首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 689 毫秒
1.
Cholesterol ester hydrolase activity was measured in isolated rat hepatocytes and adipocytes. Administration of triiodothyronine to rats resulted in a specific and selective increase in lysosomal acid (pH 4.5) cholesterol ester hydrolase activity in hepatocytes. Since the majority of lipoprotein degradation occurs in liver parenchymal cells (hepatocytes), the stimulation of liver (hepatocyte) acid cholesterol ester hydrolase activity by triiodothyronine could contribute to the hypocholesterolemic action of thyroid hormones. Treatment of rats with 17 alpha-ethynylestradiol to increase the hepatic degradation of lipoprotein did not change acid cholesterol ester hydrolase activity in liver, indicating that the thyroid hormone induced stimulation of acid cholesterol ester hydrolase activity in hepatocytes is not a secondary effect owing to the increased hepatic catabolism of low density lipoproteins (LDL). In contrast to the results with hepatocytes, hyperthyroidism did not increase acid cholesterol ester hydrolase activity in rat adipocytes.  相似文献   

2.
Normal female rats were given 15mug of ethynyloestradiol/kg body wt. for 14 days and were killed on day 15 after starvation for 12-14h. The livers were isolated and were perfused with a medium containing washed bovine erythrocytes, bovine serum albumin, glucose and [1-(14)C]oleic acid; 414mumol of oleate were infused/h during a 3h experimental period. The output of bile and the flow of perfusate/g of liver were decreased in livers from animals pretreated with ethynyloestradiol, whereas the liver weight was increased slightly. The rates of uptake and of utilization of [1-(14)C]oleate were measured when the concentration of unesterified fatty acid in the perfusate plasma was constant. The uptake of unesterified fatty acid was unaffected by pretreatment of the animal with oestrogen; however, the rate of incorporation of [1-(14)C]oleate into hepatic and perfusate triacylglycerol was stimulated, whereas the rate of conversion into ketone bodies was impaired by treatment of the rat with ethynyloestradiol. Pretreatment of the rat with ethynyloestradiol increased the output of very-low-density lipoprotein triacylglycerol, cholesterol, phospholipid and protein. The production of (14)CO(2) and the incorporation of radioactivity into phospholipid, cholesteryl ester and diacylglycerol was unaffected by treatment with the steroid. The net output of glucose by livers from oestrogen-treated rats was impaired despite the apparent increased quantities of glycogen in the liver. The overall effect of pretreatment with oestrogen on hepatic metabolism of fatty acids is the channeling of [1-(14)C]oleate into synthesis and increased output of triacylglycerol as a moiety of the very-low-density lipoprotein, whereas ketogenesis is decreased. The effect of ethynyloestradiol on the liver is apparently independent of the nutritional state of the animal from which the liver was obtained. It is pertinent that hepatocytes prepared from livers of fed rats that had been treated with ethynyloestradiol produced fewer ketone bodies and secreted more triacylglycerol than did hepatocytes prepared from control animals. In these respects, the effects of the steroid were similar in livers from fed or starved (12-14h) rats. Oestrogens may possibly inhibit hepatic oxidation of fatty acid, making more fatty acid available for the synthesis of triacylglycerol, or may stimulate the biosynthesis of triacylglycerol, or may be active on both metabolic pathways.  相似文献   

