首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since ethanol consumption decreases hepatic aminotransferase activities in vivo, mechanisms of ethanol-mediated transaminase inhibition were explored in vitro using mitochondria-depleted rat liver homogenates. When homogenates were incubated at 37 degrees with 50 mM ethanol for 1 hr, alanine aminotransferase decreased by 20%, while aspartate aminotransferase was unchanged. After 2 hr, aspartate aminotransferase decreased by 20% and by 3 hr, alanine and aspartate aminotransferases were decreased by 31 and 23%, respectively. Levels of acetaldehyde generated during ethanol oxidation were 525 +/- 47 microM at 1 hr, 855 +/- 14 microM at 2 hr, and 1293 +/- 140 microM at 3 hr. Although inhibition of alcohol oxidation with methylpyrazole or cyanide markedly decreased ethanol-mediated transaminase inhibition, neither incubation with acetate nor generation of reducing equivalents by oxidation of lactate, malate, xylitol, or sorbitol altered the activity of either enzyme. However, semicarbazide, an aldehyde scavenger, prevented inhibition of both aminotransferases by ethanol. Moreover, incubation with 5 mM acetaldehyde for 1 hr inhibited alanine and aspartate aminotransferases by 36 and 26%, respectively. Cyanamide, an aldehyde dehydrogenase inhibitor, had little effect on ethanol-mediated transaminase inhibition. Thus, metabolism of ethanol by rat liver homogenates produces transaminase inhibition similar to that described in vivo and this effect requires acetaldehyde generation but not acetaldehyde oxidation. Since addition of pyridoxal 5'-phosphate to assay mixes did not reverse ethanol effects, aminotransferase inhibition does not result from displacement of vitamin B6 coenzymes.  相似文献   

2.
Effects of ischaemia on metabolite concentrations in rat liver   总被引:24,自引:21,他引:3       下载免费PDF全文
1. Changes in the concentrations of ammonia, glutamine, glutamate, 2-oxoglutarate, 3-hydroxybutyrate, acetoacetate, alanine, aspartate, malate, lactate, pyruvate, NAD(+), NADH and adenine nucleotides were measured in freeze-clamped rat liver during ischaemia. 2. Although the concentrations of most of the metabolites changed rapidly during ischaemia the ratios [glutamate]/[2-oxoglutarate][NH(4) (+)] and [3-hydroxybutyrate]/[acetoacetate] changed equally and the value of the expression [3-hydroxybutyrate][2-oxoglutarate][NH(4) (+)]/[acetoacetate][glutamate] remained approximately constant, indicating that the 3-hydroxybutyrate dehydrogenase and glutamate dehydrogenase systems were at near-equilibrium with the mitochondrial NAD(+) couple. 3. The value of the expression [alanine][oxoglutarate]/[pyruvate][glutamate] was about 0.7 in vivo and remained fairly constant during the ischaemic period of 5min, although the concentrations of alanine and oxoglutarate changed substantially. No explanation can be offered why the value of the ratio differed from that of the equilibrium constant of the alanine aminotransferase reaction, which is 1.48. 4. Injection of l-cycloserine 60min before the rats were killed increased the concentration of alanine in the liver fourfold and decreased the concentration of the other metabolites measured, except that of pyruvate. During ischaemia the concentration of alanine did not change but that of aspartate almost doubled. 5. After treatment with l-cycloserine the value in vivo of the expression [alanine][oxoglutarate]/[pyruvate][glutamate] rose from 0.7 to 2.4. During ischaemia the value returned to 0.8. 6. The effects of l-cycloserine are consistent with the assumption that it specifically inhibits alanine aminotransferase. 7. Most of the alanine formed during ischaemia is probably derived from pyruvate and from ammonia released by the deamination of adenine nucleotides and glutamine. The alanine is presumably formed by the combined action of glutamate dehydrogenase and alanine aminotransferase. 8. The rate of anaerobic glycolysis, calculated from the increase in the lactate concentration, was 1.3mumol/min per g fresh wt. 9. Although the concentrations of the adenine nucleotides changed rapidly during ischaemia, the ratio [ATP][AMP]/[ADP](2) remained constant at 0.54, indicating that adenylate kinase established near-equilibrium under these conditions.  相似文献   

