首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the mature stomatal complex of Flagellaria indica L. was studied since the Flagellariaceae is reported to be one of a handful of nongrass families with a grass-type stoma, and since relatively little is known about stomatal ultrastructure in monocots other than grasses. Both the grass guard cell and its nucleus are dumbbell-shaped, and the walls that separate adjacent grass guard cells are perforated. Electron and fluorescence microscopy reveal that the Flagellaria guard cell lacks these features. Instead, the Flagellaria guard cell is neither dumbbellnor kidney-shaped, its nucleus is roughly kidney-shaped, and the end walls are thickened and imperforate. Additional structural features of the stomatal apparatus of Flagellaria include: 1) the subsidiary cells have a protuberance that underlies the middle of the guard cell and that forms an additional and innermost aperture of the pore; 2) guard and subsidiary cell walls are thickened differentially and are layered; and 3) organelles in both cell types appear to be confined to specific domains. Although Flagellaria is closely related to grasses, it does not have a grass or dumbbell-shaped type of stomate. This suggests that the grass type of stomate may be less widespread than reported.  相似文献   

2.
Direct Measurements of Turgor Pressure Potentials of Guard Cells, I.   总被引:5,自引:0,他引:5  
Measurements were made of pressures applied in subsidiary andguard cells which caused closure and opening of stomatal pores.These pressures were lower than would be expected from plasmolyticallydetermined osmotic potentials of guard cell saps. The pressuresneeded in guard cells to open almost closed stomata were practicallythe same as those required to close open stomata when appliedin adjacent subsidiary cells. Completely closed stomata couldnot be opened by this technique. The implications for the understandingof the mechanism of guard cell deformation, the Spannungsphase,and the pressure potentials of guard cells are discussed.  相似文献   

3.
Measurements were made of turgor pressures in epidermal, subsidiary,and guard cells at different degrees of stomatal opening. Theresults are correlated with estimates of solute potentials ofthe different cell saps and with a postulated matric potentialof cell walls. The results contribute to an understanding ofthe role of the subsidiary cells in the stomatal mechanism especiallyin the Graminaceous type and the role of ‘tissue tension’as a pressure involved in turgor phenomena in epidermal tissue.The results make it possible to explain the abnormally largestomatal openings found after floating illuminated leaf tissueon water or keeping it in humid CO2-free air.  相似文献   

4.
I. R. Cowan 《Planta》1972,106(3):185-219
Summary Measurements of transpiration, leaf water content, and flux of water in a cotton plant exhibiting sustained oscillations, in stomatal conductance are presented, and a model of the mechanism causing this behaviour is developed. The dynamic elements, of the model are capacitors—representing the change of water content with water potential in mesophyll, subsidiary and guard cells—interconnected by resistances representing flow paths in the plant. Increase of water potential in guard cells causes an increase in stomatal conductance. Increase of water potential in the subsidiary cells has the opposite effect and provides the positive feed-back which can cause stomatal conductance to oscillate. The oscillations are shown to have many of the characteristics of free-running oscillations in real plants. The behaviour of the model has been examined, using an analogue computer, with constraints and perturbations representing some of those which could be applied to real plants in physiological experiments. Aspects of behaviour which have been simulated are (a) opening and closing of stomata under the influence of changes in illumination, (b) transient responses due to step changes in potential transpiration, root permeability and potential of water surrounding the roots, (c) the influence of these factors on the occurrence and shape of spontaneous oscillations, and (d) modulation of sustained oscillations due to a circadian rhythm in the permeability of roots.  相似文献   

5.
Given that stomatal movement is ultimately a mechanical process and that stomata are morphologically and mechanically diverse, we explored the influence of stomatal mechanical diversity on leaf gas exchange and considered some of the constraints. Mechanical measurements were conducted on the guard cells of four different species exhibiting different stomatal morphologies, including three variants on the classical "kidney" form and one "dumb-bell" type; this information, together with gas-exchange measurements, was used to model and compare their respective operational characteristics. Based on evidence from scanning electron microscope images of cryo-sectioned leaves that were sampled under full sun and high humidity and from pressure probe measurements of the stomatal aperture versus guard cell turgor relationship at maximum and zero epidermal turgor, it was concluded that maximum stomatal apertures (and maximum leaf diffusive conductance) could not be obtained in at least one of the species (the grass Triticum aestivum) without a substantial reduction in subsidiary cell osmotic (and hence turgor) pressure during stomatal opening to overcome the large mechanical advantage of subsidiary cells. A mechanism for this is proposed, with a corollary being greatly accelerated stomatal opening and closure. Gas-exchange measurements on T. aestivum revealed the capability of very rapid stomatal movements, which may be explained by the unique morphology and mechanics of its dumb-bell-shaped stomata coupled with "see-sawing" of osmotic and turgor pressure between guard and subsidiary cells during stomatal opening or closure. Such properties might underlie the success of grasses.  相似文献   