3.
To study potential effects of hepatic cholesterol concentration on secretion of very-low-density lipoprotein (VLDL) by the liver, male rats were fed on unsupplemented chow, chow with lovastatin (0.1%), or chow with lovastatin (0.1%) and cholesterol (0.1%) for 1 week. Livers were isolated from these animals and perfused in vitro, with a medium containing [2-14C]acetate, bovine serum albumin and glucose in Krebs-Henseleit buffer, and with an oleate-albumin complex. With lovastatin feeding, the hepatic concentrations of cholesteryl esters and triacylglycerols before perfusion were decreased, although free cholesterol was unchanged. However, hepatic secretion of all the VLDL lipids was decreased dramatically by treatment with lovastatin. Although total secretion of VLDL triacylglycerol, phospholipid, cholesterol and cholesteryl esters was decreased, the decrease in triacylglycerol was greater than that in free cholesterol or cholesteryl esters, resulting in secretion of a VLDL particle enriched in sterols relative to triacylglycerol. In separate studies, the uptake of VLDL by livers from control animals or animals treated with lovastatin was measured. Uptake of VLDL was estimated by disappearance of VLDL labelled with [1-14C]oleate in the triacylglycerol moiety, and was observed to be similar in both groups. During perfusion, triacylglycerol accumulated to a greater extent in livers from lovastatin-fed rats than in control animals. The depressed output of VLDL triacylglycerols and the increase in triacylglycerol in the livers from lovastatin-treated animals was indicative of a limitation in the rate of VLDL secretion. Addition of cholesterol (either free cholesterol or human low-density lipoprotein) to the medium perfusing livers from lovastatin-fed rats, or addition of cholesterol to the diet of lovastatin-fed rats, increased the hepatic concentration of cholesteryl esters and the output of VLDL lipids. The concentration of cholesteryl esters in the liver was correlated with the secretion of VLDL by the liver. These data suggest that cholesterol is an obligate component of the VLDL required for its secretion. It is additionally suggested that cholesteryl esters are in rapid equilibrium with a small pool of free cholesterol which comprises a putative metabolic pool available and necessary for the formation and secretion of the VLDL. Furthermore, the specific radioactivity (d.p.m./mumol) of the secreted VLDL free cholesterol was much greater than that of hepatic free cholesterol, suggesting that the putative hepatic metabolic pool is only a minor fraction of total hepatic free cholesterol.  相似文献   

4.
5.
The effect of adrenaline on triacylglycerol synthesis and secretion was examined in isolated rat hepatocytes. Cells were incubated with 0.5 mM-[1-14C]oleate, and the accumulation of triacylglycerol and [14C]triacylglycerol was measured in the incubation medium. Triacylglycerol appearing in the medium was present in a form with properties similar to very-low-density lipoproteins. Triacylglycerol, [14C]triacylglycerol and [14C]phospholipid contents of hepatocytes were also determined. Addition of 10 microM-(-)adrenaline decreased accumulation of glycerolipid in the incubation medium and also decreased cellular [14C]phospholipid content. Prazosin abolished these effects, whereas propranolol did not. The hormone did not affect cellular triacylglycerol content or rates of incorporation of [1-14C]oleate into cell triacylglycerol. The effect of adrenaline on the removal of newly secreted triacylglycerol and the secretion of synthesized glycerolipid was also examined. The catecholamine did not affect rates of removal of newly secreted triacylglycerol. Adrenaline did inhibit the secretion of pre-synthesized lipid by the cells, as assessed by the appearance of radiolabelled triacylglycerol from hepatocytes that had been preincubated with [1,2,3-3H]-glycerol. Adrenaline did not affect rates of fatty acid uptake by hepatocytes, but did stimulate oxidation of [1-14C]oleate, principally to 14CO2.  相似文献   

6.
Female and male rats were treated with ethinyl estradiol (5.0 mg/kg daily for 5 days). Control animals were pair fed to compensate for the reduction in food intake induced by the estrogen, or were fed ad libitum. Treatment with ethinyl estradiol reduced total cholesterol and apolipoprotein A-I concentrations in the serum of female and male animals. The concentrations of serum and hepatic triacylglycerol were depressed markedly in animals of both sexes in groups treated with ethinyl estradiol, compared to the control group fed ad libitum. Compared to the pair-fed controls, however, ethinyl estradiol had only a very minor further reduction on serum triacylglycerol concentration. In male and female rats, the synthesis and secretion of triacylglycerol by the liver was, in comparison to the pair-fed controls, stimulated by estrogen, whereas the secretion of unesterified cholesterol was unaffected by any of the treatment regimens. The synthesis and secretion of total cholesteryl esters by livers from male and female rats was increased by treatment with ethinyl estradiol. The hepatic synthesis and secretion of VLDL triacylglycerol and cholesteryl ester was stimulated by ethinyl estradiol in male and female rats, and the VLDL particle was enriched with cholesteryl ester. Treatment with the high-dose estrogen increased the secretion of apolipoprotein A-I by livers from female rats. It is suggested that the depression in the serum concentrations of cholesteryl esters and apolipoprotein A-I is the result of increased rates of hepatic and/or peripheral catabolism of these components and that the hepatic production rates were increased or unaffected in animals administered high doses of ethinyl estradiol. Since the secretion of apolipoprotein A-I by livers from male rats was unaffected by treatment with ethinyl estradiol, the response to estrogen may be sex related.  相似文献   