3.
1. Isolated hepatocytes were used to establish the reasons for the accumulation of aspartate, previously observed when the isolated rat liver was perfused with ethanol in the presence of alanine or ammonium lactate. 2. The isolated cells did not form aspartate when incubated with alanine and ethanol, but much aspartate was formed on incubation with ammonium lactate and ethanol. 3. Urea was the main nitrogenous product on incubation with alanine, in contrast with the perfused liver, where major quantities of NH4+ are also formed. When the formation of urea was nullified by the addition of urease, alanine plus ethanol caused aspartate formation, indicating that aspartate formation depends on the presence of critical concentrations of NH4+. 4. The accumulated aspartate was present in the cytosol. Ethanol halved the content of 2-oxoglutarate in the cytosol and more than trebled that of glutamate in the mitochondria. 5. The findings support the assumption that 2-oxoglutarate formed by the mitochondrial aspartate aminotransferase is not translocated to the cytosol in the presence of ethanol and NH4+, because it is rapidly converted into glutamate, the dehydrogenation of ethanol providing the required NADH. Aspartate, however, is translocated to the cytosol and accumulates there because of the lack of stoicheiometric amounts of oxoglutarate.  相似文献   

4.
In isolated hepatocytes from normal fed rats, the subcellular distribution of malate, citrate, 2-oxoglutarate, glutamate, aspartate, oxaloacetate, acetyl-CoA and CoASH has been determined by a modified digitonin method. Incubation with various substrates (lactate, pyruvate, alanine, oleate, oleate plus lactate, ethanol and aspartate) markedly changed the total cellular amounts of metabolites, but their distribution between the cytosolic and mitochondrial compartments was kept fairly constant. In the presence of lactate, pyruvate or alanine, about 90% of cellular aspartate, malate and oxaloacetate, and 50% of citrate was located in the cytosol. The changes in acetyl-CoA in the cytosol were opposite to those in the mitochondrial space, the sum of both remaining nearly constant. The mitochondrial acetyl-CoA/CoASH ratio ranged from 0.3-0.9 and was positively correlated with the rate of ketone body formation. The mitochondrial/cytosolic (m/c) concentration gradients for malate, citrate, 2-oxoglutarate, glutamate, aspartate, oxaloacetate, acetyl-CoA and CoASH averaged from hepatocytes under different substrate conditions were determined to be 1.0, 8.8, 1.6, 2.2, 0.5, 0.7, 13 and 40, respectively. From the distribution of citrate, a pH difference of 0.3 across the inner mitochondrial membrane was calculated, yet lower values resulted from the m/c gradients of 2-oxoglutarate, glutamate and malate. The mass action ratios for citrate synthase and mitochondrial aspartate aminotransferase have been calculated from the metabolite concentrations measured in the mitochondrial pellet fraction. A comparison with the respective equilibrium constants indicates that in intact hepatocytes, neither enzyme maintains its reactants at equilibrium. On the assumption that mitochondrial malate dehydrogenase and 3-hydroxybutyrate dehydrogenase operate near equilibrium, the concentration of free oxaloacetate appears to be 0.3-2 micron, depending on the substrate used. Plotting the calculated free mitochondrial oxaloacetate concentration against the citrate concentration measured in the mitochondrial pellet yielded a hyperbolic saturation curve, from which an apparent Km of citrate synthase for oxaloacetate in the intact cells of 2 micron can be derived, which is comparable to the value determined with purified rat liver citrate synthase. The results are discussed with respect to the supply of substrates and effectors of anion carriers and of key enzymes of the tricarboxylic acid cycle and fatty acid biosynthesis.  相似文献   

