首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The total biomass of jellyfish on the shelf of the eastern Sea of Okhotsk in the summer is estimated as 1672700 tons according to the results of hydroacoustic measurements and 901000 tons by the method of squares. The use of hydroacoustic technologies makes evaluation of the actual stock and range of medusae more accurate, and the further enhancement and perfection of the hydroacoustic method based on multifrequency measurements enables one to obtain more reliable estimates. A significant increase (nearly 25 times) of the total jellyfish biomass takes place in the summer period. Cyanea prevailed in biomass in the spring and Chrysaora melanaster prevailed in the summer. Some species showed considerable expressed spatial differentiation of distribution and affinity to certain environmental conditions. The studied species were almost exclusively zoophages. Their algal diet consisted mainly of diatom algae. Scyphomedusa’s diet mainly included the so-called “peaceful” zooplankton, viz., euphausiids and copepods (as a rule, over 50% the mass), at the same time carnivorous zooplankton, saggits, amphipods, and small medusae also formed a substantial share of their diet. One individual of the predominant jellyfish species consumes a total of 6.1 to 70.5 kcal during its lifecycle, which corresponds to 79.1–513.0 g of raw organic material, assuming 70% assimilability. The relatively low demand for food of this sort can be explained by the low caloric value of the jellyfish body, 96–97% of which consists of water. The distribution and composition of the jellyfish prey show that scyphomedusae exert the greatest influence on the nekton community, as they concentrate in the shelf area of the eastern part of the sea, at walleye pollock spawning sites. There the larvae of bottom invertebrates, including commercially valuable organisms, such as crab and shrimp, are also consumed. In the summer, jellyfish eat nearly 100 billion eggs and 20 billion larvae of walleye pollock, as well as 130 billion decapod (mostly crab) larvae each day, which corresponds to 0.03% of the eggs and 0.003% of the larvae of walleye pollock and 0.003% of the decapod larvae in the estimated stock.  相似文献   

2.
Data on the numbers, species composition, and spatial distribution of ichthyoplankton, mesoplankton, and jelly-bodied microplankton in the western sector of the Black Sea in October 2005 are presented. A decrease in the predatory impact of the comb jellyfish Mnemiopsis leidyi on mesoplankton is recorded, which promoted the formation of favorable trophical conditions for larval fish survival. In the 1990s in the study area, the proportion of larvae with empty stomachs reached 80–90%; in October 2005, all the studied larvae were with food.  相似文献   

3.
The influence of light intensity on the fatty acid profiles of the scyphozoan jellyfish Cassiopea sp. and its endosymbiotic zooxanthellae was investigated using a manipulative experiment. The aims of the study were to: 1) identify changes related to light intensity in the fatty acid profiles of the host jellyfish and zooxanthellae; 2) determine if jellyfish exposed to low light intensities compensated for reduced rates of photosynthesis by increasing heterotrophic feeding; and 3) determine if concentrations of zooxanthellae and chlorophyll a (chl a) increased in jellyfish exposed to reduced light intensity. Jellyfish were collected from an artificial urban tidal lake in southeast Queensland, Australia. Two were frozen for immediate analysis and 15 were randomly allocated to each of nine mesocosms. Three replicate mesocosms were then randomly allocated to each of three light treatments: 100%, 25%, and 10% PAR. The mesocosms were supplied with unfiltered, continuous flowing seawater and jellyfish fed on natural zooplankton, supplemented with frozen Mysis shrimp. Three jellyfish were sampled, with replacement, from each mesocosm 3, 15, 22, 39 and 69 days after the experiment commenced. Fatty acids as methyl esters in the host tissue (mesoglea) and zooxanthellae were determined separately using gas chromatography and verified by mass spectrometry. The fatty acid profiles of the host jellyfish and zooxanthellae remained unchanged in the 100% PAR treatment throughout the experiment but varied in the lower light treatments. A decrease in light intensity caused a reduction in the concentrations of some polyunsaturated fatty acids such as 18:1ω9 and 18:4ω3 in the zooxanthellae, the latter being abundant in dinoflagellates. Concomitantly, the concentrations of these fatty acids increased in the host tissues, suggesting a possible transfer of zooxanthellate fatty acids to the jellyfish. Jellyfish in the 10% PAR treatment shrank during the experiment and their fatty acid profiles did not reflect any shift towards increased heterotrophy. On days 22 and 69 concentrations of chl a, zooxanthellae and [chl a] zooxanthella− 1 were determined. [chl a] and [chl a] zooxanthella− 1, initially increased in the lower light treatments but decreased by the end of the experiment indicating that jellyfish may adapt to reduced light intensity in the short-term but that long-term exposure to reduced light results in compromised performance.  相似文献   

