).Type IV secretion systems are versatile multiprotein complexes that can transport DNA and proteins to recipient bacteria or host cells (19, 36). Based on structural and organizational similarity, three main T4SS classes have been distinguished: T4SSA, T4SSB, and genomic island-associated T4SS (GI-T4SS) (3, 51). The genetic organization and components of T4SSA have high similarity to the classical VirB4/VirD4 transfer DNA (T-DNA) transfer system of Agrobacterium tumefaciens (3). In the sequenced L. pneumophila strains, three distinct T4SSAs with different prevalences among strains have been described: Lvh, Trb-1, and Trb-2 (37, 83, 86). The Lvh (Legionella vir homologues) T4SSA is not required for intracellular bacterial replication in macrophages and amoebae but seems to contribute to infection at lower temperatures and inclusion in Acanthamoeba castellanii cysts (6, 78, 86).The Dot/Icm T4SSB secretes and translocates multiple bacterial effector proteins into the vacuolar membrane and cytosol of the host cell (31, 70). The functions of the great majority of these proteins are unknown. Several effectors have similarity to eukaryotic proteins or carry eukaryotic motifs (7, 16, 25). They are predicted to allow L. pneumophila to manipulate host cell processes by functional mimicry (31, 70). Many of the effectors have paralogues or belong to related protein families that are likely to have overlapping functions.Comparative analysis of the recent L. pneumophila genome sequences has revealed their diversity and plasticity (16, 18, 88). This plasticity enables the bacterium to acquire new genetic factors, including new effector proteins that enhance bacterial replication and survival in eukaryotic cells. This has resulted in a diverse species in which 7 to 11% of the genes in each L. pneumophila isolate are strain specific (38). Some of the diversity occurs among genes encoding Dot/Icm effectors, including those within the same family. For example some ankyrin repeat and F-box effector genes are highly conserved, while others vary considerably between L. pneumophila isolates (16, 41, 62, 73, 75). Even though it is not experimentally proven, the subsequent selection of Dot/Icm effectors among different L. pneumophila isolates might reflect their usefulness in host-pathogen interactions, whereby different effector repertoires are maintained during adaptation to different environmental niches or hosts. This may then translate into differences in virulence during opportunistic infection.In this study, we sequenced the genome of L. pneumophila serogroup 1 strain 130b (ATCC BAA-74, also known as Wadsworth or AA100) (29, 30) and analyzed the sequence for T4SSs and novel Dot/Icm effectors. This analysis established that the strain encodes a unique combination of T4SSs and a set of Dot/Icm effectors that had not been described previously but that are present in a range of clinical and environmental L. pneumophila isolates. The new effectors represent the latest members of an ever-growing list of T4SS substrates and presumably reflect the great capacity of L. pneumophila for adaptation to a variety of hosts.  相似文献   

8.
Mycobacterium tuberculosis survives in latently infected individuals, likely in a nonreplicating or dormancy-like state. The M. tuberculosis DosR regulon is a genetic program induced by conditions that inhibit aerobic respiration and prevent bacillus replication. In this study, we used a mutant incapable of DosR regulon induction to investigate the contribution of this regulon to bacterial metabolism during anaerobic dormancy. Our results confirm that the DosR regulon is essential for M. tuberculosis survival during anaerobic dormancy and demonstrate that it is required for metabolic processes that occur upon entry into and throughout the dormant state. Specifically, we showed that regulon mechanisms shift metabolism away from aerobic respiration in the face of dwindling oxygen availability and are required for maintaining energy levels and redox balance as the culture becomes anaerobic. We also demonstrated that the DosR regulon is crucial for rapid resumption of growth once M. tuberculosis exits an anaerobic or nitric oxide-induced nonrespiring state. In summary, the DosR regulon encodes novel metabolic mechanisms essential for M. tuberculosis to survive in the absence of respiration and to successfully transition rapidly between respiring and nonrespiring conditions without loss of viability.Mycobacterium tuberculosis, a major human pathogen, infects nearly one-third of the people in the world and causes two million deaths per year (8). Most infections are latent, and a substantial number of new infections are transmitted by individuals in whom latent infections are being reactivated. Latency is a clinical term describing people that are infected with M. tuberculosis but lack symptoms of active disease. Traditionally, it has been thought that bacilli in latently infected individuals reside almost exclusively inside granulomas and mature tubercle lesions. Recent studies indicate that in latently infected individuals M. tuberculosis may also be found outside granulomas in places such as endothelial cells, fibroblasts, and adipose tissue (17, 28). The evidence for M. tuberculosis metabolic activity in vivo is more limited, but two studies by Lillebaek et al. are informative (24, 25). In these studies the researchers used detailed records of tuberculosis epidemiology and strain types in the fairly static population of Denmark. They found that strains isolated from patients thought to have reactivated disease (rather than a primary infection) were nearly identical to strains present 30 years earlier in the same geographic population. The near-identity of the strains and the