5.
In previous studies it was found that: (a) aspartate aminotransferase increases the aspartate dehydrogenase activity of glutamate dehydrogenase; (b) the pyridoxamine-P form of this aminotransferase can form an enzyme-enzyme complex with glutamate dehydrogenase; and (c) the pyridoxamine-P form can be dehydrogenated to the pyridoxal-P form by glutamate dehydrogenase. It was therefore concluded (Fahien, L.A., and Smith, S.E. (1974) J. Biol. Chem 249, 2696-2703) that in the aspartate dehydrogenase reaction, aspartate converts the aminotransferase into the pyridoxamine-P form which is then dehydrogenated by glutamate dehydrogenase. The present results support this mechanism and essentially exclude the possibility that aspartate actually reacts with glutamate dehydrogenase and the aminotransferase is an allosteric activator. Indeed, it was found that aspartate is actually an activator of the reaction between glutamate dehydrogenase and the pyridoxamine-P form of the aminotransferase. Aspartate also markedly activated the alanine dehydrogenase reaction catalyzed by glutamate dehydrogenase plus alanine aminotransferase and the ornithine dehydrogenase reaction catalyzed by ornithine aminotransferase plus glutamate dehydrogenase. In these latter two reactions, there is no significant conversion of aspartate to oxalecetate and other compounds tested (including oxalacetate) would not substitute for aspartate. Thus aspartate is apparently bound to glutamate dehydrogenase and this increases the reactivity of this enzyme with the pyridoxamine-P form of aminotransferases. This could be of physiological importance because aspartate enables the aspartate and ornithine dehydrogenase reactions to be catalyzed almost as rapidly by complexes between glutamate dehydrogenase and the appropriate mitochondrial aminotransferase in the absence of alpha-ketoglutarate as they are in the presence of this substrate. Furthermore, in the presence of aspartate, alpha-ketoglutarate can have little or no affect on these reactions. Consequently, in the mitochondria of some organs these reactions could be catalyzed exclusively by enzyme-enzyme complexes even in the presence of alpha-ketoglutarate. Rat liver glutamate dehydrogenase is essentially as active as thebovine liver enzyme with aminotransferases. Since the rat liver enzyme does not polymerize, this unambiguously demonstrates that monomeric forms of glutamate dehydrogenase can react with aminotransferases.  相似文献   

6.
1. In confirmation of previous work, administration of d(+)-galactosamine (0.5-0.75g/kg body wt.) to rats caused a hepatitis with histological evidence of liver damage and a 9-fold rise in aspartate aminotransferase activity in serum. 2. There was a significant elevation of blood lactate and pyruvate concentrations in 24h-starved rats treated with galactosamine but no change in the [lactate]/[pyruvate] ratio. 3-Hydroxybutyrate and acetoacetate concentrations in blood were decreased. 3. The changes in the concentrations of lactate, pyruvate and ketone bodies in the freeze-clamped liver were parallel to those observed in the blood. 4. In the livers of 24h-starved galactosamine-treated rats there were large increases in the concentrations of alanine (3-fold), citrate (5-fold), 2-oxoglutarate (4-fold), with smaller increases in malate, glutamate and aspartate. There was a 4-fold rise in the value of the mass-action ratio of the alanine aminotransferase system in the livers of galactosamine-treated rats when compared to controls. 5. There was a significant decrease in the activities of aspartate and alanine aminotransferases in the cytoplasm and the soluble fraction of sonicated homogenates of the livers of rats treated with galactosamine. The activity of phosphoenolpyruvate carboxylase was decreased by 75% of the control value. 6. Glucose synthesis from lactate in perfused livers from galactosamine-treated rats was inhibited 39% when compared with controls. 7. The results indicate that the conversion of lactate into glucose is decreased in the livers of galactosamine-treated rats and that this decrease may be due to the loss of phosphoenolpyruvate carboxylase from damaged hepatocytes.  相似文献   