4.
研究使用环境DNA宏条形码技术(eDNA metabarcoding)检测辽东湾东北部河口区围海养殖池塘水母种类多样性,探索适用于水母种类物种鉴定和监测的新方法。利用环境DNA宏条形码技术,分别基于18S rDNA和COI宏条形码检测了辽东湾东北部河口区围海养殖池塘水母种类多样性,通过水样采集、过滤、eDNA提取、遗传标记扩增、测序与生物信息分析的环境DNA宏条形码标准化分析流程,从围海养殖池塘7个采样点中获得可检测的采样点数据。结果显示,基于18S rDNA宏条形码检测出8种水母种类,其中钵水母纲大型水母2种、水螅水母总纲小型水母6种;基于COI宏条形码技术共检测出19种水母种类,其中钵水母纲大型水母5种、水螅水母总纲小型水母14种;两种DNA条形码标记都显示养殖种类海蜇(Rhopilema esculentum)为优势种。研究结果表明,环境DNA宏条形码技术作为一种新兴的生物多样性监测手段可用于快速检测水母种类多样性,在水母类物种鉴定、监测及早期预警中有较大的应用潜能。  相似文献   

5.
The phyllosoma, a larva of spiny and slipper lobsters, has an exceptionally flat body and long appendages. It is known to associate with several species of cnidarian jellyfish, a behavior that is not rare in crustaceans. Indeed, phyllosomas clinging onto jellyfish have been observed both in the laboratory and in the natural environment. Wild phyllosomas have been found to contain jellyfish tissues in their hepatopancreas and feces, suggesting that the larvae utilize jellyfish as a food source; however, how they capture jellyfish and what species of jellyfish they prefer have rarely been investigated. The few previous studies conducted have suggested that phyllosomas have a high specificity for jellyfish (preying on only a few species); in contrast, the results of our study indicate that specificity is low. We show that phyllosomas prey on a variety of jellyfish species including deadly stinging types, on a variety of jellyfish developmental stages, and on various parts of the jellyfish body. When making contact with a jellyfish, phyllosomas first cling onto its exumbrella, feed on its tentacles or oral arms, and then consume the exumbrella. Phyllosomas may be capable of defending themselves against any types of nematocyst sting, and it is likely that they have evolved to utilize venomous jellyfish as a food in the open sea, where food may be scarce.  相似文献   

6.
Reiji Masuda 《Hydrobiologia》2009,616(1):269-277
Commensal behavior of jack mackerel Trachurus japonicus (Temminck & Schlegel) with jellyfishes has been widely observed but its ecological function is still unclear. The goal of the present research is to examine the function of association behavior with jellyfish in the laboratory and in field observations with an emphasis on ontogenetic changes. In the laboratory, jack mackerel juveniles (mean standard length (SL) = 11, 19, 38, and 55 mm) were placed in 500-l polycarbonate tanks with two live moon jellyfish, Aurelia aurita (Linné), and one artificial jellyfish made of silicon. Association behavior with either live or artificial jellyfish was visually observed under the following conditions: control, presence of a predator model, before and after feeding live Artemia, 1 h and 3 h after feeding, and at night. Jack mackerel at 11 mm SL associated with both the moon jellyfish and artificial jellyfish, unrelated to the presence of a predator model or feeding. Juveniles at 19 mm associated with moon jellyfish only in the presence of a predator model. Larger juveniles associated with moon jellyfish at 1 h and 3 h after feeding. Thus the ecological function of association was proposed to develop first from school formation, next as a hiding place from predators, and then as a food source. Underwater observations of jack mackerel associating with giant jellyfish Nemopilema nomurai (Kishinouye) in two different areas in the Sea of Japan supported this hypothesis. High predation pressure from benthic piscivorous fishes in the southern area (Tsushima) may encourage association with jellyfish, whereas pressure from pelagic predators in the northern area (Maizuru) may encourage settlement to rocky reef habitats in temperate waters. Thus the jellyfish may also function as a vehicle for the northward migration of this species. Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances  相似文献   