fact that infections were attributed to reactivation suggest that bacteria in latently infected individuals experience little genetic change during years of latent infection. The researchers concluded that during latency, M. tuberculosis divides infrequently and is likely in a minimal metabolic state.One approach to study the M. tuberculosis metabolic state during latent infection is to use in vitro models that mimic conditions thought to exist in vivo. Such conditions include hypoxia produced in avascular calcified granulomas (40) and nitric oxide (NO) (27) or carbon monoxide (CO) (33) produced by activated immune cells. A widely used model is the “Wayne model” pioneered by Lawrence Wayne. In this model, a low-inoculum culture is sealed in a tube with stirring and allowed to slowly consume oxygen until the culture is anaerobic, resulting in a nonreplicating and apparently dormant state (45, 46). Another model used to look at dormant M. tuberculosis is a constant-hypoxia model that maintains a 0.2% oxygen tension in culture flasks (31).The common theme in these in vitro models used to obtain M. tuberculosis dormancy is inhibition of respiration. The DosR regulon is a set of at least 48 coregulated genes that are induced by three conditions that inhibit aerobic respiration: hypoxia, NO, and CO (42). Induction of the DosR regulon closely mirrors inhibition of respiration, indicating that control of the regulon is linked to the aerobic respiratory state of the bacilli (43). Several studies have shown that the DosR regulon is controlled by a three-component regulatory system composed of two sensor histidine kinases, DosS and DosT, and a response regulator, DosR (42). DosS and DosT both bind the respiration-impairing gases NO and CO (19, 20, 38), further supporting the hypothesis that the DosR regulon responds to, and is important during, conditions that do not allow aerobic respiration. Although the majority of the DosR-regulated genes have not been characterized, the timing of their induction combined with the conditions under which they respond suggests that they may play a role in adaptation of M. tuberculosis to its host environment. Consistent with this notion, DosR regulon genes are induced in the lungs of M. tuberculosis-infected mice (43), as well as in interferon-gamma-activated murine macrophages (34) and guinea pigs (37).Several studies have suggested that the DosR regulon plays a role in latent infection and in persistence in animal models that resemble human infection in some respects. Leyten et al. found that latently infected humans are more likely than humans with active infections to bear T cells specific for DosR regulon antigens (23), suggesting that the regulon is expressed during latency. Two recent studies confirmed that there is an immune response to DosR regulon antigens during latent infection (4, 36). Further evidence for clinical relevance in humans comes from a study showing that M. tuberculosis in sputum expresses the DosR regulon (15). The importance of this regulon for persistence in rabbit and guinea pig models was demonstrated by data showing a 2-log decrease in recovery of a DosR mutant 2 weeks (guinea pig) and 8 weeks (rabbit) after aerosol infection (11). A DosR mutant was also found to be significantly attenuated in guinea pig infection (26), further supporting the notion that the DosR regulon is required for persistence in vivo. It should be noted that in both studies showing the DosR phenotype (11, 26), full complementation and reversion to full virulence were not observed. However, it is now known that regulation of dosR expression is quite complex. Multiple regulatory sequences exist in and upstream of Rv3134c, the gene directly upstream of dosR (8). Failure to include such a regulatory sequence in a complemented strain would likely result in misregulation of dosR and poor complementation. Studies of DosR regulon mutants for murine infection have produced inconsistent findings that vary from hypervirulent (30) to attenuated (11) and not attenuated (3, 31). When animal models are compared, it is important to remember that M. tuberculosis-induced granulomas in primates, rabbits, and guinea pigs develop caseous necrosis and are hypoxic and/or anaerobic, while M. tuberculosis induced-granulomas in mice are neither hypoxic nor anaerobic (2, 21, 41). Furthermore, M. tuberculosis divides regularly in chronic murine infections (16), in contrast to the replication during latent infections, as demonstrated in the studies of Lillebaek et al. (24, 25). Such studies underscore the significant differences between models.A previous study with a DosR mutant in a closely related Mycobacterium bovis BCG strain showed that DosR expression is required for survival in an in vitro Wayne-like model of dormancy (5). Unexpectedly, two similar studies in M. tuberculosis did not show a strong survival defect for a DosR mutant (31, 43). The most recent study showed that there was only a modest survival defect in an H37Rv DosR mutant and concluded that the DosR regulon is a short-term phenomenon and is not responsible for the adaptation necessary to survive under primarily hypoxic conditions in vitro (31, 32).In this study we showed that the DosR regulon is required for M. tuberculosis survival during anaerobic dormancy. We also used a combination of genetic and biochemical approaches to demonstrate that this regulon is necessary to shift away from oxygen consumption, maintain ATP levels, and balance the redox state (NAD/NADH ratio) of the cell as oxygen becomes scarce. Furthermore, we showed that the DosR regulon is necessary for optimal transition of M. tuberculosis back to aerobic growth from an anaerobic or nitric oxide-induced nonrespiring state.  相似文献   

9.
10.