6.
Uptake of CO2 by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard‐cell anion release channel SLOW ANION CHANNEL‐ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard‐cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non‐invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long‐term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild‐type plants responded to CO2, light, humidity, ozone and abscisic acid (ABA) in a guard cell‐specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild‐type plants, leaves from well‐watered ost1 plants exposed to a dry atmosphere wilted after light‐induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root–shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.  相似文献   

7.
Evidence of the mechanical advantage of subsidiary cells wasobtained by simultaneous measurements of turgor pressure potentialsin adjacent subsidiary and guard cells using injection circuitswith two separate needles. In Tradescantia virginiana the mechanicaladvantage approaches two. Using the same technique evidencewas obtained that the Spannungsphase is, in the first place,a turgor relations phenomenon due to the mechanical advantageof epidermal or subsidiary cells. In addition, the evidenceindicated that the elastic properties of guard cell walls mayundergo changes during the Spannungsphase when potassium iontransport commences. During these measurements it was confirmedthat the optimum leaf water deficit for maximum stomatal openingoccurs when the epidermal turgor is near zero. Under these conditionsthe width of the stomatal pore is a function of the turgor pressureof the guard cells, since at zero turgor of the subsidiary cellstheir mechanical advantage has disappeared.  相似文献   

8.
The role of peristomatal transpiration in the mechanism of stomatal movement   总被引:12,自引:4,他引:8  
Abstract. Peristomatal transpiration is defined as the relative high local rate of cuticular water loss from external and internal surfaces around the stomatal pore and its decisive role in the control of stomatal movement is re-emphasized. As the resistance towards changes in air humidity is low in the pore surroundings, the state of turgor is particularly unsteady there. Due to the inherent instability the guard cell 'senses' fluctuations in the supply-demand relationship of water and is thus the control unit proper. The environmental variables (supply and demand) are cross-correlated within the subsidiary cell and the information is transmitted to the guard cell through the water potential gradient between the two cells. A conceptual segregation of a 'humidity response' by 'passive' stomatal movements is rejected.
As ions always accumulate at the most distant point of the liquid path and as this point varies with pore width according to the prevailing water potential gradients, it is felt that the water stream is causing the characteristic pattern of ion distribution within the epidermis. Passive import of ions is attributed to local concentration gradients which are steepened by continuous supply and by water uptake into the guard cell in response to starch hydrolysis. A mechanistic model supplements the discussion.  相似文献   

9.
10.
Stomatal oscillations are cyclic opening and closing of stomata, presumed to initiate from hydraulic mismatch between leaf water supply and transpiration rate. To test this assumption, mismatches between water supply and transpiration were induced using manipulations of vapour pressure deficit (VPD) and light spectrum in banana (Musa acuminata). Simultaneous measurements of gas exchange with changes in leaf turgor pressure were used to describe the hydraulic mismatches. An increase of VPD above a certain threshold caused stomatal oscillations with variable amplitudes. Oscillations in leaf turgor pressure were synchronized with stomatal oscillations and balanced only when transpiration equaled water supply. Surprisingly, changing the light spectrum from red and blue to red alone at constant VPD also induced stomatal oscillations – while the addition of blue (10%) to red light only ended oscillations. Blue light is known to induce stomatal opening and thus should increase the hydraulic mismatch, reduce the VPD threshold for oscillations and increase the oscillation amplitude. Unexpectedly, blue light reduced oscillation amplitude, increased VPD threshold and reduced turgor pressure loss. These results suggest that additionally, to the known effect of blue light on the hydroactive opening response of stomata, it can also effect stomatal movement by increased xylem–epidermis water supply.  相似文献   

11.
The feasibility of two hypothetical mechanisms for the stomatal response to humidity was evaluated by identifying theoretical constraints on these mechanisms and by analysing timecourses of stomatal aperture following a step change in humidity. The two hypothetical mechanisms, which allow guard cell turgor pressure to overcome the epidermal mechanical advantage, are: (1) active regulation of guard cell osmotic pressure, requiring no hydraulic disequilibrium between guard and epidermal cells, and (2) a substantial hydraulic resistance between guard and epidermal cells, resulting in hydraulic disequilibrium between them. Numerical simulations of the system are made possible by recently published empirical relationships between guard cell pressure and volume and between stomatal aperture, guard cell turgor pressure, and epidermal cell turgor pressure; these data allow the hypothetical control variables to be inferred from stomatal aperture and evaporative demand, given physical assumptions that characterize either hypothesis. We show that hypothesis (1) predicts that steady‐state πg is monotonically related to transpiration rate, whereas hypothesis (2) suggests that the relationship between transpiration rate and the steady‐state guard to epidermal cell hydraulic resistance may be either positive or negative, and that this resistance must change substantially during the transient phase of the stomatal response to humidity.  相似文献   