7.
1. The subcellular distribution of adenine nucleotides, acetyl-CoA, CoA, glutamate, 2-oxoglutarate, malate, oxaloacetate, pyruvate, phosphoenolpyruvate, 3-phosphoglycerate, glucose 6-phosphate, aspartate and citrate was studied in isolated hepatocytes in the absence and presence of glucagon by using a modified digitonin procedure for cell fractionation. 2. In the absence of glucagon, the cytosol contains about two-thirds of cellular ATP, some 40-50% of ADP, acetyl-CoA, citrate and phosphoenolpyruvate, more than 75% of total 2-oxoglutarate, glutamate, malate, oxaloacetate, pyruvate, 3-phosphoglycerate and aspartate, and all of glucose 6-phosphate. 3. In the presence of glucagon the cytosolic space shows an increase in the content of malate, phosphoenolpyruvate and 3-phosphoglycerate by more than 60%, and those of aspartate and glucose 6-phosphate rise by about 25%. Other metabolites remain unchanged. After glucagon treatment, cytosolic pyruvate is decreased by 37%, whereas glutamate and 2-oxoglutarate decrease by 70%. The [NAD(+)]/[NADH] ratios calculated from the cytosolic concentrations of the reactants of lactate dehydrogenase and malate dehydrogenase were the same. Glucagon shifts this ratio and also that of the [NADP(+)]/[NADPH] couple towards a more reduced state. 4. In the mitochondrial space glucagon causes an increase in the acetyl-CoA and ATP contents by 25%, and an increase in [phosphoenolpyruvate] by 50%. Other metabolites are not changed by glucagon. Oxaloacetate in the matrix is only slightly decreased after glucagon, yet glutamate and 2-oxoglutarate fall to about 25% of the respective control values. The [NAD(+)]/[NADH] ratios as calculated from the [3-hydroxybutyrate]/[acetoacetate] ratio and from the matrix [malate]/[oxaloacetate] couple are lowered by glucagon, yet in the latter case the values are about tenfold higher than in the former. 5. Glucagon and oleate stimulate gluconeogenesis from lactate to nearly the same extent. Oleate, however, does not produce the changes in cellular 2-oxoglutarate and glutamate as observed with glucagon. 6. The changes of the subcellular metabolite distribution after glucagon are compatible with the proposal that the stimulation of gluconeogenesis results from as yet unknown action(s) of the hormone at the mitochondrial level in concert with its established effects on proteolysis and lipolysis.  相似文献   

8.
The activity of certain key enzymes involved in glutamic acid metabolism was studied in purified brain mitochondria and in mitochondrial subfractions separated in a discontinuous 1.2--1.6 mol/l sucrose gradient. Alanine aminotransferase and glutamate dehydrogenase were found to be matrix enzymes and aspartate aminotransferase to be associated with the inner mitochondrial membranes. After the purified mitochondria had been separated into 5 subfractions, aspartate aminotransferase and NAD+-dependent isocitrate dehydrogenase were found to be bound to the lighter mitochondrial subfractions settling at the 1.4--1.5 mol/l sucrose boundary while alanine aminotransferase, 4-aminobutyrate transaminase and glutamate dehydrogenase were associated with the heavier subfractions settling below 2.4 mol/l sucrose. The highest specific activity of the given enzymes was found in the subfraction settling at the 1.4--1.5 mol/l sucrose boundary, the only exception being alanine aminotransferase activity, whose maximum was found in the subfractions settling in 1.5 and 1.6 mol/l sucrose. It was concluded that alanine aminotransferase, in conjunction with glutamate dehydrogenase, is linked to NH3 binding and to the oxidation of reduced adenine nucleotides; in addition, alanine aminotransferase is presumed to have the function of transporting glutamate from the mitochondria to the extramitochondrial space.  相似文献   

9.
J S Juggi  K Prathap 《Cytobios》1979,24(94):117-134
The sequential pattern of lipid accumulation and associated biochemical changes were studied in two commonly used experimental models of nutritional fatty liver in rats. Female rats were maintained for 8 weeks on high fat, low protein diets containing adequate methionine and choline, and drinking water ad libitum (Diet 1), or deficient in methionine and choline and containing 20% ethanol as a substitute for drinking water (Diet 2). Histologically, there was a progressive increase in liver lipids, mainly in the periportal areas. Occasional foci of liver cell necrosis with lipogranuloma formation occurred in areas of severe fatty change. These changes appeared earlier and were more marked in rats maintained on Diet 2. Electron micrographs revealed large lipid droplets in the liver cells, which sometimes contained myelin figures. The mitochondria were enlarged, distorted and appeared as amorphous structures with disorientated cristae in rats on Diet 1, whereas they had a condensed conformation in rats maintained on Diet 2. Rough endoplasmic reticulum was fragmented and degranulated particularly in rats on Diet 1, and smooth endoplasmic reticulum showed hyperplasia and vesiculation in rats on Diet 2. There was a progressive increase in the total liver lipids and triglycerides in both the groups of rats. This fatty change was accompanied by a significant increase in hepatic 3-hydroxybutyrate, acetoacetate, malate, 2-oxoglutarate, citrate, lactate, ammonia, glutamate, alanine and aspartate, and a significant decrease in oxaloacetate, urea and glucose concentrations. The mass action ratios for alanine aminotransferase, aspartate amino transferase, and glutamate dehydrogenase, generally moved in a parallel direction. Hepatic ATP content was considerably reduced accompanied by a decrease in [ATP]/[ADP] ratios and a significant increased in [lactate]/[pyruvate] and [3-hydroxybutyrate]/[acetoacetate] ratios. There was a corresponding decrease in the [NAD+]/[NADH] ratios both in the cytoplasmic and mitochondrial compartments. These biochemical changes were particularly severe in rats maintained on Diet 1 and Diet 2 for 8 weeks. There was a very good relationship between impaired mitochondrial and endoplasmic reticulum functions, redox and phosphorylation states, and the relevance of their changes to the fate of fatty liver cells.  相似文献   