The DosS (DevS) and DosT histidine kinases form a two-component system together with the DosR (DevR) response regulator in Mycobacterium tuberculosis. DosS and DosT, which have high sequence similarity to each other over the length of their amino acid sequences, contain two GAF domains (GAF-A and GAF-B) in their N-terminal sensory domains. Complementation tests in conjunction with phylogenetic analysis showed that DevS of Mycobacterium smegmatis is more closely related to DosT than DosS. We also demonstrated in vivo that DosS and DosT of M. tuberculosis play a differential role in hypoxic adaptation. DosT responds to a decrease in oxygen tension more sensitively and strongly than DosS, which might be attributable to their different autooxidation rates. The different responsiveness of DosS and DosT to hypoxia is due to the difference in their GAF-A domains accommodating the hemes. Multiple alignment analysis of the GAF-A domains of mycobacterial DosS (DosT) homologs and subsequent site-directed mutagenesis revealed that just one substitution of E87, D90, H97, L118, or T169 of DosS with the corresponding residue of DosT is sufficient to convert DosS to DosT with regard to the responsiveness to changes in oxygen tension.Oxygen sensing is important for facultative anaerobes to adapt to changes in metabolic necessities during the transition between aerobic and anaerobic conditions. Although Mycobacterium tuberculosis (MTB) is an obligate aerobe, a gradual depletion of O2 from its culture is known to lead to a drastic change in gene expression (8, 21, 24, 28, 34, 37, 39). Approximately 48 genes of M. tuberculosis were reported to be induced under early hypoxic conditions, which is mediated by the DosSR (DevSR) two-component system (16, 24, 34). The induction of the DosR regulon is important for survival of M. tuberculosis under hypoxic conditions and for it to enter the nonreplicating dormant state (2, 19). The DosSR two-component system consists of the DosS histidine kinase (HK) and its cognate DosR response regulator (RR) (24, 26, 29). The DosT HK, which shares high sequence similarity to DosS over the length of their primary structures, was also found to cross talk with DosR (26, 30). The N-terminal domains of DosS and DosT contain two tandem GAF domains (GAF-A and GAF-B from their N termini), and the three-dimensional structure of the GAF-A and GAF-B domains was determined (5, 25). A b-type heme is embedded in the GAF-A domain, composed of one five-stranded antiparallel β-sheet and four α-helices (5, 14, 25, 32). The heme is positioned nearly perpendicular to the β-sheet, and H149 and H147 of the polypeptides serve as the proximal axial ligands for DosS and DosT, respectively (5, 25). The ligand-binding state at the distal axial position of heme and the redox state of the heme iron modulate the autokinase activity of DosS and DosT. The O2-bound (oxyferrous) and ferric forms of the HKs are inactive, whereas the unliganded ferrous (deoxyferrous) form as well as NO- and CO-bound forms are active (17, 36). The heme iron of DosT is stable against autooxidation of Fe2+ to Fe3+ in the presence of O2, indicating that its conversion between deoxyferrous and oxyferrous forms is the mechanism by which DosT recognizes O2 (17). However, the autooxidation property of oxyferrous DosS remains controversial. Kumar et al. (17) and Cho et al. (5) reported that DosS undergoes autooxidation on exposure to O2, while other research groups demonstrated that the oxyferrous form of DosS is stable against autooxidation (13, 14, 36). Recently, different roles of DosS and DosT in O2 sensing by M. tuberculosis were suggested. DosT plays a more important role in the early phase of hypoxic conditions than DosS when the growth of M. tuberculosis is transferred from aerobic to hypoxic conditions (11).Mycobacterium smegmatis possesses a single DevS HK that phosphorylates the DevR RR (20). The DevSR two-component system is also implemented in hypoxic adaptation of this bacterium (20). Like DosT of M. tuberculosis, the autokinase activity of M. smegmatis DevS was shown to be controlled by the ligand-binding state of its heme (18). Regarding the autooxidation property, DevS of M. smegmatis was suggested to be similar to DosT rather than DosS; i.e., the heme iron in DevS is resistant to autooxidation from an oxyferrous to a ferric state in the presence of O2 (18).In this paper we report several lines of evidence for the functional difference between DosS and DosT in the hypoxic adaptation of mycobacteria and discuss the implications of these findings.  相似文献   

11.
Legionella pneumophila exhibits surface translocation when it is grown on a buffered charcoal yeast extract (BCYE) containing 0.5 to 1.0% agar. After 7 to 22 days of incubation, spreading legionellae appear in an amorphous, lobed pattern that is most manifest at 25 to 30°C. All nine L. pneumophila strains examined displayed the phenotype. Surface translocation was also exhibited by some, but not all, other Legionella species examined. L. pneumophila mutants that were lacking flagella and/or type IV pili behaved as the wild type did when plated on low-percentage agar, indicating that the surface translocation is not swarming or twitching motility. A translucent film was visible atop the BCYE agar, advancing ahead of the spreading legionellae. Based on its abilities to disperse water droplets and to promote the spreading of heterologous bacteria, the film appeared to manipulate surface tension and, as such, acted like a surfactant. Indeed, a sample obtained from the film rapidly dispersed when it was spotted onto a plastic surface. L. pneumophila type II secretion (Lsp) mutants, but not their complemented derivatives, were defective for both surface translocation and film production. In contrast, mutants defective for type IV secretion exhibited normal surface translocation. When lsp mutants were spotted onto film produced by the wild type, they were able to spread, suggesting that type II secretion promotes the elaboration of the Legionella surfactant. Together, these data indicate that L. pneumophila exhibits a form of surface translocation that is most akin to “sliding motility” and uniquely dependent upon type II secretion.The genus Legionella was established in 1977, following the isolation of Legionella pneumophila from patients with a form of pneumonia now known as Legionnaires'' disease (33). Today, L. pneumophila is recognized as a common cause of both community-acquired and nosocomial pneumonia (84). Legionellosis occurs sporadically and in large outbreaks, with the largest outbreak occurring as recently as 2003 and encompassing 800 suspected and 449 confirmed cases (43). L. pneumophila is especially pathogenic for the elderly and the immunocompromised, large and growing segments of the population (39, 84), and recent studies have been highlighting the growing significance of travel-associated Legionnaires'' disease (107). L. pneumophila is a gram-negative, gammaproteobacterium that is widespread in natural and manufactured water systems (22, 39, 93). Infection occurs after the inhalation of Legionella-contaminated water droplets originating from a wide variety of aerosol-generating devices (39). Alarmingly, outbreaks can occur following the airborne spread of L. pneumophila over distances of >10 km from cooling towers or scrubbers (86). Within its aquatic habitats, L. pneumophila survives over a wide temperature range and grows on surfaces, in biofilms, and as an intracellular parasite of protozoa (9, 39, 110). Within the mammalian lung, the organism has the ability to attach to and invade macrophages and epithelia (27, 106, 113). Among the processes that promote L. pneumophila growth in both the environment and the mammalian lung are Lsp type II protein secretion, Dot/Icm type IVB protein secretion, and Lvh type IVA protein secretion (5, 25, 31, 106). Other key surface features of L. pneumophila are polar flagella that promote swimming motility and type IV pili that help mediate adherence (53, 103, 113). In addition to exporting proteins onto its surface into the extracellular milieu, and/or into host cells, L. pneumophila also secretes a siderophore and pyomelanin pigment that help mediate iron assimilation (23). We now report that L. pneumophila has the ability to translocate or spread across an agar surface. This new form of Legionella “motility” did not require the action of flagella, pili, or type IV secretion but was associated with the export of a surfactantlike material and an intact type II secretion system.  相似文献   

12.