7.
Laboratory experiments revealed distinct effects of turbidity on the survival of Japanese anchovy Engraulis japonicus larvae when exposed to either visual (jack mackerel Trachurus japonicus) or tactile (moon jellyfish Aurelia aurita) predators. The experiments were conducted in 30 l tanks with three levels of turbidity obtained by dissolving 0, 50 or 300 mg l(-1) of kaolin. Predators were introduced to experimental tanks followed by larvae of E. japonicus ranging from 5 to 25 mm standard lengths (L(s) ). When exposed to T. japonicus, the mean survival rate of larvae was significantly higher in 300 mg l(-1) treatments compared to the other turbidity levels. When exposed to A. aurita, however, there was no difference in the survival rates among different turbidity treatments. The survival rates when exposed to either predator improved with larval growth. The logistic survivorship models for E. japonicus larvae when exposed to A. aurita had an inflection point at c. 12 mm L(s) , suggesting that their size refuge from A. aurita is close to this value. Comparison to a previous study suggests a high vulnerability of shirasu (long and transparent) fish larvae to jellyfish predation under turbidity. This study indicates that anthropogenic increases of turbidity in coastal waters may increase the relative effect of jellyfish predation on fish larvae.  相似文献   

8.
Synthetic peptides are known to trigger metamorphosis to the polyp stage in larvae and larva-like buds of the jellyfish Cassiopea andromeda. Coupling of a hydrophobic moiety to the amino terminus of such peptides was found to increase their efficiency. Hydrophobicity can thus be considered an important factor in the biological activity of peptidic inducers. By establishing the n-octanol/water partition coefficient in order to characterize the hydrophobicity of bioactive peptides, we demonstrate that this parameter and efficiency are positively correlated in peptides of the same amino acid sequence. Hydrophobicity proved to be of much lesser importance than amino acid sequence when data of structurally disparate inducer peptides were considered.  相似文献   

9.
大型水母幼体生长的影响因子研究进展   总被引:1,自引:0,他引:1  
21世纪以来,中国东、黄海,韩国西海岸以及日本海连年发生大型水母暴发现象,对海洋渔业的生产活动以及海洋生态系统带来巨大的影响。水母暴发形成机制非常复杂,解释其发生机理并有效预报是目前急待解决的问题。大型水母的生活史中有明显的世代交替现象,受精卵,浮浪幼虫,螅状体,足囊,横裂体到碟状体的幼体发育阶段属无性世代,幼蜇发育到成蜇阶段属有性世代。在早期生活史中,螅状体的足囊繁殖与横裂生殖是大型水母无性繁殖的重要方式,对其成体的数量形成至关重要。综述了国内外有关温度、盐度、光以及营养条件对大型水母早期发育阶段的影响研究进展,研究表明温度是影响螅状体发育以及足囊繁殖和横裂生殖的最主要的环境因子;盐度、光和营养条件在适温范围内,均对螅状体和横裂生殖有一定的影响,其上下限随水母种类和发育阶段有所变化。展望了大型水母早期幼体研究的发展趋势,如环境因子对不同种类的大型水母幼体生长机理的影响、多个环境因子对幼体的综合作用、动态的环境因子与大型水母幼体之间的关系等。  相似文献   

10.
To establish if fishes’ consumption of jellyfish changes through the year, we conducted a molecular gut-content assessment on opportunistically sampled species from the Celtic Sea in October and compared these with samples previously collected in February and March from the Irish Sea. Mackerel Scomber scombrus were found to feed on hydrozoan jellyfish relatively frequently in autumn, with rare consumption also detected in sardine Sardina pilchardus and sprat Sprattus sprattus. By October, moon jellyfish Aurelia aurita appeared to have escaped predation, potentially through somatic growth and the development of stinging tentacles. This is in contrast with sampling in February and March where A. aurita ephyrae were heavily preyed upon. No significant change in predation rate was observed in S. sprattus, but jellyfish predation by S. scombrus feeding in autumn was significantly higher than that seen during winter. This increase in consumption appears to be driven by the consumption of different, smaller jellyfish species than were targeted during the winter.  相似文献   