10.
The pyruvate-to-ethanol pathway in Entamoeba histolytica is unusual when compared with most investigated organisms. Pyruvate decarboxylase (EC 4.1.1.1), a key enzyme for ethanol production, is not found. Pyruvate is converted into acetyl-CoA and CO2 by the enzyme pyruvate synthase (EC 1.2.7.1), which has been demonstrated previously in this parasitic amoeba. Acetyl-CoA is reduced to acetaldehyde and CoA by the enzyme aldehyde dehydrogenase (acylating) (EC 1.2.1.10) at an enzyme activity of 9 units per g of fresh cells with NADH as a reductant. Acetaldehyde is further reduced by either a previously identified NADP+-linked alcohol dehydrogenase or by a newly found NAD+-linked alcohol dehydrogenase at an enzyme activity of 136 units per g of fresh cells. Ethanol is identified as the product of soluble enzymes of amoeba acting on pyruvate or acetyl-CoA. This result is confirmed by radioactive isotopic, spectrophotometric and gas-chromatographic methods.  相似文献   

11.
Using analytical subcellular fractionation techniques, 12% of the total L-alanine aminotransferase activity and 26% of the total L-aspartate aminotransferase activity was localized in enterocyte mitochondria. Alanine and aspartate were products from the oxidation of glutamine and glutamate by enterocyte mitochondria. At low concentrations, malate stimulated aspartate synthesis but was inhibitory at higher concentrations. The malate inhibition of aspartate synthesis, which increased in the presence of pyruvate, was accompanied by an increase in alanine synthesis. With glutamine as substrate in the presence of pyruvate and malate, alanine synthesis was increased by 127% on addition of purified L-alanine aminotransferase, in spite of large amounts of glutamate generated. It was concluded that when pyruvate is available the important route for glutamine or glutamate oxidation by transamination was via L-alanine:2-oxoglutarate aminotransferase and not via L-aspartate:2-oxoglutarate aminotransferase. Results suggested that mitochondria may account for 50% of alanine production from glutamine in the enterocyte despite the relatively low activity of L-alanine aminotransferase therein.  相似文献   

12.
The only exogenous substrates oxidized by mitochondria isolated from the flight muscle of the Japanese beetle (Popillia japonica) are proline, pyruvate and glycerol 3-phosphate. The highest rate of oxygen consumption is obtained with proline. The oxidation of proline leads to the production of more NH3 than alanine, indicating a functioning glutamate dehydrogenase (EC 1.4.1.2). Studies of mitochondrial extracts confirm the presence of a very active glutamate dehydrogenase, and this enzyme is found to be activated by ADP and inhibited by ATP. These extracts also show high alanine aminotransferase activity (EC 2.6.1.2) and a uniquely active "malic'' enzyme (EC 1.1.1.39). The "malic'' enzyme is activated by succinate and inhibited by ATP and by pyruvate. It is suggested that the input of tricarboxylate-cycle intermediate from proline oxidation is balanced by the formation of pyruvate from malate, and the complete oxidation of the majority of the pyruvate. Studies of the steady-state concentrations of mitochondrial CoASH and CoA thioesters during proline oxidation show a high succinyl (3-carboxypropionyl)-CoA content which falls on activating respiration with ADP. There is a concomitant rise in CoASH. However, the reverse transition, from state-3 to state-4 respiration, causes only very slight changes in acylation. The reasons for this are discussed. Studies of the mitochondrial content of glutamate, 2-oxoglutarate, malate, pyruvate, citrate and isocitrate during the same phases of proline oxidation give results consistent with control at the level of glutamate dehydrogenase and isocitrate dehydrogenase during proline oxidation, with the possibility of further control at "malic'' enzyme. During the oxidation of pyruvate all of the tricarboxylate-cycle intermediates and NAD(P)H follow the pattern of changes described in the blowfly (Johnson & Hansford, 1975; Hansford, 1974) and isocitrate dehydrogenase is identified as the primary site of control.?2OAuthor  相似文献   