7.
The regulation of acid cholesterol ester hydrolase activity by thyroid hormones was studied in subcellular fractions from rat liver, heart, and epididymal fat pads; hydrolase activity was determined at pH 5 with a glycerol-dispersed cholesterol oleate substrate preparation. Acid cholesterol ester hydrolase activity was decreased in liver preparations from thyroidectomized rats relative to activity in livers from euthyroid control rats. Administration of triidothyronine to either euthyroid or hypothyroid (thyroidectomized) rats resulted in an increase in acid cholesterol ester hydrolase activity in liver preparations. Similar effects of thyroidectomy and the administration of triiodothyronine on acid cholesterol ester hydrolase activity were observed with fat pad preparations. In contrast, no effect of thyroid hormones was observed on acid cholesterol ester hydrolase activity in heart. These results suggest that thyroid hormones may regulate the catabolism of serum lipoproteins, in part, by alterations in lysosomal acid cholesterol ester hydrolase activity in liver and epididymal fat pads.  相似文献   

8.
CS-514 is a tissue-selective inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a key enzyme in cholesterol synthesis. For the microsomal enzyme from rat liver, the mode of inhibition is competitive with respect to hydroxymethylglutaryl-CoA, and the Ki value is 2.3 X 10(-9) M. CS-514 also strongly inhibited the sterol synthesis from [14C]acetate in cell-free enzyme systems from rat liver and in freshly isolated rat hepatocytes; the concentrations required for 50% inhibition were 0.8 ng/ml and 2.2 ng/ml, respectively. On the other hand, the inhibition by CS-514 was much less in the cells from nonhepatic tissues such as freshly isolated rat spleen cells, and cultured mouse L cells and human skin fibroblasts. In addition, the cellular uptake of 14C-labeled CS-514 by isolated rat spleen cells or mouse L cells was less than one-tenth of that by isolated hepatocytes. These differences between hepatic and nonhepatic cells were further confirmed by the fact that CS-514 orally administered to rats inhibited sterol synthesis selectively in liver and intestine, the major sites of cholesterogenesis. CS-514 markedly reduced serum cholesterol levels in dogs, monkeys and rabbits, including Watanabe heritable hyperlipidemic (WHHL) rabbits, an animal model for familial hypercholesterolemia in man, but did not reduce those in rats and mice. In the former case, preferential lowering of atherogenic lipoproteins was observed in all of the animals tested. The biliary neutral sterols significantly decreased, whereas the amount of biliary bile acids was not affected by administration of the drug to dogs.  相似文献   

9.
Fatty acid compositions of liver phospholipid, cholesterol ester and triacylglycerol fractions obtained from streptozotocin-induced diabetic rats were compared to those from control or from simple-acidotic rats. Significant reductions of arachidonic acid proportions in phospholipid and cholesterol ester were found on the 3rd day after the streptozotocin treatment. In triacylglycerol, arachidonic acid and the other desaturation and elongation products of linoleic acid except for gamma-linolenic acid were increased in the diabetic rats. Although essential fatty acid composition in liver phospholipid and cholesterol ester of simple-acidotic rats did not differ from control rats, dihomo-gamma-linolenic acid, arachidonic acid, adrenic acid and docosapentaenoic acid (22:5(n - 6] contents in liver TG were significantly increased over those in control rats and were similar to those in diabetic rats. These results suggest that metabolic acidosis may contribute to the fatty acid abnormalities observed in diabetic animals.  相似文献   