12.
Stomatal development and patterning in Arabidopsis leaves   总被引:1,自引:0,他引:1  
The functional unit for gas exchange between plants and the atmosphere is the stomatal complex, an epidermal structure composed of two guard cells, which delimit a stomatal pore, and their subsidiary cells. In the present work, we define the basic structural unit formed in Arabidopsis thaliana during leaf development, the anisocytic stomatal complex. We perform a cell lineage analysis by transposon excision founding that at least a small percentage of stomatal complexes are unequivocally non-clonal. We also describe the three-dimensional pattern of stomata in the Arabidopsis leaf. In the epidermal plane, subsidiary cells of most stomatal complexes contact the subsidiary cells of immediately adjacent complexes. This minimal distance between stomatal complexes allows each stoma to be circled by a full complement of subsidiary cells, with which guard cells can exchange water and ions in order to open or to close the pore. In the radial plane, stomata (and their precursors, the meristemoids) are located at the junctions of several mesophyll cells. This meristemoid patterning may be a consequence of signals that operate along the radial axis of the leaf, which establish meristemoid differentiation precisely at these places. Since stomatal development is basipetal, these radially propagated signals may be transmitted in the axial direction, thus guiding stomatal development through the basal end of the leaf.  相似文献   

13.
An analysis of the mechanics of guard cell motion   总被引:13,自引:0,他引:13  
This paper presents a mechanical analysis of the cellular deformations which occur during the opening and closing of stomata. The aperture of the stomatal pore is shown to be a result of opposing pressures of the guard and adjacent epidermal cells. The analysis indicates that the epidermal cells have a mechanical advantage over the guard cells. With no mechanical advantage, an equal reduction in the turgor pressure of both guard and epidermal cells would have a neglible effect upon stomatal aperture. However, due to the mechanical advantage of the surrounding cells, the stomatal aperture increases with equal reductions in turgor, until the adjacent epidermal cells become flaccid. The minimum diffusion resistance of the pore occurs at this point. Further reductions in guard cell turgor lead to closure of the pore. The analysis further demonstrates how the shape, size, wall thickness and material properties of the guard cell walls influence their behavior.  相似文献   

14.
Water Supply, Evaporation, and Vapour Diffusion in Leaves   总被引:12,自引:1,他引:11  
On the basis of experimental results published during the last25 years, but more particularly during the last 5 years andincluding some results presented here, the hypothesis is proposedthat an important portion of the water supply from major veinsin leaves travels within the epidermal tissue to sites of evaporationclose to the stomatal pores. These evaporation sites are innerepidermal walls especially subsidiary and guard cell walls becausethese are closest to air spaces with the highest water vapourdeficits. Less water than is traditionally supposed evaporatesfrom mesophyll cell walls. Low osmotic potentials of guard cells(large negative) are not required in building up high turgorpressures. However, they are required in competing for wateragainst the process of evaporation which causes low matric potentialsto develop in subsidiary and guard cell walls so that guardcolls can maintain the comparatively low turgor pressures whichhave been shown to operate the stomatal apparatus. Traditionalviews about leaf water relations and methods of estimating mesophyllresistances for carbon dioxide diffusion into leaves must bemodified.  相似文献   

15.
Attempts were made to inject different substances into epidermaland stomatal cells in order to observe their movement from cellto cell and their effects on guard cell metabolism. Althoughinjections of neutral red were successful and provided usefulinformation, injections of ABA and KCl did not yield any worthwhileresults. Measurements of pressure potentials in stomatal cells of fourspecies were carried out. These throw light on the role of epidermalturgor in influencing stomatal movements and thus on hypothesesof a mechanical advantage of subsidiary cells.  相似文献   

16.
The stomatal complex of Zea mays consists of two guard cells with the pore in between them and two flanking subsidiary cells. Both guard cells and subsidiary cells are important elements for stoma physiology because a well-coordinated transmembrane shuttle transport of potassium and chloride ions occurs between these cells during stomatal movement. To shed light upon the corresponding transport systems from subsidiary cells, subsidiary cell protoplasts were enzymatically isolated and in turn, analyzed with the patch-clamp technique. Thereby, two K(+)-selective channel types were identified in the plasma membrane of subsidiary cells. With regard to their voltage-dependent gating behavior, they may act as hyperpolarization-dependent K(+) uptake and depolarization-activated K(+) release channels during stomatal movement. Interestingly, the K(+) channels from subsidiary cells and guard cells similarly responded to membrane voltage as well as to changes in the K(+) gradient. Further, the inward- and outward-rectifying K(+) current amplitude decreased upon a rise in the intracellular free Ca(2+) level from 2 nM to the micro M-range. The results indicate that the plasma membrane of subsidiary cells and guard cells has to be inversely polarized in order to achieve the anti-parallel direction of K(+) fluxes between these cell types during stomatal movement.  相似文献   