13.
Inhibition of hepatic gluconeogenesis by ethanol   总被引:21,自引:10,他引:11       下载免费PDF全文
1. Gluconeogenesis from 10mm-lactate in the perfused liver of starved rats is inhibited by ethanol. The degree of inhibition reached a maximum of 66% at 10mm-ethanol under the test conditions and decreased at higher ethanol concentrations. The concentration-dependence of the inhibition is paralleled by the concentration-dependence of the activity of alcohol dehydrogenase. The enzyme is also inhibited by ethanol concentrations above 10mm. 2. Gluconeogenesis from pyruvate is not inhibited by ethanol. 3. The degree of the inhibition of gluconeogenesis from lactate by ethanol depends on the concentration of lactate and other oxidizable substances, e.g. oleate, in the perfusion medium. 4. Ethanol also inhibits, to different degrees, gluconeogenesis from glycerol, dihydroxyacetone, proline, serine, alanine, fructose and galactose. 5. The inhibition of gluconeogenesis from lactate by ethanol is reversed by acetaldehyde. 6. Pyrazole, a specific inhibitor of alcohol dehydrogenase, also reverses the inhibition of gluconeogenesis by ethanol. 7. Gluconeogenesis in kidney cortex, where the activity of alcohol dehydrogenase is very low, is not inhibited by ethanol. 8. Kidney cortex, testis, ovary, uterus and certain tissues of the alimentary tract were the only rat tissues, apart from the liver, that showed measurable alcohol dehydrogenase activity. 9. The concentrations of pyruvate in the liver were decreased to about one-fifth by ethanol. 10. The concentration of lactate in the perfused liver was about 3mm below that of the perfusion medium 30min. after the addition of 10mm-lactate. 11. The great majority of the findings support the view that the inhibition of gluconeogensis by ethanol is caused by the alcohol dehydrogenase reaction, which decreases the [free NAD(+)]/[free NADH] ratio. The decrease lowers the concentration of pyruvate and this is the immediate cause of the inhibition of gluconeogenesis from lactate, alanine and serine: the fall in the concentration of pyruvate lowers the rate of the pyruvate carboxylase reaction, one of the rate-limiting reactions of gluconeogenesis. The cause of the inhibition of gluconeogenesis from other substrates is discussed.  相似文献   

14.
The regulatory properties of the Ca2+-sensitive intramitochondrial enzymes (pyruvate dehydrogenase phosphate phosphatase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase) in extracts of rat liver mitochondria appeared to be essentially similar to those described previously for other mammalian tissues. In particular, the enzymes were activated severalfold by Ca2+, with half-maximal effects at about 1 microM-Ca2+ (K0.5 value). In intact rat liver mitochondria incubated in a KCl-based medium containing 2-oxoglutarate and malate, the amount of active, non-phosphorylated, pyruvate dehydrogenase could be increased severalfold by increasing extramitochondrial [Ca2+], provided that some degree of inhibition of pyruvate dehydrogenase kinase (e.g. by pyruvate) was achieved. The rates of 14CO2 production from 2-oxo-[1-14C]glutarate at non-saturating, but not at saturating, concentrations of 2-oxoglutarate by the liver mitochondria (incubated without ADP) were similarly enhanced by increasing extramitochondrial [Ca2+]. The rates and extents of NAD(P)H formation in the liver mitochondria induced by non-saturating concentrations of 2-oxoglutarate, glutamate, threo-DS-isocitrate or citrate were also increased in a similar manner by Ca2+ under several different incubation conditions, including an apparent 'State 3.5' respiration condition. Ca2+ had no effect on NAD(P)H formation induced by beta-hydroxybutyrate or malate. In intact, fully coupled, rat liver mitochondria incubated with 10 mM-NaCl and 1 mM-MgCl2, the apparent K0.5 values for extramitochondrial Ca2+ were about 0.5 microM, and the effective concentrations were within the expected physiological range, 0.05-5 microM. In the absence of Na+, Mg2+ or both, the K0.5 values were about 400, 200 and 100 nM respectively. These effects of increasing extramitochondrial [Ca2+] were all inhibited by Ruthenium Red. When extramitochondrial [Ca2+] was increased above the effective ranges for the enzymes, a time-dependent deterioration of mitochondrial function and ATP content was observed. The implications of these results on the role of the Ca2+-transport system of the liver mitochondrial inner membrane are discussed.  相似文献   