13.
Legionella pneumophila proliferates in aquatic habitats within free-living protozoa, 17 species of which have been identified as hosts by using in vitro experiments. The present study aimed at identifying protozoan hosts for L. pneumophila by using a biofilm batch test (BBT). Samples (600 ml) collected from 21 engineered freshwater systems, with added polyethylene cylinders to promote biofilm formation, were inoculated with L. pneumophila and subsequently incubated at 37°C for 20 days. Growth of L. pneumophila was observed in 16 of 18 water types when the host protozoan Hartmannella vermiformis was added. Twelve of the tested water types supported growth of L. pneumophila or indigenous Legionella anisa without added H. vermiformis. In 12 of 19 BBT flasks H. vermiformis was indicated as a host, based on the ratio between maximum concentrations of L. pneumophila and H. vermiformis, determined with quantitative PCR (Q-PCR), and the composition of clone libraries of partial 18S rRNA gene fragments. Analyses of 609 eukaryotic clones from the BBTs revealed that 68 operational taxonomic units (OTUs) showed the highest similarity to free-living protozoa. Forty percent of the sequences clustering with protozoa showed ≥99.5% similarity to H. vermiformis. None of the other protozoa serving as hosts in in vitro studies were detected in the BBTs. In several tests with growth of L. pneumophila, the protozoa Diphylleia rotans, Echinamoeba thermarum, and Neoparamoeba sp. were identified as candidate hosts. In vitro studies are needed to confirm their role as hosts for L. pneumophila. Unidentified protozoa were implicated as hosts for uncultured Legionella spp. grown in BBT flasks at 15°C.Legionella pneumophila, the causative agent of Legionnaires'' disease, is a common inhabitant of natural freshwater environments and human-made water systems, including cooling towers, whirlpools, air-conditioning systems, and installations for warm tap water (14). In the aquatic environment L. pneumophila proliferates within certain free-living protozoa, which serve as its hosts (15, 30, 59). Environmental factors favoring the growth and survival of L. pneumophila in freshwater systems include a water temperature between 20°C and 45°C (41, 60) and the presence of biofilms and sediments on which the protozoan hosts can graze (30, 41, 56).Rowbotham (44) was the first to report the growth of L. pneumophila within free-living amoebae, which belonged to the genera Acanthamoeba and Naegleria. In vitro studies with cocultures have revealed that 14 species of amoebae, viz., Acanthamoeba spp. (1, 35, 44, 53), Balamuthia mandrillaris (47), Echinamoeba exundans (15), Hartmannella spp. (43), Naegleria spp. (38, 44, 53), and Vahlkampfia jugosa (43); the slime mold Dictyostelium discoideum (20, 48); and two species of the ciliate genus Tetrahymena (15, 26) can serve as hosts for L. pneumophila. Recently, it has been reported that L. pneumophila can also replicate within the intestinal tract of the microbiovorous nematode Caenorhabditis elegans (3).A number of the free-living protozoa mentioned above and others, e.g., Vannella spp. and Saccamoeba spp., have been observed in aquatic environments from which L. pneumophila was cultivated or in which it was detected with PCR (4, 42, 51, 52). However, it remains unknown which of these protozoa actually serve as hosts for L. pneumophila in the aquatic environment, including human-made water systems. Moreover, it cannot be excluded that free-living protozoa other than those tested in vitro can serve as hosts for L. pneumophila as well. Information is also lacking about protozoan hosts for Legionella anisa (13, 49), which is frequently present in water installations in temperate regions (11, 62). Furthermore, it is unknown which free-living protozoa serve as hosts for uncultured Legionella bacteria that can grow at temperatures of about 15°C (61; B. A. Wullings, G. Bakker, and D. van der Kooij, submitted for publication).L. pneumophila can proliferate in samples of surface water, effluent of wastewater treatment plants, potable water, and water from cooling towers incubated at 25°C, 35°C, or 37°C (28, 45, 56). Consequently, incubation of freshwater samples can be used to amplify protozoan hosts for L. pneumophila and other Legionella spp. In this study, different human-made water types were investigated using a biofilm batch test (BBT) system to (i) amplify and subsequently identify predominating, known, and yet-undescribed hosts for L. pneumophila and (ii) identify potential protozoan hosts for Legionella bacteria that can grow at 15°C.  相似文献   

14.