11.
The amount of ultraviolet (UV) radiation reaching the earth's surface has increased due to depletion of the ozone layer. Several studies have reported that UV radiation reduces survival of fish larvae. However, indirect and sub-lethal impacts of UV radiation on fish behavior have been given little consideration. We observed the escape performance of larval cod (24 dph, SL: 7.6±0.2 mm; 29 dph, SL: 8.2±0.3 mm) that had been exposed to sub-lethal levels of UV radiation vs. unexposed controls. Two predators were used (in separate experiments): two-spotted goby (Gobiusculus flavescens; a suction predator) and lion's mane jellyfish (Cyanea capillata; a "passive" ambush predator). Ten cod larvae were observed in the presence of a predator for 20 minutes using a digital video camera. Trials were replicated 4 times for goby and 5 times for jellyfish. Escape rate (total number of escapes/total number of attacks ×100), escape distance and the number of larvae remaining at the end of the experiment were measured. In the experiment with gobies, in the UV-treated larvae, both escape rate and escape distance (36%, 38±7.5 mm respectively) were significantly lower than those of control larvae (75%, 69±4.7 mm respectively). There was a significant difference in survival as well (UV: 35%, Control: 63%). No apparent escape response was observed, and survival rate was not significantly different, between treatments (UV: 66%, Control: 74%) in the experiment with jellyfish. We conclude that the effect and impact of exposure to sub-lethal levels of UV radiation on the escape performance of cod larvae depends on the type of predator. Our results also suggest that prediction of UV impacts on fish larvae based only on direct effects are underestimations.  相似文献   

12.
The jellyfish Drymonema larsoni bloomed in the northern Gulf of Mexico in the Fall of 2000 and fed voraciously on the moon jellyfish Aurelia sp., especially where they were concentrated in frontal convergence. We evaluated the predation potential of D. larsoni on Aurelia sp. medusa using laboratory and field data. Our data set represents the most complete study to date on the new scyphozoan family Drymonematidae and indicates that D. larsoni may be one of the most effective predators on other jellyfish recorded to date. On average, each D. larsoni medusa contained 2.7 Aurelia sp. prey, but as many as 34. In addition, 94% of moon jellyfish unassociated with D. larsoni showed scarring from previous contact with D. larsoni tentacles. Digestion times for D. larsoni feeding on individual Aurelia sp. ranged from 2 to 3 h and averaged 2.7 h. Potential clearance rates for predation on Aurelia sp. were extremely high (320–1043.5 m3 d−1) and indicate that D. larsoni is potentially an important predator on Aurelia sp. blooms where the species co-occur. When the two species co-occur in numbers, predation by D. larsoni medusae could reduce moon jellyfish blooms, possibly alleviating predation pressure on lower trophic levels utilized by Aurelia sp., such as copepods and the early life history stages of ecologically and economically important fish and invertebrate species.  相似文献   

13.
This study describes the first record of the whale shark Rhincodon typus association with the cannonball jellyfish Stomolophus meleagris in the Gulf of California, Mexico. Whale sharks were observed swimming and feeding among swarms of jellyfish, suggesting competition and predatory behaviour given the overlap in food preferences between both species. This finding is relevant because of the species‐wide distribution and the importance of these interactions, which should be considered in conservation strategies of R. typus and management of cannonball jellyfish fisheries.  相似文献   

14.
Cotylorhiza tuberculata is a common symbiotic scyphozoan in the Mediterranean Sea. The medusae occur in extremely high abundances in enclosed coastal areas in the Mediterranean Sea. Previous laboratory experiments identified thermal control on its early life stages as the driver of medusa blooms. In the present study, new ecological aspects were tested in laboratory experiments that support the pelagic population success of this zooxanthellate jellyfish. We hypothesized that planulae larvae would have no settlement preference among substrates and that temperature would affect ephyra development, ingestion rates and daily ration. The polyp budding rate and the onset of symbiosis with zooxanthellae also were investigated. Transmission electron microscopy revealed that zooxanthella infection occurred by the polyp stage. Our results showing no substrate selectivity by planulae and high polyp budding rates in high temperatures suggest increased benthic polyp populations, which would lead to higher medusa abundances. Rates of transition from ephyrae to medusae and the feeding of early medusa stages also increased with temperature. Continuing changes in coastal ecosystems such as future climate warming and marine construction may lead to increased populations of jellyfish to the detriment of fish globally.  相似文献   