17.
Carbon uptake and transpiration in plant leaves occurs through stomata that open and close. Stomatal action is usually considered a response to environmental driving factors. Here we show that leaf gas exchange is more strongly related to whole tree level transport of assimilates than previously thought, and that transport of assimilates is a restriction of stomatal opening comparable with hydraulic limitation. Assimilate transport in the phloem requires that osmotic pressure at phloem loading sites in leaves exceeds the drop in hydrostatic pressure that is due to transpiration. Assimilate transport thus competes with transpiration for water. Excess sugar loading, however, may block the assimilate transport because of viscosity build‐up in phloem sap. Therefore, for given conditions, there is a stomatal opening that maximizes phloem transport if we assume that sugar loading is proportional to photosynthetic rate. Here we show that such opening produces the observed behaviour of leaf gas exchange. Our approach connects stomatal regulation directly with sink activity, plant structure and soil water availability as they all influence assimilate transport. It produces similar behaviour as the optimal stomatal control approach, but does not require determination of marginal cost of water parameter.  相似文献   

18.
Identifying the consequences of grass blade morphology (long, narrow leaves) on the heterogeneity of gas exchange is fundamental to an understanding of the physiology of this growth form. We examined acropetal changes in anatomy, hydraulic conductivity and rates of gas exchange in five grass species (including C(3) and C(4) functional types). Both stomatal conductance and photosynthesis increased along all grass blades despite constant light availability. Hydraulic efficiency within the xylem remained constant along the leaf, but structural changes outside the xylem changed in concert with stomatal conductance. Stomatal density and stomatal pore index remained constant along grass blades but interveinal distance decreased acropetally resulting in a decreased path length for water movement from vascular bundle to stomate. The increase in stomatal conductance was correlated with the decreased path length through the leaf mesophyll. A strong correlation between the distance from vascular bundles to stomatal pores and stomatal conductance has been identified across species; our results suggest this relationship also exists within individual leaves.  相似文献   

19.
The water relations of leaves of Tradescantia virginiana were studied using the miniaturized pressure probe (Hüsken, E. Steudle, Zimmermann, 1978 Plant Physiol. 61, 158–163). Under well-watered conditions cell turgor pressures, P o, ranged from 2 to 8 bar in epidermal cells. In subsidiary cells P o was about 1.5 to 4.5 bar and in mesophyll cells about 2 to 3.5 bar. From the turgor pressure, relaxation induced in individual cells by changing the turgor pressure directly by means of the pressure probe, the half-time of water exchange was measured to be between 3 and 100 s for the epidermal, subsidiary, and mesophyll cells. The volumetric elastic modulus, , of individual cells was determined by changing the cell volume by a defined amount and simultaneously measuring the corresponding change in cell turgor pressure. The values for the elastic modulus for epidermal, subsidiary, and mesophyll cells are in the range of 40 to 240 bar, 30 to 200 bar, and 6 to 14 bar, respectively. Using these values, the hydraulic conductivity, L p, for the epidermal, subsidiary, and mesophyll cells is calculated from the turgor pressure relaxation process (on the basis of the thermodynamics of irreversible processes) to be between 1 and 55·10-7 cm s-1 bar-1. The data for the volumetric elastic modulus of epidermal and subsidiary cells indicate that the corresponding elastic modulus for the guard cells should be considerably lower due to the large volume changes of these cells during opening or closing. Recalculation of experimental data obtained by K. Raschke (1979, Encycl. Plant Physiol. N.S., vol. 7, pp 383–441) on epidermal strips of Vicia faba indicates that the elastic modulus of guard cells of V. faba is in the order of 40–80 bar for closed stomata. However, with increasing stomatal opening, i.e., increasing guard cell volume, decreases. Therefore, in our opinion Raschke's results would indicate a relationship between guard cell volume and which would be inverse to that for plant cells known in the literature. assumes values between 20–40 bar when the guard cell colume is soubled.  相似文献   

20.
C. K. Pallaghy 《Planta》1971,101(4):287-295
Summary The correlation between stomatal action and potassium movement in the epidermis of Zea mays was examined in isolated epidermal strips floated on distilled water. Stomatal opening in the isolated epidermis is reversible in response to alternate periods of light or darkness, and is always correlated with a shift in the potassium content of the guard cells. K accumulates in guard cells during stomatal opening, and moves from the guard cells into the subsidiary cells during rapid stomatal closure. When epidermal strips are illuminated in normal air, as against CO2-free air, the stomata do not open and there is a virtually complete depletion of K from the stomatal apparatus. In darkness CO2-containing air inhibits stomatal opening and K accumulation in guard cells, but does not lead to a depletion of K from the stomata as observed in the light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号