15.
Ascaridia galli, using 2-oxoglutarate as an acceptor, transaminates alanine and aspartate at significantly high rates. Among other amino acids valine, phenylalanine, leucine, isoleucine, arginine, tyrosine and methionine are metabolised at moderate rates while lysine, serine, threonine, cysteine, glycine, histidine, tryptophan, DOPA and GABA appear to be inert in this respect. Body parts mimic the whole worm in the pattern of transamination of various amino acids with the exception of methionine. Alanine, aspartate and glutamate may transfer their amino group also to pyruvate and oxaloacetate. Alanine and aspartate: 2-oxoglutarate transaminases are located mainly in the cytosol and mitochondrial fractions.  相似文献   

16.
Incubation of rat liver mitochondria with benzoquinone derivatives in the presence of succinate plus rotenone has been shown to cause NAD(P)H oxidation followed by Ca2+ release. Further investigation revealed: (1)p-Benzoquinone-induced Ca2+ release was not initiated by a collapse of the mitochondrial membrane potential. However, Ca2+ release and subsequent Ca2+ cycling caused limited increased membrane permeability. (2) p-Benzoquinone-induced NAD(P)H oxidation and Ca2+ release were prevented by isocitrate, 3-hydroxybutyrate, and glutamate but not by pyruvate or 2-oxoglutarate. (3) Inhibition of pyruvate and 2-oxoglutarate dehydrogenases by p-benzoquinone was attributed to arylation of the SH groups of the cofactors, CoA and lipoic acid. Isocitrate dehydrogenase was also inhibited by p-benzoquinone, but the cofactors NAD(P)H and Mn2+ protected the enzyme. Glutamate dehydrogenase was not inhibited by p-benzoquinone. (4) Arylation of mitochondrial protein thiols by p-benzoquinone was associated with an inhibition of state 3 respiration, which was attributed to the inactivation of the phosphate translocase. In contrast, state 4 respiration, and the F1.F0-ATPase and ATP/ADP translocase activities were not inhibited. It was concluded that inhibition of mitochondrial NAD(P)H dehydrogenases by arylation of critical thiol groups will decrease the NAD(P)+-reducing capacity, and possibly lower the NAD(P)H/NAD(P)+ redox status in favor of Ca2+ release.  相似文献   

17.
1. The activities of aminotransferases catalysing the transfer of amino groups from aspartate, alanine and leucine to 2-oxoglutarate in different tissues of the rat, pigeon and trout have been determined. 2. Alanine-2-oxoglutarate aminotransferase was high in the liver of the rat and trout and low in that of the pigeon. 3. Aspartate-2-oxoglutarate aminotransferase was usually the dominant aminotransferase in all tissues and was highest in oxidative tissues where the TCA cycle is active. Its activity in the various livers is not correlated with the function of aspartate in nitrogen excretion. 4. The activity of aspartate-2-oxoglutarate aminotransferase in oxidative tissues argues that aspartate in conjunction with this enzyme serves as a buffer of oxaloacetate to keep the TCA cycle running and/or to mediate the transfer of reducing equivalents across mitochondrial membranes.  相似文献   