15.
In recent years, jellyfish blooms have attracted considerable scientific interest for their potential impacts on human activities and ecosystem functioning, with much attention paid to jellyfish as predators and to gelatinous biomass as a carbon sink. Other than qualitative data and observations, few studies have quantified direct predation of fish on jellyfish to clarify whether they may represent a seasonally abundant food source. Here we estimate predation frequency by the commercially valuable Mediterranean bogue, Boops boops on the mauve stinger jellyfish, Pelagia noctiluca, in the Strait of Messina (NE Sicily). A total of 1054 jellyfish were sampled throughout one year to quantify predation by B. boops from bite marks on partially eaten jellyfish and energy density of the jellyfish. Predation by B. boops in summer was almost twice that in winter, and they selectively fed according to medusa gender and body part. Calorimetric analysis and biochemical composition showed that female jellyfish gonads had significantly higher energy content than male gonads due to more lipids and that gonads had six-fold higher energy content than the somatic tissues due to higher lipid and protein concentrations. Energetically, jellyfish gonads represent a highly rewarding food source, largely available to B. boops throughout spring and summer. During the remainder of the year, when gonads were not very evident, fish predation switched towards less-selective foraging on the somatic gelatinous biomass. P. noctiluca, the most abundant jellyfish species in the Mediterranean Sea and a key planktonic predator, may represent not only a nuisance for human leisure activities and a source of mortality for fish eggs and larvae, but also an important resource for fish species of commercial value, such as B. boops.  相似文献   

16.
The biomass and abundance of large jellyfish (Cnidaria: Scyphozoa, Hydrozoa) was estimated and their seasonal and interannual dynamics was studied based on the data of trawl surveys conducted by the Pacific Research Fisheries Center (TINRO Center) in the Sea of Okhotsk, Bering Sea, Sea of Japan, and the Northwestern Pacific Ocean (NWPO) in 1991–2009. Most of the jellyfish biomass (over 95%) in the Sea of Okhotsk, Bering Sea, and NWPO was formed by Chrysaora spp., Cyanea capillata, Aequorea spp., Phacellophora camtschatica, and Aurelia limbata. The same species along with Calycopsis nematophora predominated in abundance in the Bering Sea and NWPO, while Ptychogena lactea, C. capillata, and Chrysaora spp. were most abundant in the Sea of Okhotsk. In the northwestern Sea of Japan, Aurelia aurita, C. capillata, and Aequorea spp. predominated both in abundance and biomass. Generally, the jellyfish abundance reached the highest values in the summer and fall and decreased abruptly in the winter. Meanwhile, the seasonal dynamics proved to be specific for each species and were manifested in some of them by reaching maximum values at various periods of the warm season, whereas the other (Tima sachalinensis and P. lactea) showed the reverse pattern of seasonal variations, with the highest abundance in cold months. Jellyfish biomass and abundance varied greatly from year to year, which was related to the short lifecycle and alternation between sexual and asexual generations, in which reproductive success was predetermined by various environmental factors. In the fall, year-to-year fluctuations of the relative biomass could increase by ten times. In 1991–2009, it varied from 200 to 2000 kg/km2 in the northern Sea of Okhotsk, from 500 to 4200 kg/km2 in the northwestern Bering Sea, and from 300 to 3700 kg/km2 in the southwestern Bering Sea. Taking the jellyfish abundance estimates into account, along with the vertical distribution and the seasonal dynamics, the overall biomass of large species that occurred in trawl catches in Far Eastern seas and adjacent Pacific waters during the warm season could reach 13.0–15.0 million tons, of which up to about 6.0 million tons would be concentrated in the western Bering Sea and 5.5–6.0 million tons in the Sea of Okhotsk.  相似文献   

17.
Among the edible species, jellyfish Rhopilema esculentum, is one of the most abundant and important fishery species in China. The jellyfish fishery is characterized by considerable fluctuations in catch and a very short fishing season. In this article, we first review the research results on the biology of R. esculentum, which previously were published in Chinese, as related to the jellyfish enhancement and fishery. Next, we review results from enhancement experiments conducted from 1984 to 2004, with the aims of stabilizing and increasing catch. During 2005 and 2006, stock enhancement of R. esculentum was carried out on a large scale for the first time in Liaodong Bay, China, where 414 million juvenile jellyfish (umbrella diameter > 1 cm) were released. We present results of these enhancements, including the survey methods, catch prediction, enhancement assessment, and fishery management. In 2005 and 2006, the recapture rate of released jellyfish was 3.0 and 3.2%, respectively. The fishermen earned ¥ 159 million during the 2 years. The ratio of the input (cost of culturing juvenile jellyfish) to the output (value of the sales) was about 1:18. The high commercial value of R. esculentum enhancement in Liaodong Bay makes this a very successful enterprise. Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances  相似文献   