10.
Male golden hamsters fed a glucose diet as a model for cholesterol gallstone formation were used to investigate the effect of CS-514 on the lithogenicity of bile. Treatment with 0.05% (w/w) CS-514 in the diet for 1-4 weeks caused a decrease in plasma cholesterol and triacylglycerol levels. A marked increase in hepatic hydroxymethylglutaryl-CoA reductase activity in vitro and also an increased de novo cholesterol synthesis in the liver were induced by treatment with CS-514 for 1-4 weeks. The concentration of free cholesterol in liver microsomes and the cholesterol 7 alpha-hydroxylase activity were both decreased by treatment with CS-514 for 1 week, but were not affected by treatment for 4 weeks. The cholesterol output into bile and the lithogenic index of bile were double those of the control (glucose diet only) following treatment with CS-514 for 4 weeks, and the subsequent incidence of cholesterol gallstone formation was elevated. The content of free cholesterol and cholesterol ester in the liver was not affected by treatment with CS-514 for 4 weeks. These results suggest that long-term treatment with CS-514 causes a compensatory increase in the synthesis of hydroxymethylglutaryl-CoA reductase which leads to augmented hepatic de novo cholesterol synthesis and subsequent increased cholesterol output followed by an increase in the lithogenicity of bile. CS-514 apparently does not prevent cholesterol gallstone formation in those examples where the mechanism is thought to be due to augmented hepatic de novo cholesterol synthesis (type IV hyperlipidemia).  相似文献   

11.
Lipid synthesis in permeabilized cultured rat hepatocytes   总被引:1,自引:0,他引:1  
Hepatic lipid synthesis was verified and studied in lysolecithin-permeabilized cultured rat hepatocytes and compared to that of intact liver cells. Triacylglycerol synthesis in permeabilized cells incubated in the presence of glycerol 3-phosphate and long chain fatty acids approached that of intact hepatocytes. Similarly, phosphatidylcholine synthesis in permeable cells incubated in the presence of exogenous CDP-choline was similar to that of intact hepatocytes and at the expense of microsomal neutral lipid synthesis. Phosphatidic acid accumulation in lysolecithin-permeabilized liver cells was remarkably increased as compared to that of intact cells, and its synthesis was mostly accounted for by the activity of mitochondrial glycerol-3-phosphate acyltransferase. Mitochondrial-generated phosphatidate was found to migrate to the endoplasmic reticulum, thus establishing a novel lipid esterification pathway which begins in mitochondrial glycerol 3-phosphate acylation and results in microsomal triacylglycerol and phospholipid synthesis. The free access of permeabilized liver cells to substrates and modulators of lipid synthesis, while maintaining an overall synthetic pattern similar to that of intact hepatocytes, makes them a system of choice for studying hepatic lipid synthesis in general and the microsomal/mitochondrial distribution of fluxes in particular.  相似文献   

12.
The mechanisms by which ethanol consumption causes accumulation of hepatic triacylglycerols are complex. AMP-activated protein kinase (AMPK) plays a central role in the regulation of lipid metabolism. Therefore, in the present study we investigated whether AMPK may have a role in the development of ethanol-induced fatty liver. Hepatocytes isolated from rats fed with an ethanol-containing liquid diet showed higher rates of fatty acid and triacylglycerol syntheses, but a decreased rate of fatty acid oxidation, concomitant to a lower activity of carnitine palmitoyltransferase I. Hepatocytes from both ethanol-fed and pair-fed control rats were incubated with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an AMPK activator in intact cells. In both hepatocyte preparations AICAR strongly inhibited the activity of acetyl-CoA carboxylase in parallel to fatty acid synthesis, but cells from ethanol-fed rats showed significantly lower sensitivity to inhibition by AICAR. Moreover, AICAR strongly decreased triacylglycerol synthesis and increased fatty acid oxidation in control hepatocytes, but these effects were markedly attenuated in hepatocytes from ethanol-fed rats. In parallel, AMPK in liver of ethanol-fed rats showed a decreased specific activity and a lower sensitivity to changes in the AMP/ATP ratio, compared to the enzyme of control rats. These effects are consistent with the impairment of AMPK-mediated regulation of fatty acid metabolism after ethanol consumption, that will facilitate triacylglycerol accumulation. Taken together, these findings suggest that a decreased AMPK activity may have an important role in the development of alcoholic fatty liver.  相似文献   