MfpAMt and QnrB4 are two newly characterized pentapeptide repeat proteins (PRPs) that interact with DNA gyrase. The mfpAMt gene is chromosome borne in Mycobacterium tuberculosis, while qnrB4 is plasmid borne in enterobacteria. We expressed and purified the two PRPs and compared their effects on DNA gyrase, taking into account host specificity, i.e., the effect of MfpAMt on M. tuberculosis gyrase and the effect of QnrB4 on Escherichia coli gyrase. Whereas QnrB4 inhibited E. coli gyrase activity only at concentrations higher than 30 μM, MfpAMt inhibited all catalytic reactions of the M. tuberculosis gyrase described for this enzyme (supercoiling, cleavage, relaxation, and decatenation) with a 50% inhibitory concentration of 2 μM. We showed that the D87 residue in GyrA has a major role in the MfpAMt-gyrase interaction, as D87H and D87G substitutions abolished MfpAMt inhibition of M. tuberculosis gyrase catalytic reactions, while A83S modification did not. Since MfpAMt and QnrB4 have been involved in resistance to fluoroquinolones, we measured the inhibition of the quinolone effect in the presence of each PRP. QnrB4 reversed quinolone inhibition of E. coli gyrase at 0.1 μM as described for other Qnr proteins, but MfpAMt did not modify M. tuberculosis gyrase inhibition by fluoroquinolones. Crossover experiments showed that MfpAMt also inhibited E. coli gyrase function, while QnrB4 did not reverse quinolone inhibition of M. tuberculosis gyrase. In conclusion, our in vitro experiments showed that MfpAMt and QnrB4 exhibit opposite effects on DNA gyrase and that these effects are protein and species specific.The pentapeptide repeat protein (PRP) family includes more than 500 proteins in the prokaryotic and eukaryotic kingdoms (45). PRPs are characterized by the repetition of the pentapeptide repeat motif [S,T,A,V][D,N][L,F][S,T,R][G] (6), which results in a right-handed β-helical structure (8, 17). The functions of the majority of the members of this large and heterogeneous family remain unknown, but three PRPs, McbG (from Escherichia coli), MfpAMt (from Mycobacterium tuberculosis), and Qnr (from Klebsiella pneumoniae and other enterobacteria) were reported to interact with DNA gyrase, at least with the E. coli enzyme (17, 33, 35, 44). McbG was shown to protect E. coli DNA gyrase from the toxic action of microcin B17 (33). Qnr and MfpAMt were involved in resistance to fluoroquinolones, which are synthetic antibacterial agents prescribed worldwide for the treatment of various infectious diseases, including tuberculosis (7).DNA gyrase is an essential ATP-dependent enzyme that transiently cleaves a segment of double-stranded DNA, passes another piece of DNA through the break, and reseals it (12). DNA gyrase is unique in catalyzing the negative supercoiling of DNA in order to facilitate the progression of RNA polymerase. Most eubacteria, such as E. coli, have two type II DNA topoisomerases, i.e., DNA gyrase and topoisomerase IV, but a few, such as M. tuberculosis, harbor only DNA gyrase (11).Quinolones target type II topoisomerases, and their activity is measured by the inhibition of supercoiling by gyrase or decatenation by topoisomerase IV and stabilization of complexes composed of topoisomerase covalently linked to cleaved DNA (16). The DNA gyrase active enzyme is a GyrA2GyrB2 heterotetramer. The quinolone-gyrase interaction site in gyrase is thought to be located at the so-called quinolone resistance-determining regions (QRDR) in the A subunit (amino acids 57 to 196 in GyrA) and the B subunit (amino acids 426 to 466 in GyrB), which contain the majority of mutations conferring quinolone resistance (19). The GyrB QRDR is thought to interact with the GyrA QRDR to form a drug-binding pocket (18). Resistance to quinolones is usually due to chromosomal mutations either in the structural genes encoding type II topoisomerases (QRDR) (19, 22) or in regulatory genes producing decreased cell wall permeability or enhancement of efflux pumps (36). The recent emergence of plasmid-borne resistance genes, such as qnr (9, 13, 31, 38, 46), aac(6′)-Ib-cr (32, 39) and qepA (34, 47), renewed interest in quinolone resistance, and especially interest in the new Qnr-based mechanism. Three qnr determinants have been identified so far: qnrA (variants A1 to A6), qnrB (variants B1 to B19), and qnrS (variants S1 and S2) (15, 21, 23, 27). Qnr confers a new mechanism of quinolone resistance by mediating DNA gyrase protection (42): in vitro, QnrA1 and QnrB1 protect E. coli DNA gyrase and topoisomerase IV from the inhibitory effect of fluoroquinolones in a concentration-dependent manner (23, 42-44). Although Qnr was shown to bind GyrA and GyrB and compete with DNA binding, the consequences of Qnr binding for enzyme performance are not yet clear.mfpA, a chromosomal gene that encodes a 192-amino-acid PRP, is an intrinsic quinolone resistance determinant of Mycobacterium smegmatis (29). A similar gene, mfpAMt, was found in the M. tuberculosis genome, and MfpAMt shows 67% identity with MfpA. Recent crystallography analysis of MfpAMt showed that its atomic structure displays size, shape, and electrostatic similarity to B-form DNA, and MfpAMt has been suggested to interact with DNA gyrase via DNA mimicry (17). The effect of MfpAMt was studied by testing E. coli DNA gyrase, and MfpAMt showed catalytic inhibition (17, 37), but whether it protects gyrase from quinolones was not assessed. Because the structure and functions of the M. tuberculosis gyrase, as well as its interaction with quinolones, differ from those of the E. coli gyrase (2, 3, 20, 26, 28), we suspected that the PRP-topoisomerase interaction exhibits species specificity, i.e., depends on the proteins issued from the same host.Our objective was to compare the effects of MfpAMt and Qnr on their respective targets, i.e., the effect of MfpAMt on the M. tuberculosis gyrase and the effect of Qnr on the E. coli gyrase, by assessing (i) the catalytic reactions of the enzyme and (ii) the interaction with the DNA gyrase-DNA-fluoroquinolone ternary complex. Among the Qnr proteins, we selected the QnrB4 protein, which is a frequent variant of QnrB and has not yet been purified and studied. We cloned, expressed, and purified the two PRPs, MfpAMt and QnrB4, as recombinant His tag fusion proteins and assessed their functions under the same experimental conditions.  相似文献   

15.