18.
Bovine liver glutamate dehydrogenase reacts rapidly with 2,3-butanedione to yield modified enzyme with 29% of its original maximum activity, but no change in its Michaelis constants for substrates and coenzymes. No significant reduction in the inactivation rate is produced by the addition of the allosteric activator ADP or inhibitor GTP, while partial protection against inactivation is provided by the coenzyme NAD+ or substrate 2-oxoglutarate when added separately. The most marked decrease in the rate of inactivation (about 10-fold) is provided by the combined addition of NAD+ and 2-oxoglutarate, suggesting that modification takes place in the region of the active site. Reaction with 2,3-butanedione also results in loss of the ability of the enzyme to be activated by ADP. Addition of ADP (but not NAD+, 2-oxoglutarate or GTP) to the incubation mixture protects markedly against the loss of activatability of ADP. It is concluded that 2,3-butanedione produces two distinguishable effects on glutamate dehydrogenase: a relatively specific modification of the regulatory ADP site and a distinct modification in the active center. Reaction of two arginyl residues per peptide chain appears to be responsible for disruption of the ADP activation property of the enzyme, while alteration of a maximum of five arginyl residues can be related to the reduction of maximum catalytic activity. Electrostatic interactions between the positively charged arginine groups and the negatively charged substrate, coenzyme and allosteric purine nucleotide may be important for the normal function of glutamate dehydrogenase.  相似文献   

19.
Some aspects of tricarboxylic acid-cycle activity during differentiation and aging in Dictyostelium discoideum were examined. The concentrations of glutamate, aspartate, alanine, citrate, 2-oxoglutarate, succinate, fumarate, malate, oxaloacetate, pyruvate and acetyl-CoA were determined at four stages over the course of differentiation. The rate of O2 utilization was also determined over differentiation. In addition, experiments are described in which the specific radioactivities of citrate, 2-oxoglutarate, succinate, fumarate and malate were determined during a 30 min labelling of cells from the preculmination stage of development with [14C]glutamate, [14C]aspartate or [14C]alanine. A similar experiment was also performed with cells from the aggregation stage of development using [14C]glutamate.  相似文献   

20.
Oxamate, a structural analog of pyruvate, known as a potent inhibitor of lactic dehydrogenase, lactic dehydrogenase, produces an inhibition of gluconeogenic flux in isolated perfused rat liver or hepatocyte suspensions from low concentrations of pyruvate (less than 0.5 mM) or substrates yielding pyruvate. The following observations indicate that oxamate inhibits flux through pyruvate carboxylase: accumulation of substrates and decreased concentration of all metabolic intermediates beyond pyruvate; decreased levels of aspartate, glutamate, and alanine; and enhanced ketone body production, which is a sensitive indicator of decreased mitochondrial free oxaloacetate levels. The decreased pyruvate carboxylase flux does not seem to be the result of a direct inhibitory action of oxamate on this enzyme but is secondary to a decreased rate of pyruvate entry into the mitochondria. This assumption is based on the following observations: Above 0.4 mM pyruvate, no significant inhibitory effect of oxamate on gluconeogenesis was observed. The competitive nature of oxamate inhibition is in conflict with its effect on isolated pyruvate carboxylase which is noncompetitive for pyruvate. Fatty acid oxidation was effective in stimulating gluconeogenesis in the presence of oxamate only at concentrations of pyruvate above 0.4 mM. Since only at low pyruvate concentrations its entry into the mitochondria occurs via the monocarboxylate translocator, from these observations it follows that pyruvate transport across the mitochondrial membrane, and not its carboxylation, is the first nonequilibrium step in the gluconeogenic pathway. In the presence of oxamate, fatty acid oxidation inhibited gluconeogenesis from lactate, alanine, and low pyruvate concentrations (less than 0.5 mM), and the rate of transfer of reducing equivalents to the cytosol was significantly decreased. Whether fatty acids stimulate or inhibit gluconeogenesis appears to correlate with the rate of flux through pyruvate carboxylase which ultimately seems to rely on pyruvate availability. Unless adequate rates of oxaloacetate formation are maintained, the shift of the mitochondrial NAD couple to a more reduced state during fatty acid oxidation seems to decrease mitochondrial oxaloacetate resulting in a decreased rate of transfer of carbon and reducing power to the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号