13.
Lipid and lipoprotein metabolism in Hep G2 cells   总被引:6,自引:0,他引:6  
Lipid composition, lipid synthesis and lipoprotein secretion by the Hep G2 cell line have been studied with substrate and insulin supplied under different conditions. The lipid composition of Hep G2 cells was close to that of normal human liver, except for a higher content in sphingomyelin (P less than 0.005) and a lower phosphatidylcholine/sphingomyelin ratio. Most of the [14C]triacylglycerols secreted into the medium were recovered by ultracentrifugation at densities of 1.006 to 1.020 g/ml. The main apolipoproteins secreted were apo B-100 and apo A-I. Hep G2 mRNA synthesized in vitro the pro-apolipoproteins A-I and E. Triacylglycerol secretion was 7.38 +/- 1.04 micrograms/mg cell protein per 20 h with 5.5 mM glucose in the medium and increased linearly with glucose concentration. Oleic acid (1 mM) increased the incorporation of [3H]glycerol into the medium and cell triacylglycerols by 251 and 899%, with a concomitant increment in cell triacylglycerols and cholesterol ester. Insulin (1 mU or 7 pmol/ml) inhibited triacylglycerol secretion and [35S]methionine incorporation into secreted protein by 47 and 28%, respectively, with a corresponding increase in the cells. Preincubation of cells with 2.5-10 mM mevalonolactone decreased the incorporation of [14C]acetate into cholesterol 6.2-fold, indicating an inhibitory effect on HMG-CoA reductase. It is concluded that in spite of some differences between Hep G2 and normal human hepatocytes, this line offers an alternative and reliable model for studies on liver lipid metabolism.  相似文献   

14.
Well-differentiated Reuber H35 rat hepatoma cells in culture maintain a variety of biochemical functions characteristic of hepatocytes [Deschatrette, J., and M. C. Weiss. 1974. Biochimie. 56: 1603-1611]. To demonstrate the suitability of this system as a model for exploring mechanisms of ethanol hepatotoxicity, the following were investigated: 1) ethanol metabolism in whole cells and cell extracts and 2) effects of ethanol exposure on cellular lipid content. Cultures of H35 cells exposed to 10 mm ethanol metabolized the ethanol at rates similar to those reported in rat liver. Under these conditions, soluble alcohol dehydrogenase activity accounted for greater than 87% of total ethanol metabolism. H35 cells exposed to 240 mm ethanol for 3 days contained four times more triacylglycerol and cholesteryl ester than control cells. Total phospholipid and unesterified cholesterol levels were unaffected by ethanol. Neutral lipid content of Chinese hamster ovary cells was unchanged after ethanol exposure. The increased triacylglycerol content of ethanol-treated H35 cells appeared to result from an accelerated rate of conversion of long chain fatty acids into triacylglycerol. Several lines of evidence indicated that alcohol dehydrogenase-mediated ethanol oxidation was critical in promoting increased triacylglycerol content of cultured cells. Since 240 mm ethanol blocked cellular proliferation, long term effects of ethanol were studied at a level of 10 mm, which allowed a nearly normal growth rate. After 7 weeks of continuous exposure, 10 mm ethanol-treated H35 cells contained five times more triacylglycerol than paired controls. The well-differentiated H35 cell appears to be an excellent in vitro model system for studying both short-term and long-term effects of ethanol on liver cells.-Polokoff, M. A., M. Iwahashi, and F. R. Simon. Ethanol treatment increases triacylglycerol and cholesteryl ester content of cultured hepatoma cells.  相似文献   