16.
Legionella longbeachae causes most cases of legionellosis in Australia and may be underreported worldwide due to the lack of L. longbeachae-specific diagnostic tests. L. longbeachae displays distinctive differences in intracellular trafficking, caspase 1 activation, and infection in mouse models compared to Legionella pneumophila, yet these two species have indistinguishable clinical presentations in humans. Unlike other legionellae, which inhabit freshwater systems, L. longbeachae is found predominantly in moist soil. In this study, we sequenced and annotated the genome of an L. longbeachae clinical isolate from Oregon, isolate D-4968, and compared it to the previously published genomes of L. pneumophila. The results revealed that the D-4968 genome is larger than the L. pneumophila genome and has a gene order that is different from that of the L. pneumophila genome. Genes encoding structural components of type II, type IV Lvh, and type IV Icm/Dot secretion systems are conserved. In contrast, only 42/140 homologs of genes encoding L. pneumophila Icm/Dot substrates have been found in the D-4968 genome. L. longbeachae encodes numerous proteins with eukaryotic motifs and eukaryote-like proteins unique to this species, including 16 ankyrin repeat-containing proteins and a novel U-box protein. We predict that these proteins are secreted by the L. longbeachae Icm/Dot secretion system. In contrast to the L. pneumophila genome, the L. longbeachae D-4968 genome does not contain flagellar biosynthesis genes, yet it contains a chemotaxis operon. The lack of a flagellum explains the failure of L. longbeachae to activate caspase 1 and trigger pyroptosis in murine macrophages. These unique features of L. longbeachae may reflect adaptation of this species to life in soil.Isolation of Legionella longbeachae was first reported in 1981 after isolation from patients with pneumonia in the United States (11, 59). Although L. longbeachae is not a common respiratory pathogen in either North America or Europe, where Legionella pneumophila infections are predominant, it accounts for more than 50% of legionellosis cases in Australia and is also prevalent in New Zealand and Thailand (10, 12, 60, 66, 68, 77, 93, 94). Legionnaires'' disease induced by L. longbeachae infection is clinically indistinguishable from the disease caused by L. pneumophila (65). However, L. longbeachae infections have been associated with gardening and the use of potting soil, whereas the disease caused by other species is linked to freshwater sources (4, 65). L. longbeachae can survive for up to 9 months in moist potting soil at room temperature, in contrast to other Legionella species, which inhabit natural and manmade freshwater systems worldwide (34, 83, 84).In addition to the differences in habitat, L. longbeachae differs from L. pneumophila in its virulence in murine models of infection. L. longbeachae replicates in the lungs of A/J, C57BL/6, and BALB/c mice (6), whereas most inbred mice, including C57BL/6 and BALB strains, are resistant to L. pneumophila (61). These differences in murine host susceptibility are likely due to different abilities to activate caspase 1-mediated pyroptosis in macrophages. While L. pneumophila rapidly triggers pyroptosis in C57BL/6 mouse macrophages, L. longbeachae does not do this (6).Intracellular trafficking of L. longbeachae in mammalian macrophages also follows a route distinct from that of L. pneumophila. After phagocytosis, the L. pneumophila-containing vacuole (LCV) excludes early and late endosomal markers, such as early endosomal antigen 1 (EEA1), Rab5, LAMP-1, LAMP-2, and the mannose 6-phosphate receptor (M6PR) (5, 89). In L. pneumophila the Dot/Icm type IV secretion system is required for prevention of phagosome-lysosome fusion and for intracellular replication (47). Conversely, the L. longbeachae-containing vacuole acquires the early endosomal marker EEA1 and the late endosomal markers LAMP-2 and M6PR (5). It has been suggested that L. longbeachae intracellular trafficking resembles that of the facultative intracellular pathogen Brucella abortus, since a Brucella-containing vacuole also acquires early and late endosomal markers soon after infection (5). Despite the difference in intracellular trafficking between L. longbeachae and L. pneumophila, L. longbeachae rescues Dot/Icm-deficient L. pneumophila when these two organisms coinhabit LCV (5).Results of the studies cited above indicate that L. longbeachae differs from other legionellae in terms of habitat, host specificity, and intracellular trafficking. In this paper, we describe an analysis of the sequenced and annotated genome of L. longbeachae clinical isolate D-4968 compared with published genomes of L. pneumophila strains Corby, Lens, Paris, and Philadelphia-1 (16, 17, 38). Specifically, we compared genes involved in gene regulation, protein secretion systems, and motility in order to identify genes responsible for making L. longbeachae unique among the legionellae.  相似文献   

17.