18.
The decomposition of jellyfish after major bloom events results in the release of large amounts of nutrients, which can significantly alter nutrient and oxygen dynamics in the surrounding environment. The response of the ambient bacterial community to decomposing jellyfish biomass was evaluated in two marine ecosystems, the Gulf of Trieste (northern Adriatic Sea) and Big Lake (Mljet Island, southern Adriatic Sea). The major difference between these two ecosystems is that Aurelia sp. medusae occur throughout the year in the oligotrophic Big Lake, whereas in the mesotrophic Gulf of Trieste, they occur only seasonally and often as blooms. Addition of homogenized jellyfish to enclosed bottles containing ambient water from each of these systems triggered considerable changes in the bacterial community dynamics and in the nutrient regime. The high concentrations of protein, dissolved organic phosphorous (DOP), and PO4 3− immediately after homogenate addition stimulated increase in bacterial abundance and production rate, coupled with NH4 + accumulation in both ecosystems. Our preliminary results of the bacterial community structure, as determined with denaturing gradient gel electrophoresis, indicated differences in the bacterial community response between the two ecosystems. Despite divergence in the bacterial community responses to jellyfish homogenate, increased bacterial biomass and growth rates in both distinctive marine systems indicate potentially significant effects of decaying jellyfish blooms on microbial plankton.  相似文献   

19.
To date, a disparate array of concepts and methods have been used to study the growth of jellyfish, with the result that few generalities have emerged which could help, e.g., in predicting growth patterns in unstudied species. It is shown that this situation can be overcome by length-frequency analysis (LFA), applied to jellyfish bell diameter (i.e., “length”) frequency data. A selection of LFA methods (ELEFAN, Wetherall plots and length-converted catch curves, all implemented in the FiSAT software) is applied here to 34 sets of bell diameter frequency data of jellyfish. This led to the estimates of parameters of the von Bertalanffy growth function (VBGF), which, especially in its seasonal form, was found to fit the available size-frequency data reasonably well. We also obtained numerous estimates of mortality, useful for modeling the life history of jellyfish. Finally, by scaling their asymptotic weight (W , a parameter of the VBGF) to the weight they would have if they had the same water content as fish, we show that most jellyfish grow at the same rate as small fishes (guppies and anchovies). As in fish, the VBGF parameters K and W , when plotted in a double logarithmic (“auximetric”) plot, tend to cluster into ellipsoid shapes, which increase in area when shifting from species to genera, families, etc. If validated by subsequent studies, auximetric plots for jellyfish would provide a powerful tool for testing comparative hypotheses on jellyfish life history. Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances  相似文献   

20.
Ocean acidification is the decline in seawater pH that results from the absorption of atmospheric carbon dioxide (CO2). Decreased pH has negative effects on survivability, growth, and development in many marine calcifiers, potentially resulting in reduced coral species richness. This reduction in richness could open new niche space, allowing the spread of invasive species, such as the upside‐down jellyfish (Cassiopea spp.). Like corals, this jellyfish forms symbiotic relationships with zooxanthellae, photosynthetic dinoflagellates. This study focused on the effect of seawater acidification in Cassiopea spp. We monitored zooxanthellae density and two measures of health (bell diameter and volume) in individuals of Cassiopea sp. at three pH levels chosen to mimic different open‐ocean average conditions: 8.2, representing pre‐industrial revolution conditions; and 7.9 and 7.6, representing predicted declines in pH in the next century. Zooxanthellae density and health of the jellyfish were measured twice—prior to experimental manipulations and after four weeks of exposure to experimental pHs—in three consecutive trials. The effects of pH and Trial on proportional change in jellyfish attributes were analyzed using generalized linear mixed models. We found no significant effects of either factor. These results indicate that decreasing seawater pH has no apparent negative effect on zooxanthellae density or health in Cassiopea, which suggests that these jellyfish may be relatively insensitive to the impacts of ocean acidification, heightening its potential as an invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号