15.
Synthetic rates of fatty acid, cholesterol and triacylglycerols, and contents and secretion of lipoprotein lipids, were determined in hepatocytes of rats fed ad libitum a fat-containing stock diet or of rats fasted for 48 h and then refed for 24 or 48 h with stock diet or with a glucose-rich fat-free diet. When compared with the values for the ad libitum-fed rats, fatty acid synthesis was lower in fasted rats, slightly increased in rats refed with the stock diet, but several-fold elevated after refeeding the glucose-rich fat-free diet. Cholesterol synthesis was decreased in the fasted cells, and restored to the control level upon refeeding either diet. Triacylglycerol synthesis from exogenous oleate was greatly stimulated in the cells of fasted-refed rats above the rate in cells of the ad libitum-fed rats, the increase being considerably higher after refeeding the glucose-rich fat-free diet than the stock diet. The amount of triacylglycerol secreted by the cells was also elevated by the fasting-refeeding treatment, but the difference between the two diets was much less pronounced than seen for the lipids' synthetic rates. This imbalance may underlie the huge accumulation of this lipid observed in the heptatocytes after refeeding the rats for 48 h with the glucose-rich fat-free diet.  相似文献   

16.
Phosphatidylethanolamine N-methyltransferase (PEMT) is a liver-specific enzyme that converts phosphatidylethanolamine to phosphatidylcholine (PC). Mice that lack PEMT have reduced plasma levels of PC and cholesterol in high density lipoproteins (HDL). We have investigated the mechanism responsible for this reduction with experiments designed to distinguish between a decreased formation of HDL particles by hepatocytes or an increased hepatic uptake of HDL lipids. Therefore, we analyzed lipid efflux to apoA-I and HDL lipid uptake using primary cultured hepatocytes isolated from Pemt(+/+) and Pemt(-/-) mice. Hepatic levels of the ATP-binding cassette transporter A1 are not significantly different between Pemt genotypes. Moreover, hepatocytes isolated from Pemt(-/-) mice released cholesterol and PC into the medium as efficiently as did hepatocytes from Pemt(+/+) mice. Immunoblotting of liver homogenates showed a 1.5-fold increase in the amount of the scavenger receptor, class B, type 1 (SR-BI) in Pemt(-/-) compared with Pemt(+/+) livers. In addition, there was a 1.5-fold increase in the SR-BI-interacting protein PDZK1. Lipid uptake experiments using radiolabeled HDL particles revealed a greater uptake of [(3)H]cholesteryl ethers and [(3)H]PC by hepatocytes derived from Pemt(-/-) compared with Pemt(+/+) mice. Furthermore, we observed an increased association of [(3)H]cholesteryl ethers in livers of Pemt(-/-) compared with Pemt(+/+) mice after tail vein injection of [(3)H]HDL. These results strongly suggest that PEMT is involved in the regulation of plasma HDL levels in mice, mainly via HDL lipid uptake by SR-BI.  相似文献   

17.
Recent studies have demonstrated that dietary fish oils rich in eicosapentaenoic acid (C20:5,omega 3) lower the content of arachidonic acid and its metabolites in plasma and tissue phospholipids. The present study examined the fatty acid composition of cholesterol ester and triacylglycerol fractions from plasma and livers of rats fed diets enriched with saturated fatty acids (beef tallow), alpha-linolenic acid (linseed oil) or eicosapentaenoic acid (fish oil). Feeding diets containing linseed oil or fish oil for 28 days increased arachidonic acid (C20:4,omega 6) levels in the cholesterol ester fraction of liver and in the triacylglycerol fraction of the plasma lipids. Plasma cholesterol esters were depleted of C20:4,omega 6 after feeding of the diet containing either linseed oil or fish oil. The changes in C20:4,omega 6 content cannot be explained by alterations in cholesterol ester or triacylglycerol pools of plasma and liver. These results suggest that the decrease in phospholipid C20:4,omega 6 content generally observed after fish oil consumption may be partly due to a shift of C20:4,omega 6 from phospholipid to the triacylglycerol and/or cholesterol ester pools in the same tissue. Triacylglycerols and cholesterol esters may therefore play a buffering role in the homeostatic maintenance of tissue phospholipid levels of arachidonic acid.  相似文献   