The survival times of Caenorhabditis elegans worms infected with Legionella pneumophila from day 7.5 or later after hatching were shorter than those of uninfected worms. However, nematodes fed bifidobacteria prior to Legionella infection were resistant to Legionella. These nematodes may act as a unique alternative host for Legionella research.Legionella pneumophila, an environmental bacterium naturally found in fresh water, is the major causative agent of Legionnaires'' disease (7). Fresh water amoebas, a natural host of Legionella, have been used as an infection model to study invasion of Legionella into human macrophages and subsequent intracellular growth (15). However, analyses using these protozoa have inevitably concentrated on the intracellular lifestyle of L. pneumophila. The fate of Legionella organisms in nonmammalian metazoans had not been described (10) until a very recent report by Brassinga et al. (6).Numerous authors have reported Caenorhabditis elegans to be a suitable model to investigate virulence-associated factors of human pathogens (2, 8, 11, 14, 16, 20, 23, 24, 30, 31, 33). In the present study, we examined whether C. elegans can serve as an alternative host for L. pneumophila. Although the nematocidal activity of Legionella has been described recently, the nematodes in the previous study were infected with the pathogen on buffered charcoal yeast extract (BCYE) agar plates, which can support Legionella growth (6). In contrast, our experiments were independently performed on simple agar plates to exclude the possibility that the inoculated pathogen would have proliferated regardless of whether it had successfully infected the nematodes and derived nutrition from the hosts. Garsin et al. showed that nutrition available in agar plates does influence the virulence of pathogens on the medium (9). Furthermore, some pathogens produce toxic metabolites on nutrient medium in situ (3), and thus, we also avoided this possibility. Moreover, we focused on the effects of worm age, since Legionella is prone to infect elderly people.Age at infection is likely one of the most important determinants of disease morbidity and mortality (18). Since Legionella organisms are prone to infect elderly people opportunistically, infections in young and older nematodes were compared. Furthermore, survival curves were compared between worms fed Escherichia coli OP50 (OP), an international standard food for these organisms, and those fed bifidobacteria prior to infection with Legionella organisms, since lactic acid bacteria exert beneficial effects on human and animal health (21).  相似文献   

18.
19.
Mycobacterium abscessus is a rapidly growing mycobacterial species that can be involved in pulmonary and disseminated infections in immunosuppressed or young cystic fibrosis patients. It is an emerging pathogen and has attracted recent attention due to the numerous cases of infection; furthermore, genomic tools have been developed for this species. Nevertheless, the study of this species has until now been limited to spontaneous variants. We report here a comparison of three different mutagenesis systems—the ts-sacB, the phage, and the recombineering systems—and show that there are important differences in their efficiency for the construction of allelic-exchange mutants. We show, using the mmpL4b gene of the glycopeptidolipid pathway as a target, that allelic-exchange mutants can be constructed with a reasonable efficiency (∼7%) using the recombineering system. These observations will facilitate genetic and cellular microbiology experiments involving the construction and use of well-defined mutants to study the virulence determinant of this emerging pathogen.The mycobacterial genus contains plethora of species that are pathogenic for either humans or animals. The most well-known are undoubtedly Mycobacterium leprae, M. tuberculosis, and M. ulcerans, the etiologic agents of human leprosy, tuberculosis, and Buruli ulcer, respectively (47-49). M. avium subsp. paratuberculosis, responsible for Johnes disease in ruminants, is also a serious health concern since it is suspected to be a threat to human via infected milk (9, 10). M. abscessus is an emerging pathogen involved in pulmonary and disseminated infection in young cystic fibrosis patients (26, 36). M. abscessus can cause nosocomial infections of skin and soft tissues in immunosuppressed patients (28, 35). It is also able to cross the blood-brain barrier and to cause meningoencephalitis (42). M. abscessus is phylogenetically related to M. chelonae and, indeed, these species have long been grouped together under the designation of the “M. abscessus-chelonae complex” (6). M. abscessus is a rapid grower that forms colonies in 5 days. Like other mycobacterial species, M. abscessus is equipped with a robust waxy cell wall that, as in other species, probably contributes to virulence (12). The emerging and growing interest in M. abscessus has led to its genome being sequenced (accession no. NC010397) (F. Ripoll et al., unpublished data) and to the development of DNA microarrays (Jean-Yves Coppée, unpublished data).The availability of genomic resources and animal models (32) makes M. abscessus a very attractive system. However, there is no defined mutagenesis system for this species and, to the best of our knowledge, no defined mutants have been constructed thus far. The consequence is that the study of this organism has been restricted to spontaneous variants. Utilization of spontaneous mutants has, nevertheless, allowed the characterization of morphotypically rough isolates that are hypervirulent both in vitro and in vivo (7, 8, 17). These rough isolates are low glycopeptidolipid producers. Glycopeptidolipid is an extractable lipid found at the surface of the bacilli (4, 11, 13). However, its role in the virulence process is currently unknown. The lack of a suitable genetic system is certainly responsible for the rarity of studies on this species (fewer than 500 references in Medline, whereas there are more than 32,000 for M. tuberculosis). Other mycobacterial species, especially M. tuberculosis, have been genetically intractable for many years (15, 18, 24). This has forced researchers to develop dedicated systems for the construction of allelic-exchange mutants. Three major systems have mainly been used thus far in M. tuberculosis and in other mycobacteria: (i) a thermosensitive counterselectable plasmid based on sucrose sensitivity (21-23), (ii) a thermosensitive mycobacteriophage (2) and, more recently, (iii) a mycobacterial recombinase-based system (43, 44). These three systems are effective in M. tuberculosis, M. smegmatis, and other refractory species, including M. avium subsp. avium, and allow straightforward construction of both marked and unmarked mutants.The aim of the present study was to compare the three main mutagenesis systems available for mycobacteria and to determine which system is best adapted to M. abscessus. To this end, we used mmpL4b as a target gene and the three genetic tools described above. The mmpL4b gene is involved in glycopeptidolipid synthesis (29, 40) and is a good model target because its mutation results in a rough phenotype that can be visually distinguished. We show here that there are large differences in efficacy between the three systems and that the mycobacterial recombinase-based system is the most efficient. For an unknown reason, allelic exchange is much less frequent in M. abscessus than in other species, including M. tuberculosis; this complicates the construction of defined mutants. The availability of a suitable genetic system will undoubtedly facilitates the characterization of the virulence determinants in this emerging pathogen.  相似文献   

20.
PCR-based methods have been developed to rapidly screen for Legionella pneumophila in water as an alternative to time-consuming culture techniques. However, these methods fail to discriminate between live and dead bacteria. Here, we report a viability assay (viability PCR [v-PCR]) for L. pneumophila that combines ethidium monoazide bromide with quantitative real-time PCR (qPCR). The ability of v-PCR to differentiate viable from nonviable L. pneumophila cells was confirmed with permeabilizing agents, toluene, or isopropanol. v-PCR suppressed more than 99.9% of the L. pneumophila PCR signal in nonviable cultures and was able to discriminate viable cells in mixed samples. A wide range of physiological states, from culturable to dead cells, was observed with 64 domestic hot-water samples after simultaneous quantification of L. pneumophila cells by v-PCR, conventional qPCR, and culture methods. v-PCR counts were equal to or higher than those obtained by culture and lower than or equal to conventional qPCR counts. v-PCR was used to successfully monitor in vitro the disinfection efficacy of heating to 70°C and glutaraldehyde and chlorine curative treatments. The v-PCR method appears to be a promising and rapid technique for enumerating L. pneumophila bacteria in water and, in comparison with conventional qPCR techniques used to monitor Legionella, has the advantage of selectively amplifying only viable cells.Legionella organisms are ubiquitous bacteria found in many types of water sources in the environment. Their growth is especially favored in human-made warm water systems, including cooling towers, hot tubs, showerheads, and spas (3, 14, 15, 38). Legionella bacteria replicate as intracellular parasites of amoebae and persist in the environment as free-living microbes or in biofilms. In aerosol form, they enter the lungs and can cause an acute form of pneumonia known as Legionnaires'' disease or a milder form of pulmonary infection called Pontiac fever. The species Legionella pneumophila is responsible for the vast majority of the most severe form of this atypical pneumonia (52, 70). Legionellosis outbreaks are associated with high mortality rates (15 to 20%) (15, 16, 38, 46), which can reach up to 50% for people with weakened immune systems (immunocompromised patients) (69). Legionella surveillance programs include regular monitoring of environmental water samples (9, 13, 66). It is generally acknowledged that Legionella represents a health risk to humans when cell densities are greater than 104 to 105 CFU per liter of water, and epidemiological data show that outbreaks of legionellosis occur at these concentrations (36, 47).The evaluation of the risk associated with Legionella has traditionally been performed using culture-based methods (1, 24). Culture is essential for identifying and typing Legionella strains during epidemics. However, Legionella culture requires long incubation times (up to 10 days) before results can be scored. This problem makes culture unsuitable for preventive actions and rapid response in emergency situations. Moreover, under certain conditions (i.e., low-nutrient environments, oxidative or osmotic stress, etc.), Legionella cells can lose the ability to be cultured, although they are still viable (7, 17, 20, 22, 39, 45, 67). These viable but nonculturable (VBNC) Legionella cells may still represent a public health hazard because they can regain their ability to grow in new, more favorable conditions (12, 19, 23, 61).Molecular approaches, such as quantitative real-time PCR (qPCR), are faster and can mitigate the main drawbacks of culture-based methods. qPCR is an alternative tool that offers rapid, sensitive, and specific detection of Legionella bacteria in environmental water samples (4, 5, 12, 26, 65, 68). PCR results can be obtained in hours instead of days, and VBNC Legionella cells can also be detected (12, 26). However, the major disadvantage of qPCR lies in its inability to evaluate viability due to the persistence of DNA in cells after death (27, 34). The monitoring of Legionella contamination levels by conventional qPCR may thus result in an overestimation of the risk of infection because false-positive results can be scored. However, the real risk from Legionella is limited to the live fraction of the total Legionella population. Only live or viable Legionella cells are able to replicate in pulmonary macrophages and cause severe pneumonia (14, 15). The development of more rapid, culture-independent methods capable of discriminating between live and dead cells is of major interest for measuring Legionella infection risks and preventing legionellosis. The nucleic acid-binding dye ethidium monoazide bromide (EMA), used in combination with qPCR, is an attractive alternative for selectively detecting and enumerating viable bacteria. EMA is particularly useful because it selectively penetrates cells with damaged membranes and covalently binds to DNA after photoactivation (21, 53). DNA-bound EMA molecules prevent PCR amplification and thereby lead to a strong signal reduction during qPCR. DNA from viable cells with intact cell membranes prevents EMA molecules from entering the cell and therefore can be amplified and quantified (56). Nocker et al. (41, 42) suggested that the signal reduction was due to a selective loss of genomic DNA from dead cells (rendered insoluble after cross-linkage) during the DNA extraction procedure rather than to PCR inhibition. However, Soejima et al. (59, 60) recently reported that treatment with EMA followed by visible light irradiation directly cleaves the chromosomal DNA of dead bacteria.In this study we optimized the EMA-staining procedure in conjunction with qPCR with pure cultures of L. pneumophila. We analyzed the potential for the EMA-qPCR method to discriminate Legionella cells with compromised or intact cell membranes. We optimized this EMA-qPCR technique, viability PCR, hereafter named v-PCR, and used it to quantify viable Legionella cells in environmental water samples. We compared our results with those obtained by conventional qPCR and culture methods. In addition, we evaluated the ability of v-PCR to monitor the efficacy of different disinfection strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号