18.
Cholesteryl esters are selectively removed from high density lipoproteins by hepatocytes and steroidogenic cells through a process mediated by scavenger receptor BI. In the liver this cholesterol is secreted into bile, primarily as free cholesterol. Previous work showed that carboxyl ester lipase enhanced selective uptake of cholesteryl ether from high density lipoprotein by an unknown mechanism. Experiments were performed to determine whether carboxyl ester lipase plays a role in scavenger receptor BI-mediated selective uptake. When added to cultures of HepG2 cells, carboxyl ester lipase cofractionated with scavenger receptor BI and [(3)H]cholesteryl ether-labeled high density lipoprotein in lipid raft fractions of cell homogenates. Confocal microscopy of immunostained carboxyl ester lipase and scavenger receptor BI showed a close association of these proteins in HepG2 cells. The enzyme and receptor also cofractionated from homogenates of mouse liver using two different fractionation methods. Antibodies that block scavenger receptor BI function prevented carboxyl ester lipase stimulation of selective uptake in primary hepatocytes from carboxyl ester lipase knockout mice. Heparin blockage of cell-surface proteoglycans also prevented carboxyl ester lipase stimulation of cholesteryl ester uptake by HepG2 cells. Inhibition of carboxyl ester lipase activity in HepG2 cells reduced hydrolysis of high density lipoprotein-cholesteryl esters approximately 40%. In vivo, hydrolysis was similarly reduced in lipid rafts from the livers of carboxyl ester lipase-null mice compared with control animals. Primary hepatocytes from these mice yielded similar results. The data suggest that carboxyl ester lipase plays a physiological role in hepatic selective uptake and metabolism of high density lipoprotein cholesteryl esters by direct and indirect interactions with the scavenger receptor BI pathway.  相似文献   

19.
We have previously shown in rats that the cholesteryl ester component of high density lipoproteins (HDL) is taken up at a greater fractional rate than is the apolipoprotein A-I component (selective uptake) by liver and steroidogenic tissues. Selective uptake was also exhibited by cultured cells from these organs as well as by a wider range of cells in vitro (e.g., rat and human fibroblasts). We report here regulation of this pathway according to the cholesterol status of cells. Uptake of HDL cholesteryl esters by rat fibroblasts was decreased by prior loading of the cells with cholesterol, even while uptake of HDL-associated apoA-I actually increased. At high levels of cholesterol, the two were taken up about in parallel, i.e., selective uptake was suppressed. A similar regulation of selective uptake in primary rat hepatocytes in culture was not observed. To examine regulation of selective uptake in vivo, hypocholesterolemia was induced in rats using either 4-aminopyrazolo[3,4-d]pyrimidine or 17 alpha-ethinyl estradiol. Rat HDL, doubly labeled in both the apoprotein A-I and cholesteryl ester moieties with intracellularly trapped tracers, were injected into untreated and treated rats. The plasma decay kinetics and the tissue sites of uptake were then determined. Hypocholesterolemia increased the plasma fractional catabolic rates of both tracers. Selective uptake was observed in tissues of treated rats that did not exhibit selective uptake in untreated rats (muscle, adipose tissue, and skin). Similarly, hypocholesterolemia increased the contribution of selective uptake to total HDL cholesteryl ester uptake by adrenal and ovary. In contrast, regulation of selective uptake by liver could not be demonstrated under these conditions. Thus, selective uptake of HDL cholesteryl esters can be regulated in extrahepatic tissues of rats in vivo and in vitro, suggesting a role for selective uptake in the maintenance of cholesterol homeostasis in these tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号